
Artificial Intelligence

Open Elective

Module 5: Learning CH15

Dr. Santhi Natarajan

Associate Professor

Dept of AI and ML

BMSIT, Bangalore

2

Contents

• What is learning

• ROTE learning

• Learning by taking advice

• Learning in problem solving

• Learning from examples: induction

• Explanation based learning

• Discovery

• Analogy

• Formal learning theory

• Neural net learning and genetic learning

3

What is learning

• Denotes changes in the system that enable a system to do the same task more

efficiently next time.

• Learning is constructing or modifying representations of what is being

experienced.

• Learning is making useful changes in our minds.

• Learning improves understanding and efficiency

• Discover new things or structures which were previously unknown (data mining,

scientific discovery)

• Fill in skeletal or incomplete observations or specifications about a domain (this

expands the domain of expertise and lessens the brittleness of the system)

• Build software agents that can adapt to their users or to other software agents

• Reproduce an important aspect of intelligent behaviour.

4

Learning Systems

• Machine learning systems perform the following iteratively:

➢ Produce a result

➢ Evaluate it against expected result

➢ Tweak a system

• Machine learning systems also discover patterns without prior expected results

• Open box: changes are clearly visible in the knowledge base and clearly

interpretable by the human users.

• Black box: changes done to the system are not readily visible or understandable.

5

Learner Architecture

• Machine learning systems has the four main components:

➢ Knowledge Base (KB):

✓ what is being learnt

✓ Representation of domain

✓ Description and representation of problem space

➢ Performer: does something with the knowledge base to produce results.

➢ Critic: evaluates results produced against expected results

➢ Learner: takes output from the critic and modifies something in the KB or the

performer.

➢ They may also need a problem generator to test performance against.

.

6

Learning Agent Architecture

7

Learning Examples
Problem Representation Performer (interacts

with human)

Critic (human player) Learner(elicits new

questions to modify

KBP

Animal guessing

game

Binary decision tree Walk the tree and ask

associated questions

Human feedback Elicit a question from

the user and add it to

the binary tree

Playing chess The board layout, game

rules, moves

Chain through the rules

to identify move, use

conflict resolution to

choose one, output the

move.

Who won (credit

assignment problem)

Increase the weight for

some rules and

decrease for others.

Categorizing

documents

Vector of word frequencies,

corpus of documents

Apply appropriate

functions to identify

which category the file

belongs to

A set of human-

categorized documents

Modify the weights on

the function and

improve categorization

Fixing computers Frequency matrix of causes

and symptoms

Use known symptoms

to identify potential

causes.

Human input about

symptoms and cause

observed for a specific

case

Update the frequency

matrix with actual

symptoms and

outcomes

Identifying digits in

Optical Character

Recognition

Probability of digits, matrix

of pixels, percentage of

light, no: of straight lines

Input the features for a

digit, output probability

that it is one in the set

from 0 to 9.

Human categorized

training set

Modify the weights on

the network of

associations

8

Learning Paradigms

Paradigm Description

Rote learning Knowledge engineering: direct entry of rules and facts

Learning by taking

advice

Human/system interaction producing explicit mapping

Learning in problem

solving

Parameter adjustments

Learning from

examples: induction

Using specific examples to reach general conclusions

Explanation based

learning

Learn from a single example and later generalize. More analytical and

knowledge intensive approach.

Learning through

discovery

Unsupervised, specific goal not given

Learning through

analogy

Determining correspondence between two different representations:

case-based reasoning

Formal learning theory Formal mathematical model of learning

Neural net learning and

genetic learning

Evolutionary search techniques, based on an analogy to the “survival

of the fittest”

9

Rote Learning

• Rote learning is the basic learning activity.

• It is also called memorization because the knowledge, without any modification is,

simply copied into the knowledge base. Direct entry of rules and facts

• Knowledge base is captured knowledge.

• Traditional approach to develop ontologies.

• Data caching to improve performance.

• As computed values are stored, this technique can save a significant amount of time.

• Rote learning technique can also be used in complex learning systems provided

sophisticated techniques are employed to use the stored values faster and there is a

generalization to keep the number of stored information down to a manageable level.

• Checkers-playing program, for example, uses this technique to learn the board

positions it evaluates in its look-ahead search.

10

Rote Learning

• Depends on two important capabilities of complex learning systems:

➢ Organized storage of information: need sophisticated techniques for data

retrieval. It will be much faster than recomputing the data.

➢ Generalization: The number of distinct objects that might potentially be stored

can be very large. To keep the number of stored objects down to a manageable

levels.

11

Learning by taking advice

• This type is the easiest and simple way of learning.

• In this type of learning, a programmer writes a program to give some instructions to

perform a task to the computer. Once it is learned (i.e. programmed), the system will

be able to do new things.

• Also, there can be several sources for taking advice such as humans(experts),

internet etc.

• However, this type of learning has a more necessity of inference than rote learning.

• As the stored knowledge in knowledge base gets transformed into an operational

form, the reliability of the knowledge source is always taken into consideration.

• The programs shall operationalize the advice by turning it into a single or multiple

expressions that contain concepts and actions that the program can use while under

execution.

• This ability to operationalize knowledge is very critical for learning. This is also an

important aspect of Explanation Based Learning (EBL).

12

Learning in Problem Solving

• When the program does not learn from advice, it can learn by generalizing from its

own experiences.

➢ Learning by parameter adjustment

➢ Learning with macro-operators

➢ Learning by chunking

➢ The unity problem

13

Learning in Problem Solving

Learning by parameter adjustment

• Here the learning system relies on evaluation procedure that combines information from

several sources into a single summary static.

• For example, the factors such as demand and production capacity may be combined into a

single score to indicate the chance for increase of production.

• But it is difficult to know a priori how much weight should be attached to each factor.

• The correct weight can be found by taking some estimate of the correct settings and then allow

the program modify its settings based on its experience.

• Features that appear to be good predictors of overall success will have their weights

increases, while those that do not will have their weights decreased.

• This type of learning systems is useful when little knowledge is available.

• In game programs, for example, the factors such as piece advantage and mobility are

combined into a single score to decide whether a particular board position is desirable. This

single score is nothing but a knowledge which the program gathered by means of calculation.

14

Learning in Problem Solving

Learning by parameter adjustment

• Programs do this in their static evaluation functions, in which a variety of factors

are combined into a single score. This function as a polynomial form is given

below:

• The t terms are the values of the features that contribute to the evaluation. The

c terms are the coefficients or weights that are attached to each of these

values. As learning progresses, the c values will change.

• In designing programs it is often difficult to decide on the exact value to give

each weight initially. So the basic idea of idea of parameter adjustment is to:

➢ Start with some estimate of the correct weight settings.

➢ Modify the weight in the program on the basis of accumulated experiences.

➢ Features that appear to be good predictors will have their weights

increased and bad ones will be decreased.

15

Learning in Problem Solving

Learning by parameter adjustment

• Important factors that affect the performance are:

➢ When should the value of a coefficient be increased and when should it be

decreased

✓ The coefficients of terms that predicted the final outcome accurately

should be increased, while the coefficients of poor predictors should

be decreased.

✓ The problem of appropriately assigning responsibility to each of the

steps that led to a single outcome is known as credit assignment

system.

➢ By how much should be value be changed.

• Learning procedure is a variety of hill-climbing.

• This method is very useful in situations where very little additional knowledge is

available or in programs in which it is combined with more knowledge intensive

methods.

16

Learning in Problem Solving
Learning with Macro-Operators

• Sequence of actions that can be treated as a whole are called macro-operators.

• Once a problem is solved, the learning component takes the computed plan and stores it

as a macro-operator.

• The preconditions are the initial conditions of the problem just solved, and its post

conditions correspond to the goal just achieved.

• The problem solver efficiently uses the knowledge base it gained from its previous

experiences.

• By generalizing macro-operators the problem solver can even solve different problems.

Generalization is done by replacing all the constants in the macro-operators with

variables.

• The STRIPS, for example, is a planning algorithm that employed macro-operators in it’s

learning phase. It builds a macro operator MACROP, that contains preconditions, post-

conditions and the sequence of actions. The macro operator will be used in the future

operation.

• The set of problems for which macro-operators are critical are exactly those problems

with non-serializable sub goals.(working on one subgoal will necessarily interfere with the

previous solution to another subgoal).

• One macro operator can produce a small global change in the world, even though the

individual operators that make it up produce many undesirable local changes.

• Domain specific knowledge we need can be learnt in the form of macro operators.

17

Learning in Problem Solving
Learning by chunking

• Chunking is similar to learnig with macro-operators. Generally, it is used by problem

solver systems that make use of production systems.

• A production system consists of a set of rules that are in if-then form. That is given a

particular situation, what are the actions to be performed. For example, if it is raining then

take umbrella.

• Production system also contains knowledge base, control strategy and a rule applier. To

solve a problem, a system will compare the present situation with the left hand side of the

rules. If there is a match then the system will perform the actions described in the right

hand side of the corresponding rule.

• Problem solvers solve problems by applying the rules. Some of these rules may be more

useful than others and the results are stored as a chunk.

• Chunking can be used to learn general search control knowledge.

• Several chunks may encode a single macro-operator and one chunk may

participate in a number of macro sequences.

18

Learning in Problem Solving
Learning by chunking

• Chunks learned in the beginning of problem solving, may be used in the later stage. The

system keeps the chunk to use it in solving other problems.

• Soar is a general cognitive architecture for developing intelligent systems. Soar requires

knowledge to solve various problems. It acquires knowledge using chunking mechanism.

The system learns reflexively when impasses have been resolved. An impasse arises

when the system does not have sufficient knowledge. Consequently, Soar chooses a new

problem space (set of states and the operators that manipulate the states) in a bid to

resolve the impasse. While resolving the impasse, the individual steps of the task plan

are grouped into larger steps known as chunks. The chunks decrease the problem space

search and so increase the efficiency of performing the task.

• In Soar, the knowledge is stored in long-term memory. Soar uses the chunking

mechanism to create productions that are stored in long-term memory. A chunk is nothing

but a large production that does the work of an entire sequence of smaller ones. The

productions have a set of conditions or patterns to be matched to working memory which

consists of current goals, problem spaces, states and operators and a set of actions to

perform when the production fires. Chunks are generalized before storing. When the

same impasse occurs again, the chunks so collected can be used to resolve it.

19

Learning in Problem Solving
The Utility Problem

• The utility problem in learning systems occurs when knowledge learned in an attempt to

improve a system's performance degrades it instead.

• The problem appears in many AI systems, but it is most familiar in speedup learning.

Speedup learning systems are designed to improve their performance by learning control

rules which guide their problem-solving performance. These systems often exhibit the

undesirable property of actually slowing down if they are allowed to learn in an

unrestricted fashion.

• Each individual control rule is guaranteed to have a positive utility (improve performance)

but, in concert, they have a negative utility (degrade performance).

• One of the causes of the utility problem is the serial nature of current hardware. The more

control rules that speedup learning systems acquire, the longer it takes for the system to

test them on each cycle.

• One solution to the utility problem is to design a parallel memory system to eliminate the

increase in match cost. his approach moves the matching problem away from the central

processor and into the memory of the system. These so-called active memories allow

memory search to occur in "nearly constant-time" in the number of data items, relying on

the memory for fast, simple inference and reminding.

20

Learning in Problem Solving
The Utility Problem

• PRODIGY program maintains a utility measure for each control rule. This measure takes

into account the average savings provided by the rule, the frequency of its application and

the cost of matching it.

• If a proposed rule has a negative utility, it is discarded or forgotten.

• If not, it is placed in long term memory with the other rules. It is then monitored during

subsequent problem solving.

• If its utility falls, the rule I discarded.

• Empirical experiments have demonstrated the effectiveness of keeping only those control

rules with high utility.

• Such utility considerations apply to a wide range of learning problems.

21

Learning by Analogy

Learning by analogy means acquiring new knowledge about

an input entity by transferring it from a known similar entity.

Qa=3 Qb=9

Qc=?

Simple Hydraulics Problem

I1 I2

I3=I1+I2

Kirchoff's First Law

One may infer, by analogy, that hydraulics laws are similar to Kirchoff's

laws, and Ohm's law.

22

Learning by Analogy

Central intuition supporting learning by analogy:

If two entities are similar in some respects then they

could be similar in other respects as well.

Examples of analogies:

Pressure Drop is like Voltage Drop

A variable in a programming language is like a box.

23

Transformational Analogy
Look for a similar solution and copy it to the

new situation making suitable substitutions

where appropriate.

E.g. Geometry.

If you know about lengths of line segments and

a proof that certain lines are equal then we can

make similar assertions about angles.

We know that lines RO = NY and

angles AOB = COD

We have seen that RO + ON = ON + NY -

additive rule.

So we can say that

angles AOB + BOC = BOC + COD

So by a transitive rule line RN = OY

So similarly angle AOC = BOD

24

Derivational Analogy
Two problems share significant aspects if they match within a certain

threshold, according to a given similarity metric.

The solution to the retrieved problem is perturbed incrementally until it

satisfies the requirements of the new problem.

Transformational analogy does not look at how the problem was solved -- it

only looks at the final solution. The history of the problem solution - the steps

involved - are often relevant.

Old derivation New derivation

25

Derivational Analogy

GIVEN:

PROVE: AC = BD

A

B

C

D

AB = CD

AB + BC = BC + CD

AC = BD

AB = CD GIVEN:

PROVE: <BAD = <CAE
<BAC = <DAE

B

A

C

D

E

BC = BC

<BAC = <DAE

<BAC + <CAD= <CAD + <DAE
<BAD = <CAE

<CAD = <CAD

AB <- <BAC

CD < - <DAE

AC <- <BAD

BD < - <CAE)

 = (

26

Explanation based Learning

27

Explanation based Learning

28

Explanation based Learning

29

Explanation based Learning

30

Explanation based Learning

31

Explanation based Learning

32

Learning by Discovery

An entity acquires knowledge without the help of a teacher.

Theory Driven Discovery - AM (1976)

AM is a program that discovers concepts in elementary mathematics and set

theory.

AM has 2 inputs:

• A description of some concepts of set theory (in LISP form). E.g. set union,

intersection, the empty set.

• Information on how to perform mathematics. E.g. functions.

How does AM work?

AM employs many general-purpose AI techniques:

• A frame based representation of mathematical concepts.

AM can create new concepts (slots) and fill in their values.

• Heuristic search employed

250 heuristics represent hints about activities that might lead to interesting

discoveries.

How to employ functions, create new concepts, generalisation etc.

• Hypothesis and test based search.

• Agenda control of discovery process.

33

Learning by Discovery

AM discovered:

• Integers-- it is possible to count the elements of this set and this is an the

image of this counting function -- the integers -- interesting set in its own right.

• Addition-- The union of two disjoint sets and their counting function

• Multiplication-- Having discovered addition and multiplication as laborious

set-theoretic operations more effective descriptions were supplied by hand.

• Prime Numbers-- factorisation of numbers and numbers with only one factor

were discovered.

• Golbach's Conjecture-- Even numbers can be written as the sum of 2

primes. E.g. 28 = 17 + 11.

• Maximally Divisible Numbers-- numbers with as many factors as possible. A

number k is maximally divisible is k has more factors than any integer less

than k. E.g. 12 has six divisors 1,2,3,4,6,12.

34

Learning by Discovery

Data Driven Discovery -- BACON (1981)

Many discoveries are made from observing data obtained from the world and making

sense of it -- E.g. Astrophysics - discovery of planets, Quantum mechanics - discovery of

sub-atomic particles.

BACON is an attempt at providing such an AI system. BACON system outline:

• Starts with a set of variables for a problem.

➢ E.g. BACON was able able to derive the ideal gas law. It started with four

variables p - gas pressure, V -- gas volume, n -- molar mass of gas, T -- gas

temperature. Recall pV/nT = k where k is a constant.

• Values from experimental data from the problem are inputted.

• BACON holds some constant and attempts to notice trends in the data.

• Inferences made.

BACON has also been applied to Kepler's 3rd law, Ohm's law, conservation of

momentum and Joule's law.

35

Learning by Discovery

Clustering

• Clustering involves grouping data into several new classes.

• It is a common descriptive task where one seeks to identify a finite set of categories

or clusters to describe the data. For example, we may want to cluster houses to find

distribution patterns.

• Clustering is the process of grouping a set of physical or abstract objects into

classes of similar objects.

• A cluster is a collection of data objects that are similar to one another within the same

cluster and are dissimilar to the objects in other clusters. Clustering analysis helps

construct meaningful partitioning of a large set of objects.

36

Learning by Discovery

Clustering

The task of clustering is to maximize the intra-class similarity and minimize the interclass

similarity.

• Given N k-dimensional feature vectors, find a "meaningful" partition of the N

examples into c subsets or groups

• Discover the "labels" automatically

• c may be given, or "discovered“

• much more difficult than classification, since in the latter the groups are given, and we

seek a compact description

37

Learning by Discovery

AutoClass

• AutoClass is a clustering algorithm based upon the Bayesian approach for

determining optimal classes in large datasets.

·

• Given a set X={X1, …, Xn} of data instances Xi with unknown classes, the goal of

Bayesian classification is to search for the best class description that predicts the

data in a model space.

·

• Class membership is expressed probabilistically.

• An instance is not assigned to a unique class, but it has a probability (expressed as

weight values) of belonging to each of the possible classes.

• AutoClass calculates the likelihood of each instance belonging to each class C and

then calculates a set of weights wij=(Ci / SjCj) for each instance.

• Weighted statistics relevant to each term of the class likelihood are calculated for

estimating the class model.

• The classification step is the most computationally intensive. It computes the weights

of every instance for each class and computes the parameters of a classification.

38

Formal Learning
Formal learning theory

• Theory of the learnable by Valiant: classifies problems by how difficult they are to learn.

• Formally, a device can learn a concept if it can, given positive and negative examples,

produce an algorithm that will classify future examples correctly with probability 1/h.

• Complexity of learning a function is decided by three factors:

➢ The error tolerance (h)

➢ The number of binary features present in the example (t)

➢ Size of rules necessary to make the discrimination (f)

• If the number of training examples is a polynomial in h,t, f, then the system is said to be

trainable.

• Example: learning feature descriptions

• Mathematical theory will be used to quantify the use of knowledge

39

Formal Learning

40

Other Learning Models
Neural net learning and genetic learning

• Neural networks

• Population genetics and selection

41

Learning in Problem Solving
Neural net learning and genetic learning

• Neural networks

• Population genetics and selection

42

What is learning

43

What is learning

