

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

File Structures

An Object-Oriented

Approach with C++

Michael J. Folk

University ofIllinois

Bill Zoellick

CAP Ventures

Greg Riccardi

Florida State University

Ayy ADDISON-WESLEY

Addison-Wesley is an imprint ofAddison Wesley Longman,Inc..

Reading, Massachusetts * Harlow, EnglandMenlo Park, California

Berkeley, California * Don Mills, Ontario + Sydney

Bonn + Amsterdam « Tokyo * Mexico City

https://hemanthrajhemu.github.io

Contents ceo

Preface vii -

be

Chapter 1 Introduction to the Design and Specification
of File Structures . 1

1.1. The Heartof File Structure Design 2
1.2. A Short History of File Structure Design 3

1.3. A Conceptual Toolkit: File Structure Literacy 5

1.4 An Object-Oriented Toolkit: Making File Structures Usable 6
1.5 Using ObjectsinC++ 6

Summary 10 KeyTerms 11 Further Readings 12
_ Programming Project 12

Eee

Chapter 2 FundamentalFileProcessing Operations 13

2.1 Physical Files and Logical Files 14
2.2. Opening Files 15

2.3. Closing Files 19

2.4 Reading and Writing 20

2.4.1 Read and Write Functions 20
2.4.2 Files with C Streams and C++ Stream Classes 21
2.4.3 Programs in C++ to Display the Contents of a File 23

2.4.4 Detecting End-of-File 26

2.5 Seeking 27
2.5.1 Seeking with C Streams 27

2.5.2 Seeking with C++ Stream Classes 29
2.6 Special Charactersin Files 29

2.7. The Unix Directory Structure 30
2.8 Physical Devices and Logical Files 32

2.8.1 Physical Devices as Files 32

_ 2.8.2 The Console, the Keyboard, and Standard Error 32
2.8.3 |/O Redirection and Pipes 33

2.9 File-Related HeaderFiles 34

2.10 Unix File System Commands 35

Summary 35 KeyTerms 37 FurtherReadings 39 Exercises 40
Programming Exercises 41 Programming Project 42

xiiihttps://hemanthrajhemu.github.io

XIV Contents

Chapter 3 Secondary Storage and System Software

3.1

3.2

3,3

3.4

3.5

3.6

"3.7
3.8

3.9

3.10

Disks 46

3.1.1 The Organization of Disks 46
3.1.2 Estimating Capacities and Space Needs 48
3.1,3 Organizing Tracks by Sector 50
3.1.4 Organizing Tracks by Block 55°

3.1.5 Nondata Overhead 56
3.1.6 The Cost of a Disk Access 58

3.1.7 Effect of Block Size on Performance:A Unix Example 62
3.1.8 Disk as Bottleneck 63
MagneticTape 65

3.2.1 Types of Tape Systems 66
3.2.2 An Example of a High Performance Tape System 67
3.2.3 Organization of Data on Nine-Track Tapes 67

3.2.4 Estimating Tape Length Requirements 69
3.2.5 Estimating Data Transmission Times 71

Disk versusTape 72
Introduction to CD-ROM 73

3.4.1 A Short History of CD-ROM 73

3.4.2 CD-ROM as a File Structure Problem 76

Physical Organization of CD-ROM 76

3.5.1 Reading PitsandLands 77

3.5.2 CLV instead of CAV 78

3.5.3 Addressing 79
3.5.4 Structure of aSector 80

CD-ROM Strengths and Weaknesses 82

3.6.1 Seek Performance 82

3.6.2 Data Transfer Rate 82
3.6.3 Storage Capacity 83

3.6.4 Read-Only Access 83
3.6.5 Asymmetric Writing and Reading 83

Storage asaHierarchy 84
A Journey ofa Byte 85
3.8.1 The FileManager 86
3.8.2 The 1/O Buffer 87
3.8.3 The Byte Leaves Memory:TheI/O Processor and Disk Controller

Buffer Management 90
3.9.1 Buffer Bottlenecks 90

3.9.2 Buffering Strategies 91
/Oin Unix 94

3.10.1 The Kernel 94

3.10.2 Linking File Names to Files 98

43

87

https://hemanthrajhemu.github.io

Contents xv

3.10.3 Normal Files, Special Files, and Sockets 100

3.10.4 Block //O 100.

3.10.5 Device Drivers 101.

3.10.6 The Kernel and File Systems 101
3.10.7 Magnetic Tape and Unix 102

Summary 103 KeyTerms 105 FurtherReadings 110 Exercises 110

J

Chapter 4 FundamentalFile Structure Concepts | 117

4.1. Field and Record Organization 118

4.1.1 A Stream File 119

4.1.2 Field Structures 120
4.1.3 Reading a Stream of Fields 123

4.3.4 Record Structures 125

4.1.5 A Record Structure That Uses aLength Indicator 127
4.1.6 Mixing Numbers and Characters: Use ofaFileDump 131

4.2 Using Classes to Manipulate Buffers 134
4.2.1 Buffer Class for Delimited Text Fields 134
4.2.2 Extending Class Person with Buffer Operations 136 —

4.2.3 Buffer Classes for Length-Based and Fixed-Length Fields 137

4.3 Using Inheritance for Record Buffer Classes 139

4.3.1 Inheritance in the C++ Stream Classes 139
4.3.2 A Class Hierarchy for Record Buffer Objects 140

4.4 Managing Fixed-Length, Fixed-Field Buffers 144
4.5 An Object-Oriented Class for Record Files 146
Summary 147 KeyTerms 148 FurtherReadings 149 Exercises 149

Programming Exercises 151 Programming Project 152

Chapter 5 Managing Files of Records 153

5.1

5.2

5.3

5.4

Record Access 154
5.1.1 Record Keys 154

5.1.2 A Sequential Search 156
5.1.3 Unix Tools for Sequential Processing 159

5.1.4DirectAccess 161

More about Record Structures 163

5.2.1 Choosing a Record Structure and Record Length 163
5.2.2 Header Records 165

5.2.3 Adding Headers to C++ Buffer Classes 167

Encapsulating Record I/O Operations ina Single Class 168
File Access and File Organization 170

https://hemanthrajhemu.github.io

xvi Contents

5.5

5.6

Beyond Record Structures .172

5.5.1 Abstract Data Models for File Access 172

5.5.2 Headers and Self-Describing Files 173
5.5.3 Metadata 174

5.5.4Color Rasterlmages 176

5.5.5 Mixing Object Types in One File 179
5.5.6 Representation-IndependentFile Access 182
5.5.7 Extensibility 183
Portability and Standardization 184

5.6.1 Factors Affecting Portability -184

5.6.2 Achieving Portability 186

Summary 192 KeyTerms 194 Further Readings 196

Exercises 196 Programming Exercises 199

Chapter6 Organizing Files for Performance 201

6.1

6.2

6.3

6.4

Data Compression 203
6.1.1 Using a Different Notation 203
6.1.2 Suppressing Repeating Sequences 204

6.1.3 Assigning Variable-Length Codes 206

6.1.4 Irreversible Compression Techniques 207

6.1.5 Compression in Unix 207

Reclaiming Spacein Files 208
6.2.1 Record Deletion and Storage Compaction 209

6.2.2 Deleting Fixed-Length Recordsfor Reclaiming Space

Dynamically 210 °

6.2.3 Deleting Variable-Length Records 214

6.2.4 Storage Fragmentation 217

6.2.5 PlacementStrategies 220

Finding Things Quickly: An Introduction to Internal Sorting

and Binary Searching 222
6.3.1 Finding Things in Simple Field and Record Files 222

6.3.2 Search by Guessing: Binary Search 223
6.3.3 Binary Search versus Sequentia! Search 225

6.3.4 Sorting a Disk Filein Memory 226
6.3.5 The Limitations of Binary Searching and Internal Sorting 226

Keysorting 228

6.4.1 Description of the Method 229

6.4.2 Limitations of the Keysort Method 232

6.4.3 Another Solution: Why Bother to Write the File Back? 232

6.4.4 Pinned Records 234
Summary 234 KeyTerms 238 FurtherReadings 240 Exercises 241

Programming Exercises 243 Programming Project 245

https://hemanthrajhemu.github.io

CHAPTER

Introduction
to the Design
and Specitication
of File Structures

+
t
d

CHAPTER OBJECTIVES

Introduce the primary design issues that characterizefile structure

design.

Survey the history offile structure design,since tracing the

developmentsin file structures teaches us much about how to

design our ownfile structures.

Introduce the notionsoffile structure literacy and of a conceptual

toolkit for file structure design. .

Discuss the need for precise specification of data structures and

operations and the developmentof an object-oriented toolkit that
makesfile structures easy to usé.

Introduce classes and overloading in the C++ language.

https://hemanthrajhemu.github.io

1.1

Chapter 1 Introduction to the Design and Specification of File Structures

CHAPTEROUTLINE

1.1. The Heartof File Structure Design

1.2 A Short History of File Structure Design
1.3. A Conceptual Toolkit: File Structure Literacy

1.4 An Object-Oriented Toolkit: Making File Structures Usable
1.5 Using Objects in C++

The Heartof File Structure Design

Disks are slow. They are also technological marvels: one can pack thou-
sands of megabytes on disk that fits into a notebook computer. Onlya
few years ago, disks with that kind of capacity looked like small washing
machines, However, relative to other parts of a computer,disks are slow.

Howslow? Thetimeit takes to get information back from even rela-
tively slow electronic random access memory (RAM) is about 120
nanoseconds, or 120 billionths of a second. Getting the same information

from a typical disk might take 30 milliseconds, or 30 thousandths ‘of a
second. To understand the size of this difference, we need an analogy.

Assume that memoryaccessis like finding something in the indexof this

book. Let’s say that this local, book-in-hand access takes 20 seconds.
Assumethataccessing a disk is like sending to libraryfor the information

you cannotfind here in this book. Given that our “memory access” takes

20 seconds, how long does the “disk access” to the library take, keeping the
ratio the sameas that of a real memoryaccess and disk access? Thedisk:

access 1s a quarter of a million times longer than the memoryaccess. This

means that getting information back from thelibrary takes 5 million
seconds, or almost 58 days. Disks are very slow compared with memory.

On the other hand, disks provide enormous capacity at muchless cost
than memory. Theyalso keep the information stored on them when they
are turned off. The tension between a disk’s relatively slow access time and

its enormous, nonvolatile capacityis the driving force behindfile structure
design. Goodfile structure design will give us access to all the capacity

without making ourapplications spend lot of time waiting for the disk.

A file structure is a combinationof representations for data in files and

of operationsfor accessing the data. A file structure allows applications to
read, write, and modifydata. It might also supportfinding the data that

https://hemanthrajhemu.github.io

1.2

A Short History ofFile Structure Design 3

matches somesearch criteria or reading through the data in somepartic-
ular order. An improvementin file structure design may make an applica-

tion hundredsoftimes faster. The details of the representation ofthe data

and the implementation of the operations determinetheefficiency of the
file structure for particular applications.

A tremendousvariety in the types of data and in the needsofapplica-
tions makesfile structure design very important. Whatis bestfor one situ-

ation maybeterrible for another.

A Short History of File Structure Design

Ourgoal is to showyou how to think creatively aboutfile structure design
problems. Part of our approach drawson history: after introducing basic

principles of design, we devote the last part of this book to studying some
of the key developmentsin file design over the last thirty years. The prob-
lems that researchers struggle with reflect the same issues that you
confront in addressing any substantial file design problem. Working

through the approaches to majorfile design issues shows you a lot about
how to approach new design problems.

The general goals of research and developmentin file structures can

be drawn directly from our library analogy.

m Ideally, we would like to get the information we need with one access

to the disk. In terms of our analogy, we do not wantto issue a series of

fifty-eight-day requests before we get what we want.

m If itis impossible to get what we need in one access, we want struc-
tures that allow us to find the target information with as few accesses
as possible. For example, you may rememberfrom yourstudies of data
structures that a binary search allows us to find a particular record

among fifty thousand other records with no more than sixteen
comparisons. But having to look sixteen places on a disk before find-
ing what we want takes too much time. We needfile structures that

allow us to find what we need withonly two orthreetrips to the disk.

mH We wantourfile structures to group information so wearelikely to
get everything we need with only one trip to the disk. If we need a

client’s name, address, phone number, and account balance, we would

prefer to get all that information atonce, rather than havingto look in
several places for it.

https://hemanthrajhemu.github.io

Chapter 1 Introduction to the Design and Specification of File Structures

It is relatively easy to come up with file structure designs that meet
these goals when wehavefiles that never change. Designingfile structures
that maintain these qualities as files change, grow, or shrink when infor-
mation is added anddeleted is much moredifficult.

Early work with files presumedthat files were on. tape, since mostfiles
were. Access was sequential, and the cost of access grew in direct proportion

to the size of thefile. As files grew intolerably. large for unaided sequential

access and as storage devices such as disk drives becameavailable, indexes
were added to files. The indexes madeit possible to keep list of keys and
pointers in a smallerfile that could be searched more quickly. With the key

and pointer, the user had direct access to the large, primaryfile.
Unfortunately, simple indexes had some of the same sequential flavor

as the data files, and as the indexes grew, they too becamedifficult to
manage, especially for dynamicfiles in which theset of keys changes. Then,

in the early 1960s, the idea of applying tree structures emerged.
Unfortunately, trees can grow very unevenly as records are added and delet-
ed, resulting in long searches requiring many disk accesses to find a record.

In 1963 researchers developed thetree, an elegant, self-adjusting bina-
ry tree structure, called an AVLtree, for data in memory. Otherresearchers:

began to look for ways to apply AVL trees, or something like them, tofiles.

The problem was that even with a balanced binary tree, dozensof accesses
were required to find a record in even moderate-sized files. A method was

needed to keep a tree balanced when each nodeofthetree was nota single
record, as in a binarytree, buta file block containing dozens, perhaps even

hundreds, of records.

It took nearly ten more years of design work before a solution

emerged in the form of the B-tree. Part of the reason finding a solution
took so long was that the approach required forfile structures was very
different from the approach that worked in memory. Whereas AVL trees
grow from the top down as records. are added, B-trees grow from the
bottom up.

B-trees provided excellent access performance, but there was a cost: no
longer could file be accessed sequentially with efficiency. Fortunately, this
problem was solved almost immediately by adding linkedlist structure at
the bottom level of the B-tree. The combination of a B-tree and a sequen-

tial linked list is called a Bt tree.
Over the next ten years, B-trees and B+ trees became the basis for

many commercial file systems,since they provide access times that grow in
proportion to log,N, where N is the numberofentries in the file and is

https://hemanthrajhemu.github.io

1.3

A Conceptual Toolkit: File Structure Literacy 5

the numberof entries indexed in a single block of the B-tree structure. In

practical terms, this means that B-trees can guarantee that you can find
onefile entry among millionsof others with only threeor fourtrips to the
disk. Further, B-trees guarantee that as you add anddelete entries, perfor-
mance stays about the same.

Being able to retrieve information with just three or four accessesis
pretty good. But howabout ourgoal of being able to get what we want

with a single request? An approachcalled hashing is a good wayto do that

withfiles that do not change size greatly over time. From early on, hashed
indexes were used to provide fast access to files. However, until recently,

hashingdid not work well with volatile, dynamic files. After. the develop-
ment of B-trees, researchers turned to work on systems for extendible,

dynamic hashing that couldretrieve information with one or, at most, two
disk accesses no matter howbig the file became.

A Conceptual Toolkit: File Structure Literacy

As we move through the developmentsin file structures overthelast three

decades, watchingfile structure design evolve as it addresses dynamicfiles
first sequentially, then through tree structures, and finally through direct
access, we see that the same design problems and design tools keep emerg-

ing. We decrease the number of disk accesses by collecting data into

buffers, blocks, or buckets; we manage the growth ofthese collections by

splitting them, which requires that we find a way to increase our address or

index space, and so on. Progress takes the form of finding new ways to

‘combinethese basictools offile design.
Wethinkof thesetools as conceptual tools. They are methodsoffram-

ing and addressing a design problem. Each tool combines ways ofrepre-
senting data with specific operations. Our own workinfile structures has
shown us that by understanding the tools thoroughly and by studying how
the tools have evolved to produce such diverse approachesas B-trees and
extendible hashing, we develop mastery andflexibility in our own use of
the tools. In other words, we acquire literacy with regardtofile structures.
This text is designed to help readers acquire file structure literacy.
Chapters 2 through 6 introduce the basic tools; Chapters 7 through 11
introduce readersto the highlights of the past several decadesoffile struc-

ture design, showing howthe basic tools are used to handleefficient

https://hemanthrajhemu.github.io

1.4

Chapter 1 Introduction to the Design and Specification ofFile Structures

sequential access—B-trees, B* trees, hashed indexes, and extendible,

dynamic hashedfiles.

An Object-Oriented Toolkit: Making File
Structures Usable

1.5

Makingfile structures usable in application developmentrequires turning
this conceptual toolkit into application programminginterfaces— collec-
tions of data types and operations that can be used in applications. We

have chosen to employ an object-oriented.approach in which data types

and operations are presented in a unified fashion as class definitions. Each
particular approach to representing someaspectofa file structureis repre-
sented by one or moreclasses of objects.

A major problem in describing the classes that can be usedforfile
structure design is that they are complicated and progressive. New classes
are often modifications or extensionsofotherclasses, and thedetails of the
data representations and operations become éver more complex. The most

_effective strategy for describing these classes is to give specific representa-
tions in the simplest fashion. In this text, use the C++ programming
languageto give precise specifications tothefile structure classes. From the
first chapter to the last, this allows us to build one class on top of another
in a concise and understandable fashion.

Using Objects in C++

In an object-oriented information system, data content and behaviorare

integrated into a single design. The objects of the system are divided into
classes of objects with common characteristics. Each class is described by
its members, which are either data attributes (data members) or functions

(member functions or methods). This book illustrates the principles of

object-oriented design through implementationsoffile structures andfile
operations as C++ classes. These classes are also an extensive presentation

of the features of C++. In.this section, we look at someofthe features of

objects in C++, including class definitions, constructors, public and

private sections, and operator overloading. Later chapters show how to

makeeffective use ofinheritance, virtua! functions, and templates.

https://hemanthrajhemu.github.io

Using Objects in C++ 7

An exampleofa very simple C++ class is Person,as given below.

class Person

{ public:

// data members

char LastName [11], FirstName-[11}, Address [16];

char City [16], State [3], ZipCode [10];

// method

Person (); °// default constructor

};

Each Person objecthasfirst and last names, address,city, state, and zip

code, which are declared as members, just as they would be in a C
struct. For an object p of type Person, p. LastNamerefersto its

LastName member.
The public label specifies that the following members and methods

are part of the interface to objects of the class. These members and meth-

ods can befreely accessed by any users of Person objects. There are three

levels of access to class members: public, private, and protected.

The last two restrict access and will be described later in the book. The
only significant difference in C++ between struct and class is that
for struct members thedefault access is public, and for class

members the default access is private.

Each of these memberfields is represented by a character array of
fixed size. However,the usual style of dealing with character arrays in C++

is to represent the value of the array as a null-delimited, variable-sized

string with a maximum length. The numberofcharacters in the represen-
tation of a string is one more than the numberofcharactersin thestring.
The LastNamefield, for example, is represented by an array of eleven

characters and can hold string of length between 0 and 10. Properuse of
strings in C++ is dependent on ensuring that every string variable is
initialized beforeit is used.

C++ includes special methods called constructors that are used to

provide a guarantee that.every object is properly initialized.’ A construc-

tor is a method with no return type whose nameis the sameas theclass.

Wheneveran object is created, a constructoris called. The two waysthat

objects are created in C++ are by the declaration of a variable (automatic
creation) and by the execution of a new operation (dynamic creation):

1, A destructor is a method ofa classthat is executed wheneveran object is destroyed. A destructor for
class Personhasdefinition ~Person (). Examples of destructors are given in later chapters.

https://hemanthrajhemu.github.io

Chapter 1 |ntroduction to the Design and Specification of File Structures

Person p; // automatic creation

Person * p_ptr = new Person; // dynamic creation

Executionof either of the object creation statements above includes the
execution of the Person constructor. Hence, we-are sure that every

Person object has been properlyinitialized beforeit is used. The code for
the Person constructorinitializes each member to an emptystring by

assigning 0 (null) to the first character:

Person::Person ()

-{ // set each field to an empty string

LastName [0] = 0; FirstName [0] = 0; Address [0] = 0;

City [0] = 0; State [0] = 0; ZipCode [0] = 0;

The symbol:: is the scope resolution operator. In this case,it tells us that

Person () isa method of class Person.Notice that within the method
code, the members can be referenced withoutthe dot(.) operator. Every

call on a memberfunction has a pointer to an object as a hidden argu-
ment. The implicit argument can be explicitly referred to with the
keyword this. Within the method, this->LastNameis the sameas

LastName. .
Overloading of symbols in programming languagesallowsa particular

symbol to have more than one meaning. The meaning of each instance of

the symbol dependson the context. We are veryfamiliar with overloading
of arithmetic operators to have different meanings depending on the
operand type. For example, the symbol + is used for both integer and
floating point addition. C++ supports the use of overloading by program-

mers for a wide-variety of symbols. We can create new meanings for oper-
ator symbols and for named functions.

The following class Stringillustrates extensive use of overloading:

there are three constructors, and the operators = and == are overloaded
with new meanings:

class String

{public:

String (); // default constructor

String (const String&); //copy constructor

String (const char *); // create from C string

~String (); // destructor
String & operator = (const String &); // assignment

int operator == (const String &) const; // equality

char * operator char*() // conversion to char *

{return strdup(string);} // inline body of method

private:

https://hemanthrajhemu.github.io

Using Objects in C++ 9

char * string; // represent value as C string
int MaxLength;

}3

The data members, string and MaxLength,of class String are

in the private section ofthe class. Access to these membersis restrict-

ed, They can be referenced only from inside the code of methods of the

class. Hence, users of String objects cannot directly manipulate these
members.A conversion operator (operator char *) has been provid-

ed to allow the use of the value of a String object as a C string. The body

of this operator is given inline, that is, directly in the class definition. To
protect the value of the String from direct manipulation,a copy of the
string value is returned. This operator allows a String object to be used

asa char *. For example,the following code creates a String object s1

and copies its value to normalC string: |

String sl ("“abcdefg"); // uses String::String (const char *)

char str{10];

strepy (str, sl); // uses String::operator char * ()

The new definition of the assignment operator (operator =)

replaces the standard meaning, which in C and C++is to copythe bit
pattern of one object to another. For two objects s1 and s2 ofclass

String, $1 = s2 would copythe value of s1. string (a pointer) to

s2.string. Hence, sl1.string and s2.string point to the same

character array. In essence, S1 and s2 becomealiases. Once the two fields
point to the samearray, a change in the string value of $1 would also.

change s2. This is contrary to how weexpect variables to behave. The
implementation of the assignment operator and an example of its use are:

String & String::operator = (const String & str)

{ // code for assignment operator

strcepy (string, str.string);

return *this;

}
String sl, sad;

sl = s2; // using overloaded assignment

Inthe assignment s1 = s2, the hidden argument (this) refers to s1,

and the explicit argument str refers to s2. The line’ strcepy
(string, str.string); copies the contents of the string member
of s2 to the string member of s1. This assignment operator does not

create the alias problem that occurs with the standard meaning of
assignment.

https://hemanthrajhemu.github.io

10 Chapter 1 Introduction to the Design and Specification ofFile Structures

To complete the class String, we add the copy constructor, whichis

used whenever a copy of a string is needed, and the equality operator
(operator ==), which makes two String objects equalif the array
contents are the same. The predefined meaning for these operators

performspointer copy and pointer comparison,respectively. The full spec-
ification and implementation of class String are given in Appendix G.

SUMMARY

The key design problem that shapesfile structure design is the relatively —
large amountof timethatis required to get information from a disk.All
file structure designs focus on minimizing disk accesses and maximizing
the likelihood that the information the user will want is already in

memory.

This text begins by introducing the basic concepts and issues associat-

edwithfile structures, Thelast half of the book tracks the developmentof

file structure design as it has evolved over the last thirty years. The key
problem addressed throughoutthis evolution has been finding ways to

minimize disk accesses for files that keep changing in content and size.
Tracking these developmentstakesusfirst through work on sequentialfile -

access, then through developmentsin tree-structured access, andfinally to

relatively recent work on direct access to informationinfiles. .
Our experience has been that the study of the principal research and

design contributionsto file structures—focusing on how the design work
uses the sametools in new ways—provides a solid foundation for thinking
creatively about new problemsin file structure design. The presentation of
these tools in an object-oriented design makes them tremendouslyuseful
in solving real problems. .

Object-oriented programming supports the integration of data
content and behaviorinto a single design. C++ class definitions contain

both data and function members and allow programmers to control
precisely the manipulation of objects. The use of overloading, construc-

tors, and private members enhances the programmer's ability to control
the behavior of objects.

https://hemanthrajhemu.github.io

Key Terms. 11

KEY-TERMS-.

AVL tree. A self-adjusting binary tree structure that can guarantee good

access times for data in memory.

B-tree, A tree structure that provides fast access to data stored infiles.

Unlike binarytrees, in which the branching factor from a node of the
tree 1s two, the descendants from a node of a B-tree can be a much

larger number. We introduce B-trees in Chapter 9,

B+ tree. A variation on the B-tree structure that provides sequentialaccess

to the data as well as fast-indexed access. We discuss Bt trees at length

in Chapter 10.

Class. The specification of the commondata attributes (members) and

functions (methods)of a collection of objects.

Constructor. A function that initializes an object whenit is created. C++

automatically adds a call to a constructor for each operation that
creates an object.

Extendible hashing. An approach to hashing that works well with files
that over time undergo substantial changesin size.

File structures. The organization of data on secondarystorage devices

such asdisks.

Hashing. An access mechanism that transformsthe search key into a stor-

age address, thereby providing very fast access to stored data.

Member. An attribute of an object that is included in a class specification.
Membersare either data fields or functions (methods).

Method. A function member of an object. Methods are includedin class

specifications.

Overloaded symbol. An operatoror identifier in a program that has more
than one meaning. The context ofthe use of the symbol determinesits
meaning.

Private. The mostrestrictive access control level in C++. Private names
can be used only by memberfunctions of the class.

Public. The least restrictive access control level in C++. Public names can

be used in any function.

Sequential access. Access that takes records in order, lookingat thefirst,
then the next, and so on.

https://hemanthrajhemu.github.io

12 Chapter 1 Introduction to the Design and Specification of File Structures

 FURTHER REA

There are many goodintroductory textbooks on C++ and object-oriented
programming, including Berry (1997), Friedman and Koffman (1994),
and Sessions (1992). The second edition of Stroustrup’s book on C++
(1998) is the standard reference for the language. The third edition of
Stroustrup (1997) is a presentation of the Draft Standard for C++ 3.0.

This is the first part of an object-oriented programming project that
continues throughoutthe book. Each part extends the project with new

file structures. We begin by introducing twoclasses of data objects. These
projects apply theconcepts of the book to produce an information system

that maintains andprocesses information aboutstudents and courses.

1. Design a class Student. Each object represents informationabout a
single student. Members should. be included for identifier, name,

address, date offirst enrollment, and numberof credit hours complet-
ed. Methods should be included for intitalization (constructors),

assignment (overloaded “=” operator), and modifyingfield values,

including a methodto increment the numberofcredit hours.

2. Design a class CourseRegistration.Each object represents the

enrollment of a student in a course. Members should be included for

a course identifier, student identifier, number of credit hours, and

course grade. Methods should be included as appropriate.

3. Create a list of student and course registration information. This
information will be used in subsequentexercises to test and evaluate
the capabilities of the programmingproject.

Thenext part of the programmingproject is in Chapter 2.

https://hemanthrajhemu.github.io

Fundamental

File Processing

CHAPTER

Operations

CHAPTER OBJECTIVES

Describe the processof linking a /ogical file within a program to an

actual physicalfile or device.

Describe the procedures used to create, open, and closefiles.

Introduce the C++ input and outputclasses.

Explain the use of overloading in C++,

Describe the proceduresusedfor reading from and writingtofiles.

Introduce the conceptofposition within file and describe
proceduresfor seeking different positions.

Provide an introduction to the organization of hierarchical file

systems.

Present the Unix view ofa file and describe Unix file operations and

commands based onthis view.

12https://hemanthrajhemu.github.io

14

2.1

Chapter 2 Fundamental File Processing Operations

CHAPTER OUTLINE

2,1. Physical Files and Logical Files
2.2. Opening Files

2.3 Closing Files

2.4 Reading and Writing
2.4.1 Read and Write Functions
2.4,2 Files with C Streams and C++ Stream Classes
2.4.3 Programs in C++ to Display’the Contents of a File

2.4.4 Detecting End-of-File
2.5 Seeking

2.5.1 Seeking with C Streams
2.5.2 Seeking with C++ Stream Classes

2.6 Special Charactersin Files |

2.7. The Unix Directory Structure

2.8 Physical Devices and Logical Files

2.8.1 Physical Devices as Files

2.8.2 The Console, the Keyboard, and Standard Error
2.8.3 I/O Redirection and Pipes

2.9 File-Related HeaderFiles

2.10 Unix File System Commands

Physical Files and Logical Files

Whenwetalk abouta file on a disk or tape, we refer to a particular collec-

tion of bytes stored there. A file, when the word is used in this sense, phys-

ically exists. A disk drive might contain hundreds, even thousands, ofthese

physical files.
From the standpointof an application program,the notionofa fileis

different. To the program,a file is somewhatlike a telephoneline connect-
ed to a telephone network. The program can receive bytes through this
phoneline or send bytes downit, but it knows nothing about where these

bytes come from or where they go, The program knowsonly about its own
end of the phoneline. Moreover, even though there may be thousandsof

physical files on a disk, a single program is usually limited to the use of

only about twenty files.
The application program relies on the operating system to take care of

the details of the telephone switching system, asillustrated in Fig. 2.1. It
could be that bytes coming downthelineinto the program originate from

https://hemanthrajhemu.github.io

2.2

OpeningFiles 15

a physical file or that they come from the keyboard or someother input
device. Similarly, the bytes the program sends downtheline might end up
in a file, or they could appear on the terminal screen, Although the

program often doesn’t know where bytes are coming from or where they

are going, it does know whichlineit is using. This line is usually referred to
as the logical file to distinguish it from the physical files on the disk or tape.

Before the program can opena file for use, the operating system must
receive instructions about making a hookup between a logical file (for
example, a phoneline) and some physicalfile or device. When using oper-
ating systems such as IBM’s OS/MVS,these instructions are provided

through job control language (JCL). On minicomputers and microcom-

puters, more modern operating systems such as Unix, MS-DOS, and VMS
provide the instructions within the program. For example, in Cobol,! the

association between logical file called inp_file and a physical file

called myfile.dat is made with the following statement:

select: inp_file assign to “myfile.dat".

This statement asks the operating system to find the physicalfile named
myfile.dat and then to make the hookup byassigninga logicalfile
(phoneline) to it. The numberidentifying the particular phonelinethatis

assigned is returned through the variable inp_file, whichis the file’s

logical name. This logical nameis what weusetoreferto the file inside the
program. Again, the telephone analogy applies: My office phone is
connected to six telephone-lines. When receive a call I get an intercom

message suchas, “You have a call on line three.” The receptionist doesnot
say, “You havea call from 918-123-4567.” I need to have the call identified
logically, not physically.

OpeningFiles

Once we havea logicalfile identifier hooked up to a physicalfile or device,

we need to declare what we intend to do with thefile. In general, we have
two options: (1) open an existingfile, or (2) create a newfile, deleting any
existing contents in the physical file. Openinga file makes it ready for use

by the program. Weare positioned at the beginning ofthe file and are

1, These values are defined in an “include”file packaged with your Unix system or C compiler. The

name ofthe includefile is often Ecnt1l.h or file.h,but it can vary fram systemto system.

https://hemanthrajhemu.github.io

16 Chapter 2 Fundamental File Processing Operations

Figure 2.1 The

program relies on

the operating sys-
tem to make con-

nections between

logical files and A Logical files
physical files and Fie 1

devices. I Ur tT -

u

Program
Limit of approximately
twenty phonelines

Physical files

STAFF.LTR CONTROL.DAT

{| =Gwee (a |
readyto start reading or writing. Thefile contents are not disturbed bythe
open statement, Creating file also opensthefile in the sensethatit is

ready for use after creation. Because a newlycreatedfile has no contents,
writing is initially the only use that makessense.

As an example of opening an existing file or creating a new one in C
and C++, consider the function open, as defined in header file

fcontl.h. Althoughthis function is based on a Unix system function,
many C++ implementations for MS-DOS and Windows, including

Microsoft Visual C++, also support open and the other parts of
fcntl .h. This function takes two required arguments and a third argu-

ment that is optional:

fd = open(filename, flags [, pmode]);

https://hemanthrajhemu.github.io

OpeningFiles 17

"SAFETY —

FIRST
CLEAN YP
YOUR MESS c

s

Operating system switchboard
Can make connections to thousands

of files or I/O devices

CONFIG.SYS PXRL.RCD TEXT.FIG

FILE

FILE FILE

pe ed [
TEST.PAS BASIC.COM SPOOL-EXE/| Ete.

FILE FILE FILE

The return value fd and the arguments filename, flags, and pmode

have the following meanings:

Argument Type -Explanation

fd int The file descriptor. Using our earlier analogy,this is

the phoneline (logical file identifier) usedto refer to

the file within the program.It is an integer. If thereis

an error in the attempt to openthefile, this value is
negative.

filename char * A character string containing the physicalfile name.
(Later we discuss pathnamesthat include directory

information aboutthefile’s location. This argument
can be a pathname.)

(continued)

https://hemanthrajhemu.github.io

18 Chapter 2 FundamentalFile Processing Operations

Argument

flags

pmode

Type

int

int

Explanation

Theflags argumentcontrols the operation of the
open function, determining whetherit opens an

existing file for readingor writing. It can also be used
to indicate that you wantto create a newfile or open
an existing file but delete its contents. The value of
flags is set by performinga bit-wise OR ofthe follow-

ing values, amongothers.

Q_APPEND Appendeverywrite operation to the.
endofthefile.

O_CREAT Create and open file for writing.

This has rio effect if the file already
exists.

O_EXCL Return an error if O_CREATEis

specified and the file exists.

O_RDONLY Opena file for reading only.

O_RDWR Open file for reading and writing.

O_TRUNC If thefile exists, truncate it to a length
of zero, destroyingits contents.

O_WRONLY Opena file for writing only.

Someofthese flags cannot be used in combination
with one another. Consult your documentation for
details and for other options.

If O_CREATis specified, pmodeis required. This

integer argumentspecifies the protection modefor

the file. In Unix,the pmodeis a three-digit octal

numberthat indicates howthefile can be used by the
owner(first digit), by members of the owner’s group
(second digit), and by everyoneelse (third digit). The
first bit of each octal digit indicates read permission,
the second write permission, and the third execute

permission. So, if pmodeits the octal number 0751,

the file’s owner has read, write, and execute permis-

sion for thefile; the owner’s group has réad and

execute permission; and everyoneelse has only

execute permission:

rwe rwe rwe

pmode = 0751 =121312 101 001

owner group world

https://hemanthrajhemu.github.io

2.3

Closing Files 19

Given this description of the open function, we can develop some
examples to show how it can be used to open and create files in C. The

following function call opens an existingfile for reading and writing or
‘creates a new oneif necessary.If thefile exists, it is opened without change;

reading or writing would start at thefile’s first byte.

fd = open(filename, O_RDWR | O_CREAT, 0751);

The following call creates a newfile for reading and writing. If there is already

a file with the namespecified in £1 lename,its contentsare truncated.

fd = open(filename, O_RDWR | O_CREAT | O_TRUNC, 0751);

Finally, here is a cal] that will create a new file only if there is not already a
file with the namespecified in filename.Ifa file with this name exists,it

is not opened, and the function returnsa negative value to indicate an error.

fd = open(filename, O_RDWR | O_CREAT | O_EXCL, 0751);

File protection is tied more to the host operating system than to a

specific language. For example, implementations of C running on systems
that supportfile protection, such as VAX/VMS,often includeextensionsto
standard C thatlet you associate a protection status with a file when you
createit.

Closing Files

In termsof our telephoneline analogy, closinga file is like hanging up the
phone. When you hang up the phone,the phonelineis available for taking
or placing anothercall; when you close a file, the logical file nameorfile
descriptoris available for use with anotherfile. Closing a file that has been
used for output also ensures that everything has been written to the file. As

you will learn in a later chapter, it is more efficient to move data to and
from secondary storage in blocks thanit is to move data one byte at a time.
Consequently, the operating system does not immediately send off the
bytes we write but saves them up in a bufferfor transfer as a block ofdata.

Closing a file ensures that the buffer for that file has been flushed of data

and that everything we.have written has been sentto thefile.

Files are usually closed automatically by the operating system when a
program terminates normally. Consequently, the execution of a close
statement within a program is needed onlyto protectit against data loss in
the event that the program is interrupted andto free uplogicalfilenames
for reuse.

https://hemanthrajhemu.github.io

20

24

Chapter 2 Fundamental File Processing Operations

Now that you know how to connect anddisconnect programsto and
from physical files and how to openthefiles, you are readyto start sending
and receiving data.

_ Reading and Writing

Reading and writing are fundamental to file processing; they are the
actions that makefile processing an input/output (I/O) operation. The
form of the read and write statements used in different languages varies.

Some languages provide very high-level access to reading and writing and
automatically take care of details for the programmer. Other languages

provide access at a much lowerlevel. Our use of C and C++ allows us to

explore some ofthese differences.?

2.4.1 Read and Write Functions

We begin with reading and writingat a relatively low level. It is useful to
have a kind of systems-level understanding of what happens when we send
and receive information to and from file. .

A low-level read call requires three pieces of information, expressed

here as arguments to a generic Read function: .

Read (Source_file, Destination_addr, Size)

Source_file The Readcall must know whereit is to read from.

Wespecify the source by logical file name (phone
line) through which data is received. (Remember,

before we do any reading, we must have already

openedthefile so the connection betweena logical
file and a specific physical file or device exists.)

Destination_addr Read must know wheretoplace the information it

reads from the inputfile. In this generic function we
specify the destination by givingthe first address of

the memory block where we wantto store the data.

Size Finally, Read must know how muchinformation to

bring in from the file. Here the argument .is supplied
as a byte count.

2. To accentuate the differences and view I/O operations at something close to a systemslevel, we use

the fread and fwrite functions in C rather than the higher-level functions such as Egetc,
fgets, and so on.

https://hemanthrajhemu.github.io

Reading and Writing 21

A Write statementis similar; the only differenceis that the data moves in

the other direction:

Write (Destination_file, Source_addr, Size)

Destination_file Thelogicalfile namethatis used for sending thedata.

Source_addr Write must know where to find the informationit

will send. We providethis specification as thefirst
address of the memory block where thedatais stored.

Size The numberofbytes to be written must be supplied.

2.4.2 Files with C Streams and C++ Stream Classes

I/O operations in C and C++ are based on the concept ofa stream, which
can be file or some other source or consumer of data. There are two

differentstyles for manipulatingfiles in C++. Thefirst uses the standard C
functions defined in headerfile stdio.h. This is often referred to as C
streams or C input/output. The second uses the stream classes of header

files iostream.hand fstream.h. Werefer to this style as C++ stream
classes,

The headerfile stdio.h contains definitions of the types and the
operations defined on C streams. The standard input and output of a C
program are streams called stdin and stdout; respectively. Otherfiles

can be associated with streams through the use of the fopen function:

file = fopen (filename, type);

The return value file and the arguments filename and type have

the following meanings:

Argument Type Explanation

file -FILE * A pointerto the file descriptor. Type FILEis another
name for struct _iobuf.If there is an error in

the attempt to openthefile, this value is null, and the
variable errnois set with the error number.

filename char * Thefile name,just as in the Unix open function.

type char * The type argumentcontrols the operation of the

open function, muchlikethe flags argumentto open.
_ The following values are supported:

"rc" Open an existingfile for input.

"w" Create a new file, or truncate an existing one,
for output,

https://hemanthrajhemu.github.io

22 Chapter 2 Fundamental File Processing Operations

"a" Create a new file, or appendto an existing
one, for output.

“ree Open an existing file for input and output.

"w+" Create a newfile, or truncate an existing one,

for input and output.

"a+" Create a newfile, or append to an existing

one, for input and output.

Read and write operations are supported by functions fread, fget,
fwrite, and fput. Functions fscanf and fprintf are used for.

formatted input and output. .
Stream classes in C++ support open, close, read, and write operations

that are equivalent to those in stdio.h, but the syntax is considerably

different. Predefined stream objects cin and cout represent the standard
input and standard output files. The main class for access to files,
fstream,as defined in header files iostream.h and fstream.h,

has two constructors and a wide variety of methods. The following
constructors and methodsare includedin theclass:

Estream (); // leave the stream unopened

‘fstream (char * filename, int mode);

int open (char * filename, int mode);

int read (unsigned char * dest_addr, int size);

int write (unsigned char * source_addr,- int size);

The argument filename of the second constructor and the method
open are just as we've seen before. These two operations attach the
fstreamto file. The value of mode controls the waythefile is opened,
like the flags and type argumentspreviously described. The valueis

set with a bit-wise or of constants defined in class ios. Among the

options are ios: : in (input), ios: : out (output), ios: :nocreate
(fail if the file does not exist), and ios: :noreplace (fail if the file does

exist). One additional, nonstandard option, ios: : binary, is support-
ed on manysystemsto specify thata file is binary. On MS-DOSsystems,if
ios: : binary is not specified,thefile is treated as a text file. This can
have some unintended consequences, as we will see later.

A large number of functions are provided for formatted input and
output. The overloading.capabilities of C++ are used to make sure that

objects are formatted according to their types. The infix operators

>>(extraction) and <<(insertion) are overloaded for input and output,

respectively. The headerfile iost ream. includes the following over-
loaded definitions of the insertion operator (and manyothers):

https://hemanthrajhemu.github.io

Reading andWriting 23

ostream& operator<<(char c);

ostreamé& operator<<(unsigned char c);

ostream& operator<<(signed char ¢);

ostream& operator<<(const char *s);

ostream& operator<<(const unsigned char *s);

ostream& operator<<(const signed char *s);

ostream& operator<<(const void *p);

ostream& operator<<(int n);

ostream& operator<<(unsigned int n);

ostream& operator<<(long n};

ostream& operator<<(unsigned long n);

The overloading resolution rules of C++ specify which function is select-

edfor a particularcall depending on the typesof the actual arguments and
the types of the formal parameters. In this case, the insertion function that

is used to evaluate an expression dependson thetype of the arguments,
particularly the right argument. Consider the following statements that

include insertions into cout (an object of class ostream):

int n = 25;

cout << "Value of nis "<< n << endl;

Theinsertion operators are evaluatedleft to right, and each onereturnsits
left argumentas the result. Hence, the stream cout hasfirst the string
“Value of n is” inserted, using the fourth function in the list above, then
the decimal value of n, using the eighth function in the list. The last

operandis the I/O manipulator endl], whichcauses an end-of-line to be
inserted. Theinsertion function thatis used for<< end] is notin the list

above. The headerfile iostream. h includesthe definition of endl and

the operatorthat is usedfor this insertion.

Appendix C includesdefinitions and examples of manyof the format-
ted input and output operations.

2.4.3 Programsin C++ to Display the Contentsofa File

Let’s do some reading and writing to see how these functions areused.
This first simple file processing program opens a file for input andreadsit,
character by character, sending each character to thescreen afterit is read
from the file. This program includes the followingsteps:

1. Display a promptfor the nameofthe inputfile.

2. Read the user’s response from the keyboard into a variable called
filename.

https://hemanthrajhemu.github.io

24 Chapter 2 Fundamental File Processing Operations

3. Open thefile for input.

4, While there arestill characters to be read from the inputfile,

a. read a character from thefile;

b. write the character to the terminal screen.

. 5, Close the inputfile.

Figures 2.2 and 2.3 are C++ implementationsof this program using C
streams and C++ stream classes, respectively.It is instructive to look at the

differences between these implementations. The full implementations of
these programsare included in Appendix D. |

Steps] and 2 of the program involve writing and reading, but in each
of the implementationsthis is accomplished through the usual functions

for handling the screen and keyboard.Step 4a, in which weread from the

inputfile, is the first instance of actualfile I/O. Note that the fread call
using C streams parallels the low-level, generic Read statement we
described earliér; in truth, we used the fread function as the modelfor

our low-level Read. The function’s first argumentgives the address of a

character variable used as the destination for the data, the second andthird

arguments are the elementsize and the numberof elements (in this case
the size is 1 byte, and the numberof elementsis one), and the fourth argu-

ment gives a pointerto thefile descriptor (the C stream version ofa logi-
cal file name) as the source for the input.

// listc.cpp

// program using C streams to read characters froma file

// and write them to the terminal screen

#include «<stdio.h>

main(}

char ch;

FILE * file; // pointer to file descriptor

char filename[20];

}

{

printf("Enter the name of the -file: "); // Step 1

gets (filename) ; // Step 2

file =fopen(filename, "r"); // Step 3

while (fread(&ch, 1, 1, file) != 0) // Step 4a

fwrite(&ch, 1, 1, stdout); // Step 4b

fclose(file); // Step §

Figure 2.2 Thefile listing program using C streams (listc.cpp).

https://hemanthrajhemu.github.io

Reading and Writing 25

// listepp.cpp

// list contents of file using C++ stream classes

#include <fstream.h>

main () ¢-

char ch; .

fstream file; // declare unattached fstream

char filename[20];

cout <<"Enter the name of the file: " // Step 1

<<flush; // force output

_Cin >> filename; // Step 2

file . open(filename, io0s::in); // Step 3

file . unsetf(ios::skipws);// include white space in read

while (1)

{

file >> ch; // Step 4a

if (file.fail()} break;

cout << ch; // Step 4b

}

file . close(); // Step 5

}

Figure 2,3 Thefile listing program using C++ stream classes (Listcpp .cpp).

The arguments for the call to operator >> communicate the same
information at a higherlevel. Thefirst argumentis the logical file namefor
the input source. The second argumentis the name of a charactervariable,

whichis interpreted as the address ofthe variable. The overloadingresolu-

tion selects the >> operator whose right argument is a char variable.
Hence, the code implies that only a single byteis to be transferred. In the

C++version,the call file.unsetf(ios::skipws) causes operator

>> to include white space (blanks, end-of-line, tabs, and so on). The

default for formatted read with C++ stream classes is to skip white space.

After a character is read, we write it to standard output in Step 4b.
Once again the differences between C streams and C++ stream classes
indicate the range of approaches to I/O used in different languages.
Everything must bestated explicitly in the fwrite call. Using the special

assignedfile descriptor of stdout to identify the terminal screen as the

destination for our writing,

fwrite(&ch, 1, 1, stdout);

https://hemanthrajhemu.github.io

26 Chapter 2 FundamentalFile Processing Operations

means: “Write to standard output the contents from memorystarting at
the address &ch. Write only one elementof one byte.” Beginning C++

programmersshould pay special attention to the use of the & symbolin
the fwrite call here. This particularcall, as a very low-levelcall, requires

that the programmerprovidethestarting address in memoryof the bytes

to be transferred.
Stdout, which stands for “standard output,” is a pointer to a struct

defined in the file stdio.h, which has been included at the top of the
program. The concept of standard output and its counterpart standard

input are coveredlater in Section 2.8 “Physical and Logical Files.”
Again the C++ stream code operates at a higher level. The right

operand of operator << is a character value. Hencea single byteis trans-

ferred to cout.

cout << ch;

As in the call to operator >>, C++ takes care of finding the address of the

bytes; the programmerneedspecify only the nameofthe variable ch that

is associated with that address.

2.4.4 Detecting End-of-File

The programs in Figs. 2.2 and 2.3 have to know when to end the while

loop and stop reading characters. C streams and C++ streamssignal the
end-of-file condition differently. The function fread returnsa value that
indicates whether the read succeeded. However,an explicit test is required

to see if the C++ stream readhasfailed.

The fread call returns the numberof elements read as its value In
this case, if fread returns a value of zero, the program has reached the
end of the file. So we construct the while loop to run as long as the
fread call finds somethingto read.

Each C++ stream hasa state that can be queried with functioncalls.

Figure 2.3 uses the function fail, which returnstrue (1) if the previous
operation on the stream failed. In this case, file. fail‘) returns false

if the previousreadfailed because of trying to read past end-of-file. The
following statement exits thewhile loop when end-of-file is encoun-

tered:

if (file.fail()) break;

In some languages,including Ada, a function end_o f_filecanbe
used to test for end-of-file. As we read from file, the operating system
keeps track of our location in the file with a read/write pointer. Thisis

https://hemanthrajhemu.github.io

2.5

Seeking 27

necessary: when the next byte is read, the system knows wheretogetit.
The end_of_file function queries the system to see whether the

read/write pointer has moved past the last element in thefile.If it has,
end_of_file returnstrue; otherwiseit returns false. In Ada,it is neces-

sary to call end_of_file before trying to read the next byte. For an
empty file, end_of_file immediately returns true, and no bytes can
be read.

Seeking

In the preceding sample programs weread throughthefile sequentially,

reading one byteafter another until we reach the endofthefile. Every time
a byte is read, the operating system movesthe read/write pointer ahead,
and weare ready to read the next byte.

Sometimes we want to read or write without taking the time to go

through every byte sequentially. Perhaps we knowthatthe next piece of

information we needis ten thousand bytes away, so we want to jump there.

Or perhaps we need to jumpto the endofthefile so we can add new infor-

mation there. To satisfy these needs we must be able to control the move-
ment of the read/write pointer.

The action of moving directly to a certain position in a file is often
called seeking. A seek requires at least two piecesof information, expressed
here as arguments to the generic pseudocode function Seek:

Seek (Sourcefile, Offset)

Source_file Thelogicalfile name in which the seek will occur.

Offset The numberofpositions in the file the pointer is to be
moved from thestart of the file.

Now,if we warit to movedirectly from the origin to the 373d position in a
file called data, we don’t have to move sequentially throughthefirst 372
positions. Instead, we can say

Seek(data, 373)

2.5.1 Seeking with C Streams

Oneofthe features of Unix that has been incorporated into C streamsis

the ability to view file as a potentially very large array of bytes that just

https://hemanthrajhemu.github.io

28 Chapter 2 Fundamental File Processing Operations

happensto be kept on secondary storage, In an array of bytes in memory,

we can moveto any particular byte using a subscript. The C stream seek
function, £seek, provides a similar capability for files. It lets us set the

read/write pointer to any byteina file. —
The fseek function has the following form:

‘pos = fseek(file, byte_offset, origin)

wherethe variables have the following meanings:

pos A long integer value returned by fseek equal to the posi-
tion (in bytes) of the read/write pointerafterit has been

moved.

file Thefile descriptorofthe file to which the fseekis to be

applied.

byte_offset The numberofbytes to move from someorigin in thefile.

The byte offset must be specified as a long integer, hence the

name fseek for long seek. When appropriate, the

byte_offsetcan be negative.

origin A value that specifies the starting position from which the

byte_offsetis to be taken. The origin can have the value

0, 1, or 27

0-fseekfrom the beginningofthefile;

1-fseek from the current position;

2—fseek from the end ofthefile.

The following definitions are included in stdio.h to allow symbolic

reference to the origin values.

#define SEEK_SET Q

‘#define SEEK_CUR 1

#define SEEKEND 2

The following program fragment shows how you could use fseek to
move to a position that is 373 bytes into file.

long pos;

fseek(File * file, long offset, int origin);

File * file;

pos=fseek(file, 373L, 0);

3, Although the values 0, 1, and 2 are almost always used here, they are not guaranteedto workforall
C implementations. Consult your documentation.

https://hemanthrajhemu.github.io

2.6

Special Characters in Files 29

2.5.2 Seeking with C++ Stream Classes

Seeking in C++ stream classes is almost exactly the sameasit is in C
streams, There are two mostly syntactic differences:

m An object of type fstream has twofile pointers: a get pointer for
input and a put pointer for output. Two functions are supplied for
seeking: seekg which moves the get pointer, and seekp which
moves the put pointer. It is not guaranteed that the pointers move

separately, but they might. We have to be very careful in-our use of
these seek functions and often call both functions together.

m The seek operations are methods of the stream classes. Hence

the syntax is file.seekg(byte_offset,origin) and

file.seekp(byte_offset,origin). The value of origin

comes from class ios, which is described in moredetail in Chapter 4.
The valuesare ios::beg (beginningoffile), ios::cur (currentposition),
and ios::end (endoffile). .

The following moves both get and put pointers to a byte 373:

file.seekg(373, ios::beg);

file.seekp(373, ios::beg);

Special Charactersin Files

As youcreate the file structures described in this text, you may encounter

somedifficulty with extra, unexpected characters that turn up in yourfiles

with characters that disappear and with numeric countsthat are inserted

into yourfiles. Here are some examplesof the kinds of things you might
encounter: _

™ On many computers you mayfind that a Control-Z (ASCII value of
26) is appendedat the end of yourfiles. Some applicationsuse this to
indicate end-of-file even if you have not placedit there. This is most
likely to happen on MS-DOSsystems. |

m Some systems adopt a convention of indicating end-of-line in a text
file* as a pair of characters consisting of a carriage return (CR: ASCII

4, When we use the term “text file” in this text, we are referring to a file consisting entirely of charac-

ters from a specific standard characterset, such as ASCII or EBCDIC.Unless otherwise specified,
the ASCII character set will be assumed. Appendix B contains a table that describes the ASCII char-
acter set.

https://hemanthrajhemu.github.io

30

2.7

Chapter 2 FundamentalFile Processing Operations

value of 13) and a line feed (LF: ASCII value of 10). Sometimes I/O

procedures written for suchsystems automatically expand single CR

characters or LF characters into CR-LF pairs. This unrequested addi-

tion of characters can cause a great deal of difficulty. Again, you are
most likely to encounter this phenomenon on MS-DOSsystems.

Using flag “b” in a C file or mode ios::bin in a C++ stream will

suppress these changes.

m= «Usersof larger systems, such as VMS,mayfind that they have just the
opposite problem. Certain file formats under VMS removecarriage.

return characters from yourfile without asking you, replacing them
with a count of the characters in what the system has perceived as a
line of text.

These are just a few examplesof the kinds of uninvited modifications

that record management systems or that I/O support packages might
make to yourfiles. You will find that they are usually associated with the
concepts ofaline of text or the end ofa file. In general, these modifica-

tions to yourfiles are an attempt to make yourlife easier by doing things
for you automatically. This might, in fact, work out for those who want to
do nothing more than store sometext in a file. Unfortunately, however,

programmers building sophisticatedfile structures must sometimes spend

a lot of time finding waysto disable this automaticassistance so they can
have complete control over what they are building. Forewarnedis fore-
armed: readers who encounter these kindsofdifficulties as they build the
file structures described in this text can take some comfort from the

knowledge that the experience they gain in disabling automatic assistance
will serve them well, over and over, in the future.

The Unix Directory Structure

No matter what computer system you have, even if it is a small PC, chances

are there are hundreds or even thousandsoffiles you have access to. To
provide.convenient access to such large numbersoffiles, your computer

has some method for organizingits files. In Unix this is called the file
system. .

The Unixfile systemis a tree-structured organization of directories,
with the rootof the tree signified by the character /. All directories, includ-
ing the root, can contain two kindsoffiles: regular files with programs and

https://hemanthrajhemu.github.io

bin usr

/\ lib mydir
/\ consol

The Unix Directory Structure 31

/ (root)

usré dev

yacc /|

Llibdf.a

. addr

e kbd TAPE

DF
libc.a libm.a \\

Figure 2.4 Sample Unix directory structure.

data, and directories (Fig. 2.4). Since devices such as tape drives are also
treated like files in Unix, directories can also contain references to devices,

as shown in the dev directory in Fig. 2.4. The file name stored in a Unix

directory corresponds to what wecall its physical name.
Since everyfile in a Unix system is part ofthe file system that begins

with the root, any file can be uniquely identified by giving its absolute

pathname. For instance, the true, unambiguous nameofthefile “addr”in
Fig. 2.4is /usr6/mydir/adadr.(Note that the / is used both to indicate
the root directory and to separate directory names from thefile name.)

Whenyou issue commands to a Unix system, you do so within a direc-

tory, which is called your current directory. A pathnamefora file that does

not begin with a / describes the location of a file relative to the current

directory. Hence, if your current directory in Fig. 2.4 is mydir, addr
uniquely identifies the file /usr6/mydir/addr.

The special filename. stands for the current directory, and.. stands for

the parent of the current directory. Hence, if your current directory is

/usr6/mydir/DF,. ./addrrefersto the file /usr6/mydir/adar.

https://hemanthrajhemu.github.io

32

2.8

Chapter 2 Fundamental File Processing Operations

Physical Devices and Logical Files

2.8.1 Physical Devices as Files

Oneof the most powerful ideas in Unix is reflected in its notion of what a
file is. In Unix,a file is a sequenceof bytes without any implication of how

or wherethe bytes are stored or where they originate. This simple concep-
tual view ofa file makes it possible to do with very few operations what

might require several times as many operations on different operating

system. For example,it is easy to think of a magnetic disk as the source of
a file because we are usedto the idea of storing such things on disks. But in
Unix, devices like the keyboard and the console are also files—in Fig. 2.4,
/dev/kbd and /dev/console,respectively. The keyboard produces a
sequence of bytes that are sent to the computer when keysare pressed; the

console accepts a sequence of bytes and displays their corresponding

symbols on screen.
Howcan wesay that the Unix concept ofa file is sumple whenitallows

so many different physical things to becalled files? Doesn’t this make the
situation more complicated,not less so? The trick in Unix is that no matter

what physical representation a file may take, the logical view of a Unixfile
is the same.In its simplest form, a Unix file is represented logically by an

integer—thefile descriptor. This integer is an index to an array of more

complete information aboutthefile. A keyboard,a disk file, and a magnet-
ic tapeare all represented by integers. Oncethe integer that describesa file
is identified, a program can accessthatfile. If it knowsthe logical name of
a file, a program can access that file without knowing whetherthefile
comes from disk, a tape, or a connection to another computer.

Although the abovediscussion is directed at Unix files, the same capa-
bility is available throughthe stdio furictions fopen, fread, and so
on. Similar capabilities are present in MS-DOS, Windows,and other oper-
ating systems.

2.8.2 The Console, the Keyboard, and Standard Error

Wesee an example of the duality between devices andfiles in thelistc.cpp
program in Fig.2.2:

file =fopen(filename, "r"); // Step 3

while (fread(&ch, 1, 1, file) != 0) // Step 4a

fwrite(&ch, 1, 1, stdout); // Step 4b

https://hemanthrajhemu.github.io

Physical Devices and Logical Files 33

Thelogicalfile is represented by the value returned by the fopencall. We
assign this integer to the variable file in Step 3. In Step 4b, we use the
value stdout, defined in stdio.h,to identify the console as the file to
be written to.

There are two otherfiles that correspondto specific physical devices in
most implementations of C streams: the keyboardis called stdin (stan-
dard input), and the errorfile is called stderr (standard error). Hence,

stdinis the keyboard on your terminal. The statement

fread(&ch, 1, 1, stdin);

reads a single character from your terminal. Stderr is an errorfile

which,like stdout, is usually just your console. When your-compiler

detects an error, it generally writes the error message to this file, which
normally means that the error message turns up on yourscreen. As with

stdin,the values stdin and stderrare usually defined in stdio-h.
Steps 1 and 2 ofthe file listingprogram also involve reading and writ-

ing from stdin or stdout.Since an enormous amountof I/O involves
these devices, most programming languages have special functions to

perform console input and output—in list.cpp, the C functions printf

and gets are used. Ultimately, however, printf and gets send their

output through stdout and stdin,respectively. But these statements
hide important elementsof the I/O process. For our purposes, the second
set of read and write statements is more interesting and instructive.

2.8.3 1/O Redirection and Pipes

Suppose you would like to changethe file listing program soit writesits
output to a regularfile rather than to stdout.Or suppose you wantedto

use the outputofthe file listing program as input to another program.
Because it is commonto want to do both ofthese, operating systems

provide convenient shortcuts for switching between standard I/O (stdin

and stdout) and regularfile I/O. These shortcuts are called I/O redirec-
tion and pipes.

I/O redirection lets you specify at execution time alternate files for

input or output, The notations for input and outputredirection on the
commandline in Unix are

< file (redirect stdin to "file")

> file {redirect stdout to "file"}

5. Strictly speaking, I/O redirection and pipes are part of a Unix shell,which is the commandinter-
preter thatsits on top of the core Unix operating system,the kernel. For the purposeof this discus-
sion,this distinction is not important.

https://hemanthrajhemu.github.io

34

2.9

Chapter 2 FundamentalFile Processing Operations

For example, if the executablefile listing program is called “list.exe,” we
redirect the output from stdoutto file called “myfle” by entering the
line .

list.exe > myfile

Whatif, instead of storing the output from the list program in file,
you wanted to use it immediatelyin another program to sort the results?

Pipes let you do this. The notation for a pipe in Unix and in MS-DOSis|.

Hence,

programl | program2

means take any stdout output from program] anduseit in place of any
stdin input to program2. Because Unix has a special program called
sort, which takes its input from stdin, you can sort the output from

the list program, without using an intermediatefile, by entering

list {| sort

Since sort writes its output to stdout, the sortedlisting appears on
your terminal screen unless you use additional pipes or redirection to send

it elsewhere.

File-Related HeaderFiles

Unix,like all operating systems, has special names and values that you

must use when performingfile operations. For example, some C functions
return a special value indicating end-of-file (EOF) when youtry to read

beyondthe end ofa file.

Recall the flags that you use in an opencall to indicate whether you
want read-only, write-only, or read/write access. Unless we knowjust
where to look, it is often not easy to find where these values are defined.
Unix handles the problem by putting such definitions in special header

files such as /usr/include, which can be found in special directories.

Headerfiles relevant to the material in this chapter are stdio.h,
iostream.h, fstream.h, fentl.h, and file.h. The C streams

are in Stdio.h; C++ streams in iostream. hand fstream.h. Many

Unix operations are in Ecntl.h and file.h. EOF, for instance, is

defined on many Unix and MS-DOSsystems in stdio.h,as are the file

pointers stdin, stdout, and stderr.And the flags O_RDONLY,

https://hemanthrajhemu.github.io

2.10

Summary 35

O_WRONLY,and O_RDWR canusually be found in file.h orpossibly

in one of thefiles that it includes. .
It would be instructive for you to browse throughthesefiles as well as

others that pique your curiosity.

Unix File System Commands —

Unix provides many commandsfor manipulating files. We list a few that
are relevant to the material in this chapter. Most of them have many

options, but the simplest uses of most should be obvious. Consult a Unix
manual for more information on how to use them.

cat filenames Print the contents of the namedtext files.

tail filename Print the last ten lines of thetextfile.

cp file! file2 Copyfile] to file2.

mv file! file2 Move (rename) file] to file2.

rm filenames Remove (delete) the namedfiles.

chmod mode filename Change the protection mode on the namedfiles.

1s List the contents of the directory.

mkdir name Create a directory with the given name.

rmdir name Remove the nameddirectory.

SUMMARY

This chapter introduces the fundamentaloperationsoffile systems: Open,
Create, Close, Read, Write, and Seek. Each of these operations involves the

creation or use of a link between a physical file stored on a secondary
device and a logical file that represents a program’s more abstract view of

the samefile. When the program describes an operation using the logical
file name, the equivalent physical operation gets performed on the corre-

sponding physicalfile.
The six operations appear in programming languages in many differ-

entforms. Sometimes they are built-in commands, sometimes they are

functions, and sometimesthey are directcalls to an operating system.
Before we can usea physicalfile, we mustlink it to a logicalfile. In

some programming environments, we do this with a statement

https://hemanthrajhemu.github.io

36 Chapter 2 Fundamental File Processing Operations

(select/assign in Cobol) or with instructions outside of the pro-

gram (operating system shell scripts). In other languages, the link between
the physicalfile and a logicalfile is made with open orcreate.

The operations create and open makefiles readyfor reading or writ-

ing. Create causes a new physicalfile to be created. Open operates on an
already existing physicalfile, usually setting the read/write pointer to the
beginningofthe file. The close operation breaks the link betweena logical

file and its corresponding physicalfile. It also makes sure that the file
buffer is flushed so everything that was written is actually sent to thefile.

‘The I/O operations Read and Write, when viewed at alow systems

level, require three items of information:

m Thelogical nameof thefile to be read from or written to;

m An address of a memory area to be usedfor the “inside of the comput-

er’ part of the exchange;

m™ An indication of how much data isto be read or written.

These three fundamental elements of the exchange are illustrated in

Fig. 2.5,
Read and Write are sufficient for moving sequentially through a

file to any desired position, but this form of access is often very ineffi-
cient. Some languages provide seek operations that let a program move

directly to a certain position in file. C provides direct access by means of

the £seek operation. The fseek operation lets us view a file as a kind
of large array, giving us a great deal of freedom in deciding how to orga-

nize file.
Anotheruseful file operation involves knowing whenthe end ofa file

has been reached. End-of-file detection is handled in different ways by
different languages. .

Much effort goes into shielding programmers from having to deal

with the physical characteristics of files, but inevitably there are little

details about the physical organization of files that programmers must
know. When wetry to have our program operate.onfiles at a very low level

Figure 2.5 The exchange between memory and external device.

https://hemanthrajhemu.github.io

Key Terms 37

(as we do a great deal in this text), we must be on the lookoutforlittle

surprises inserted in our file by the operating system or applications.
The Unixfile system,called thefile system, organizesfiles in a tree

structure, with all files and subdirectories expressible by their pathnames,
It is possible to navigate aroundthe file system as you work with Unix files.

Unix viewsboth physical devices and traditionaldiskfiles asfiles, so,
for example, a keyboard (stdin), a console (stdout), and a tape drive

are all consideredfiles. This simple conceptual viewoffiles makes it possi-
ble in Unix to do with a very few operations what might require many
times the operations on different operating system.

I/O redirection and pipes are convenient shortcuts provided in Unix for
transferring file data between files and standard I/O. Headerfiles in Unix,
such as stdio.-h, contain special names and values that you must use
when performingfile operations.It is important to be aware of the most
common of these in use on yoursystem.

KEY TERMS

Access mode. Type of file access allowed. The variety of access modes
permitted varies from operating system to operating system.

Buffering. When input or output is saved up rather than sentoff to its

destination immediately, we say thatit is buffered. Inlater chapters, we
find that we can dramatically improve the performance of programs
that read and write data if we buffer the I/O.

Byte offset. The distance, measured in bytes, from the beginningofthe
file. The first byte in the file has an offset of 0, the second byte has an
offset of 1, and so on.

Close. A function or system call that breaks the link between a logicalfile

name and the corresponding physical file name.

Create. A function or system call that causes a file to be created on
secondary storage and mayalso bind a logical nameto the file’s phys-
ical name—see Open.A call to create also results in the generation of

information used by the system to managethefile, such as time of
creation,physical location, and access privileges for anticipated users
ofthefile.

End-of-file (EOF). An indicator within a file that the end ofthefile has

occurred, a function thattells if the end of a file has been encountered

(end_of_file in Ada), ora system-specific value thatis returhed by

https://hemanthrajhemu.github.io

38 Chapter 2 Fundamental File Processing Operations

file-processing functions indicating that the end of a file has been

encountered in the process of carrying out the function (EOF in Unix).

File descriptor. A small, nonnegative integer value returned by a Unix
open or creat call that is used as a logical namefor thefile in later

Unix system calls. This value is an index into an array of FILEstructs
that contain information about openfiles. The C stream functionsuse
FILE pointers for their file descriptors.

File system. The name used in Unix and other operating systems to

describe acollection offiles and directories organized into a tree-

structured hierarchy.

Headerfile. A file that contains definitions and declarations commonly
shared among manyotherfiles and applications. In C and C++,head-

er files are included in otherfiles by meansof the “#include” statement
(see Figs. 2.2 and 2.3), The header files iostream.h, stdio.h,

file.h,and fcnt1-.h described in this chapter contain important

declarations and definitions usedin file processing.

I/O redirection. The redirection of a stream of input or output from its
normal place. For instance, the operator > can be usedto redirect to a

file output that would normallybe sentto the console.

Logical file. Thefile as seen by the program. The use oflogicalfiles allows

a program to describe operations to be performed on a file without
knowing what physical file will be used. The program may then be

used to process any one of a numberofdifferent files that share the

same structure.

Open. A function or system call that makesa file ready for use. It may also
bind a logical file name to a physicalfile. Its arguments include the
logical file name and the physical file name and mayalso include
information on howthe file is expected to be accessed. |

Pathname. A character string that describes the location of a file or direc-

tory. If the pathnamestarts with a /, then it gives the absolute path-
name—the complete path from the root directory to the file.

Otherwise it gives the relative pathname—thepath relative to the
current workingdirectory.

Physicalfile. A file that actually exists on secondarystorage.It is thefile as
known by the computer operating system and that appearsin its file

directory. .

Pipe. A Unix operator specified by the symbol | that carries data from one
process to another. The originating process specifies that the data is to

https://hemanthrajhemu.github.io

Further Readings ° 39

go to stdout,and the receiving process expects the data from

stdin. For example,to send the standard output from a program
makedatato the standard input of a program called usedata,use

the command makedata | usedata.

Protection mode. An indication of howa file can be accessed by various
classes of users. In Unix, the protection modeis a three-digit octal
numberthatindicates how thefile can be read, written to, and execut-

ed by the owner, by membersof the owner’s group, and by everyone

else,

Read. A function or systemcall used to obtain input from file or device.
Whenviewedat the lowest level, it requires three arguments: (1) a

Source file logical name corresponding to an open file; (2) the
Destination address for the bytes that are to be read; and (3) the Size
or amountofdata to be read.

Seek. A function or system call that sets the read/write pointer to a speci-

fied position in the file. Languages that provide seeking functions

allow programsto access specific elements of a file directly, rather than
having to read througha file from the beginning (sequentially) each

timea specific itemis desired. In C, the fseek function providesthis

capability. “

Standard I/O. The source and destination conventionally used for input
and output. In Unix, there are three types of standard I/O: standard

input (stdin), standard output (stdout), and stderr (standard

error). By default st dinis the keyboard, and st dout and stderr
are the console screen.I/O redirection and pipes provide ways to over-

ride these defaults.

Write. A function or system cal] used to provide output capabilities. When
viewed at the lowest level, it requires three arguments: (1) a
Destination file name corresponding to an openfile; (2) the Source

address of the bytes that are to be written; and (3) the Size or amount

of the data to be written.

FURTHER READINGS

Introductorytextbooks on C and C++ tendto treat the fundamentalfile
operationsonly briefly, if at all. This is particularly true with regard to C,

since there are higher-level standard I/O functionsin C, such as the read

operations fget and fgetc. Some books on C and/or UNIXthat do

https://hemanthrajhemu.github.io

AQ Chapter 2 FundamentalFile Processing Operations

provide treatmentof the fundamentalfile operations are Kernighan and

Pike (1984) and Kernighan andRitchie (1988). These books also provide

discussionsof higher-level I/O functions that we omitted from ourtext.
An excellent explanation of the input and output classes of C++ is

found in Plaugher (1995), which discusses the current (C++ version 2)

and proposeddraft standard for C++ input and output.
As for Unix specifically, as of this writing there are many flavors of

Unix including Unix System V from AT&T,the originators of Unix, BSD

(Berkeley Software Distribution) Unix from the University of California at

Berkeley, and Linux from the Free Software Foundation. Each manufac-

turer of Unix workstationshas its own operating system. Thereare efforts
to standardize on either Posix, the international standard (ISO) Unix or

OSF, the operating system of the Open Software Foundation. All of the

versions are close enough that learning about any onewill give you a good
understanding of Unix generally. However, as you begin to use Unix, you
will need reference material on the specific version that you are using.
There are manyaccessible texts, including Sobel! (1995) which covers a

variety of Unix versions, including Posix, McKusick, et al (1996) on BSD,

and Hekman (1997) on Linux.

EXERCISES

1. Look up operations equivalent to Open, Close, Create, Read,
Write, and Seek in other high-level languages, such as Ada, Cobol,

and Fortran. Compare them with the C streams or C++ stream classes.

2. For the C++ language:

a. Make a list of the different ways to perform the file operations

Create, Open, Close, Read, and Write. Whyis there more than one
way to do each operation?

b. How would you use fseekto find the current position in file?

c. Show how to change the permissions on a file myfileso the
owner has read and write permissions, group members have

execute permission, and others have no permission.

d. What is the difference between pmode and O.RDWR? What

pmodes and O_RDWRareavailable on your system?

e. In some typical C++ environments, such as Unix and MS-DOS,all

of the following represent ways to move data from oneplace to
another:

https://hemanthrajhemu.github.io

Programming Exercises At

scanf tgetc read cat (or type)

fscanf gets < main (argc, argv)

getc fgets |

Describe as many ofthese as you can, and indicate how they might
be useful. Which belong to the C++ language, and which belong to
the operating system? |

A couple of years ago a company we know of bought a new Cobol

compiler. One difference between the new compiler and the old one

was that the new compiler did not automatically close files when
execution of a'program terminated, whereas the old compiler did.

Whatsorts of problems did this cause when someofthe old software
was executed after having been recompiled with the new compiler?

Consult a C++ reference and describethe valuesof the io_state of the
stream classes in C++. Describe the characteristics of a stream when
eachofthe state bits is set.

Design an experiment that uses methods seekg, seekp, tellg,
and tellp to determine whether an implementation of C++
supports separate get and put pointers for the stream classes.

Look up the Unix command we. Execute the following in a Unix
environment, and explain why it gives the numberoffiles in the
directory.

ls | we -w

Find stdio-.hon yoursystem, and find whatvalueis used to indi-
cate end-of-file. Also examine file.hor font1-h, and describe in
general whatits contentsarefor.

PROGRAMMINGEXERCISES

8.

9.

10.

11.

Make the lis tcpp.cpp program of Appendix D work with your

compiler on your operating system.

Write a program to create a file and store a string in it. Write another

program to open the file and readthe string.

Implement the Unix command tail -n, where 7 is the number of
lines from the endofthefile to be copied to stdout.

Change the program listcpp.cppso it reads from cin, rather

than a file, and writes to a file, rather than cout. Show how to

https://hemanthrajhemu.github.io

42 Chapter 2 Fundamental File Processing Operations

12.

13.

execute the new version of the program in your programming envi-

ronment, given that the inputis actually in a file called. instuff.

Write a program to read aseries of names, one perline, from stan-
dard input, and write out those names spelled in reverse order to

standard output. Use I/O redirection and pipesto do the following:

a. Input a series of namesthat are typed in from the keyboard, and

write them out, reversed,to a file calledfilel.

b. Read the names in from £i1¢1; then write them out, re-reversed,

to a file called file2.
c. Read the names in from file2, reverse them again, and then’

sort the resultinglist of reversed words using sort.

Write a program to read and write objects of. class String. Include

code that uses the assignment operator and the various constructors
for the class. Use a debugger to determine exactly which methodsare

called for each statementin your program,

PROGRAMMING PROJECT

This is the second part of the programming project begun in Chapter 1.
We add methodsto read objects fromstandard input and to write format-

ted objects to an output stream for the classes of Chapter1.

14. Add methodsto class Student to read studentfield values from an

‘15,

input stream andto write thefields of an object to an output stream,
nicely formatted. You mayalso want to be able to prompta userto
enter the field values. Use the C++ stream operations to implement
these methods. Write a driver program to verify that the class is

correctly implemented.

Add methods to class CourseRegistration to read course

registration field values from an input stream and to write the fields

of an object to an output stream, nicely formatted. You mayalso want
to be able to prompt a user to enter the field values. Use the C++
stream operations to implement these methods. Write a driver
program to verify that the class is correctly implemented.

The next part of the programming project is in Chapter4.

https://hemanthrajhemu.github.io

CHAPTER

secondary
Storageand

System Software

+
++

CHAPTER OBJECTIVES

Describe the organization of typical disk drives, including basic units
of organization and their relationships.

Identify and describe the factors affecting disk access time, and de-
scribe methodsfor estimating access times and space requirements.

Describe magnetic tapes, give an example of current high-

performancetape systems, and investigate the implications of block
size on space requirements and transmission speeds.

Introduce the commercially important characteristics of CD-ROM

storage.

Examine the performance characteristics of CD-ROM, and seethat

they arevery different from those of magnetic disks.

Describe the directory structure of the CD-ROMfile system, and

show how it grows from the characteristics of the medium.

Identify fundamental differences between media and criteria that
can be used to matchthe right medium to an application.

Describein general terms the events that occur when datais

transmitted between a program and a secondary storage device.

Introduce concepts and techniques of buffer management.

Illustrate many ofthe conceptsintroduced in the chapter, especially
system software concepts, in the context of Unix.

43https://hemanthrajhemu.github.io

44 Chapter 3 Secondary Storage and Systern Software

3.1

3.2

3.3

3.4

3.5

3.6

3.7
3.8.

3.9

CHAPTER OUTLINE

Disks

3.1,1 The Organization of Disks
3.1.2 Estimating Capacities and Space Needs
3.1.3 Organizing Tracks by Sector

3.1.4 Organizing Tracks by Block
3.1.5 Nondata Overhead

3.1.6 The Cost of a Disk Access

3.1.7 Effect of Block Size on Performance: A Unix Example
3.1.8 Disk as Bottleneck
Magnetic Tape

3.2.1 Types of Tape Systems

3.2.2 An Example of a High-Performance Tape System

3.2.3 Organization of Data on Nine-Track Tapes

3.2.4 Estimating Tape Length Requirements

3.2.5 Estimating Data Transmission Times
Disk versus Tape

Introduction to CD-ROM

3.4.1 A Short History of CD-ROM

3.4.2 CD-ROM asa File Structure Problem
Physical Organization of CD-ROM

3.5.1 Reading Pits and Lands
3.5.2 CLV Instead of CAV

3.5.3 Addressing
3.5.4 Structure of a Sector
CD-ROM Strengths and Weaknesses

3.6.1 Seek Performance
3.6.2 Data Transfer Rate

3.6.3 Storage Capacity

3.6.4 Read-Only Access

3.6.5 Asymmetric Writing and Reading

Storage as a Hierarchy

A Journey of a Byte

3.8.1 The File Manager
3.8.2 The i/O Buffer
3.8.3 The Byte Leaves Memory: The I/O Processor and Disk Controller

Buffer Management
3.9.1 Buffer Bottlenecks
3.9.2 Buffering Strategies

https://hemanthrajhemu.github.io

Chapter Outline 45

3.10 VO in Unix

3.10.1 The Kernel

3.10.2 Linking File Names to Files
3.10.3 Normal Files, Special Files, and Sockets

3.10.4 Block {/O

3.10.5 Device Drivers

3.10.6 The Kernel and File Systems

3.10.7 Magnetic Tape and Unix —

Good design is always responsive to the constraints of the medium andto

the environment. Thisis as trueforfile structure designasit is for carvings

in wood andstone. Given the ability to create, open, andclosefiles, and to

seek, read, and write, we can perform the fundamental operationsoffile

construction. Now we need to look at the nature andlimitations of the
devices and systems used to store andretrieve files in order to prepare
ourselvesforfile design.

If files were stored just in memory, there would be no separate disci-

plinecalled file structures. The general study of data structures would give
us all the tools we need to build file applications. But-secondary storage
devices are very different from memory. Onedifference, as already noted,
is that accesses to secondarystorage take much more time than do access-

es to memory. An even more important difference, measured in terms of
design impact,is that notall accesses are equal. Goodfile structure design

uses knowledge of disk and tape performanceto arrange data in ways that

minimize access costs. ;
In this chapter we examine the characteristics of secondary storage

devices. We focus on the constraints that shape our design work in the
chapters that follow. We begin with a look at the major media used in the
storage and processingoffiles, magnetic disks, and tapes. We followthis
with an overview of the range of other devices and media used for

secondary storage. Next, by following the journey of a byte, we take a
brief look at the many pieces of hardware and software that become

involved when a byte is sent by a program toa file on disk. Finally, we
take a closer look at one of the most important aspects offile manage-
ment—buffering.

https://hemanthrajhemu.github.io

46

3.1

Chapter 3 Secondary Storage and System Software

Disks

Compared with the timeit takes to access an item in memory,disk access-

es are always expensive. However, notall disk accesses areequally expen-
sive. This has to do with the waya disk drive works. Disk drives! belong to

a class of devices knownas direct access storage devices (DASDs) because

they make it possible to access data directly. DASDs are contrasted with
serial devices, the other majorclass of secondary storage devices. Serial

devices use media such as magnetic tape that permit only serial access,.
which meansthat a particular data item cannotberead orwritten until all

of the data preceding it on the tape have been read or written in order.
Magnetic disks come in manyforms. So-called hard disks offer high

capacity and low cost per bit. Hard disks are the most commondisk used
in everydayfile processing. Floppydisks are inexpensive, but they are slow
and hold relatively little data. Floppies are good for backing up individual
files or other floppies and for transporting small amounts of data.

Removable disks use disk cartridges that can be mounted on the same
drive at different times, providing a convenient form of backup storage
that also makes it possible to access data directly. The Iomega Zip (100

megabytes per cartridge) and Jaz (1 gigabyte per cartridge) have become
very popular among PCusers.

Nonmagnetic disk media, especially optical discs, are becoming
increasingly important for secondarystorage. (See Sections 3.4 and 3.5

and Appendix for a full treatment of optical disc storage and its applica-

tions.)

3.1.1 The Organization of Disks

The information stored on a disk is stored on the surface of one or more
platters (Fig. 3.1). The arrangementis such that the informationis stored

in successive tracks on the surfaceof the disk (Fig. 3.2). Each trackis often

divided into a numberofsectors. A sector is the smallest addressable
portion of a disk. When a read statement calls for a particular byte from
a disk file, the computer operating system findsthe correctsurface, track,
and sector, reads the entire séctor into a special area in memorycalled a

buffer, and thenfinds the requested byte within that buffer.

1}. Whenwe use the terms disks or disk drives, we are referring to magnetic disk media.

https://hemanthrajhemu.github.io

Disks 47

+f

 a
iv
al
ea
ly
g

Platters Spindle Read/write heads Boom

Figure 3.1 Schematicillustration of disk drive.

Tracks Sectors

Figure 3.2 Surface of disk showing tracks and sectors.

Disk drives typically have a numberofplatters. The tracks that are
directly above and below one another form a cylinder(Fig. 3.3). The signif-
icance of the cylinderis that all of the information ona single cylinder can

https://hemanthrajhemu.github.io

48 Chapter 3 Secondary Storage and System Software

be accessed without moving the arm that holds the read/write heads.
Movingthis arm is called seeking. This arm movementis usually the slow-

est part of reading information from a disk.

3.1.2 Estimating Capacities and Space Needs

Disks range in storage capacity from hundredsof millionsto billions of
bytes. In a typical disk, each platter has two surfaces, so the numberof
tracks per cylinder is twice the numberofplatters. The numberofcylin-

ders is the same as the numberoftracks on single surface, and each track

has the same capacity. Hence the capacity of the disk is a function of the
Aumberof cylinders, the numberof tracks per cylinder, and the capacity
of a track.

l4—. Seven cylinders —»

Ten

tracks

Figure 3.3 Schematic illustration of disk drive viewed as a set of seven

cylinders.

https://hemanthrajhemu.github.io

Disks 49

The amountofdata that can be held on a track and the numberof

tracks on a surface depend on how denselybits can be stored on thedisk

surface. (This in turn depends on the.quality of the recording medium and
the size of the read/write heads.) In 1991, an inexpensive, low-density disk
held about 4 kilobytes on a track and 35 tracks on a 5-inchplatter. In 1997,
a Western Digital Caviar 850-megabyte disk, one of the smallest disks

being manufactured, holds 32 kilobytes per track and 1,654 tracks on each

surface of a 3-inchplatter. A Seagate Cheetah high performance 9-gigabyte
disk (still 3-inch platters) can hold about 87 kilobytes on a track and 6526

tracks on a surface. Table 3.1 shows how a variety of disk drivescompares

in terms of capacity, performance, and cost. .

Since a cylinder consists of a group of tracks, a track consists of a
group ofsectors, and a sector consistsof a group of bytes,it is easy to

computetrack, cylinder, and drive capacities.

Track capacity = number of sectors per track X bytes per sector
Cylinder capacity = numberoftracks per cylinder X track capacity

Drive capacity = numberof cylinders X cylinder capacity.

Table 3.1 Specifications of the Disk Drives

Seagate Western Digital. Western Digital

Characteristic Cheetah 9 Caviar AC22100 Caviar AC2850

Capacity 9000 MB 2100 MB 850 MB

Minimum (track-to-track)

seek time 0.78 msec 1 msec 1 msec

Average seek time 8 msec 12 msec 10 msec

Maximum seektime 19 msec 22 msec 22 msec

Spindle speed 10000 rpm 5200 rpm 4500 rpm

Average rotational delay 3 msec 6 msec 6.6 msec

Maximum transfer rate 6 msec/track, or 12 msec/track, or 13.3 msec/track, or
14.506 bytes/msec 2796 bytes/msec 2419 bytes/msec

Bytes per sector 512 542 512

Sectors per track 170° 63 63

Tracks per cylinder 16 16 16

Cylinders 526 4092 1654

https://hemanthrajhemu.github.io

30 Chapter 3 Secondary Storage and System Software

If we know the numberofbytesin file, we can-use these relationships

to compute the amountofdisk space the file is likely to require. Suppose,
for instance, that we want tostore a file with fifty thousand fixed-length
data records on a “typical” 2.1-gigabyte small computer disk with the

following characteristics:

Numberof bytes per sector = 512

Numberofsectors per track = 63

Numberoftracks percylinder = 16

Numberofcylinders = 4092

How manycylinders does thefile require if each data record requires 256
bytes? Since each sector can hold tworecords, the file requires

ee = 25 000 sectors

Onecylinder can hold

63 X 16 = 1008 sectors

so the numberofcylinders required is approximately

25.000 ~ 74.8 cylinders
1008

Of course, it maybe that a disk drive with 24.8 cylinders of available space
does not have 24.8 physically contiguous cylinders available. In this likely
case, the file might, in fact, have to be spread out over dozens, perhaps

evenhundreds, of cylinders.

3.1.3 Organizing Tracks by Sector

There are two basic ways-to organize data on a disk: by sector and byuser-
defined block. So far, we have mentionedonly sector organizations.In this
section we examine sector organizations moreclosely. In the following

section we will look at block organizations.

The Physical PlacementofSectors

There are several views that one can have of the organization of sectors on

a track. The simplest view, one that:suffices for most users most ofthe time,
is that sectors are adjacent, fixed-sized segments of a track that happen to

hold file (Fig. 3.4a). This is often a perfectly adequate wayto viewa file
logically, but it may not be a good wayto store sectors phystcally.

https://hemanthrajhemu.github.io

Disks - 51

(b)

Figure 3.4 Two viewsofthe organization of sectors ona thirty-two-sector
track.

Whenyou wantto read a series of sectors thatareall in the same track,

one right after the other, you often cannot read adjacent sectors. After
reading the data,it takes the disk controller a certain amount oftimeto
process the received information beforeit is ready to accept more.If logi-
cally adjacent sectors were placed on the disk so they werealso physically

adjacent, we would miss the start of the following sector while we were

processing the one we had justread in.Consequently, we would be able to
read only one sectorper revolution of-the disk.

I/O system designers have approachedthis problem by interleaving the
sectors: they leave an intervalof several physical sectors between logically

adjacent sectors. Suppose our disk had an interleaving factor of 5. The
assignmentoflogical sector contentto the thirty-two physicalsectors in a
trackis illustrated in Fig. 3.4(b). If you study this figure, you can see thatit

takes five revolutionsto read the entire thirty-two sectors of a track. That

is a big improvementoverthirty-two revolutions.

In the early 1990s, controller speeds improved so that disks can now

offer 1:1 interleaving. This means that successive sectors are physically

adjacent, makingit possible to read an entire track in a single revolution of
the disk.

https://hemanthrajhemu.github.io

52 Chapter 3 Secondary Storage and System Software

Clusters

Another view of sector organization, also designed to improve perfor-
mance, is the view maintained by the part of a computer’s operating

system that we call the file manager. When a program accessesa file,it is
the file manager’s job to map the logical parts of the file to their corre-
sponding physical locations. It does this by viewing thefile as a series of
clusters of sectors. A cluster is a fixed numberof contiguoussectors.* Once
a given cluster has been found on disk,all sectors in that cluster can be
accessed without requiring an additional seek.

To view file as a series of clusters and still maintain thesectored view,

the file managerties logical sectors to the physical clusters they belong to
by using file allocation table (FAT). The FAT containsa list of all the clus-

ters in a file, ordered accordingto the logical order of the sectors they
contain. With each cluster entry in the FATis an entry giving the physical

location ofthe cluster (Fig. 3.5). .
On many systems, the system administrator can decide how many

sectors there should be in a cluster. For instance, in the standard physical
disk structure used by VAX systems,the systern administratorsets the clus-
ter size to be used on a disk when thedisk is initialized. The default value

is 3512-byte sectors percluster, but the cluster size maybeset to any value
between 1 and 65 535 sectors. Since clusters represent physically contigu-
ous groupsofsectors, larger clusters will read more sectors without seek-
ing, so the use of large clusters can lead to substantial performance gains

whena file is processed sequentially.

Extents

Our final view of sector organization represents a further attempt to
emphasizephysical contiguity of sectors in a file and to minimize seeking
even more. (If you are getting the idea that the avoidance of seeking is an
importantpartoffile design, you are right.) If thereis a lot of free room
on a disk, it may be possible to make file consist entirely of contiguous

clusters. Whenthisis the case, we say thatthefile consists of one extent: all
of its sectors, tracks, and(if it is large enough) cylinders form one contigu-.
ous whole (Fig. 3.6a on page54). This is a goodsituation, especially if the
file is to be processed sequentially, because it meansthat the wholefile can
be accessed with a minimum amount ofseeking.

2. It is not always physically contiguous; the degree of physical contiguity is determined by the inter-
leavingfactor.

https://hemanthrajhemu.github.io

Disks 53

File allocation table
(FAT)

Cluster Cluster .-

number location" -

a| e

The part of the |: 2 e
FAT pertaining 3
to ourfile aa

Figure 3.5 The file manager determines which clusterin thefile has the

sector that is to be accessed.

If there is not enough contiguous space available to contain an entire
file, the file is divided into two or more noncontiguousparts. Each partis
an extent. When newclusters are addedtoa file, the file managertries to

make them physically contiguous to the previous end of the file, but if

space is unavailable, it must add one or more extents (Fig. 3.6b). The most

important thing to understand about extents is that as the number of
extents in a file increases, the file becomes more spread out onthedisk,

and the amountof seeking required to processthefile increases.

Fragmentation

Generally, all sectors on a given drive must contain the same number of

bytes. If, for example, the size of a sector is 512 bytes and the size of all
records in file is 300 bytes, there is no convenientfit between records and
sectors. There are two ways to deal with this situation: store only one

récord persector, or allow records to span sectors so the beginning of a
record might be found in one sector and the endofit in another(Fig.3.7).

Thefirst option has the advantage that any record can be retrieved by

retrieving just onesector, but it has the disadvantage thatit might leave an
enormous amountof unused space within each sector. This loss of space

https://hemanthrajhemu.github.io

54 Chapter 3 Secondary Storage and System Software

Figure 3.6 File extents (shaded area represents space on disk used bya

single file). ,

within a sectoris called internal fragmentation. The second option has the

advantagethatit loses no space from internal fragmentation,butit has the
disadvantage that some records mayberetrieved only by accessing two
sectors.

Another potential source ofinternal fragmentationresults from the

. use of clusters. Recall that a cluster is the smallest unit of space that can be
allocated for a file. When the numberof bytesin a file is not an exact

multiple of the clustersize, there will be internal fragmentationin thelast

extent of the file. For instance, if a cluster consists of three 512-byte
sectors, a file containing 1 byte would use up 1536 bytes on the disk; 1535
bytes would be wasted dueto internal fragmentation.

Clearly, there are important trade-offs in the use of large cluster sizes.

A disk expected to have mainlylarge files that will often be processed

sequentially would usually be given a largeclustersize, since internal frag-

mentation would not be a big problem andthe performance gains might
be great. A disk holding smallerfiles or files that are usually accessed only

randomly would normally be set up with small clusters.

https://hemanthrajhemu.github.io

Disks 55

(b)

Figure 3.7 Alternate record organization within sectors (shaded areas
represent data records, and unshaded areas represent unused space).

3.1.4 Organizing Tracks by Block

Sometimes disk tracks are not divided into sectors, but into integral
numbers of user-defined blocks whose sizes can vary. (Note: The word
block has a different meaning in the context of the Unix I/O system.See
Section 3.7 for details.) When the data on a track is organized byblock,
this usually means that the amount of data transferred in a single I/O

operation can vary depending on the needs of the software designer, not
the hardware. Blocks can normally be either fixed or variable in length,
depending onthe requirementsofthefile designer and the capabilities of
the operating system. As with sectors, blocks are often referred to as phys-
ical records. In this context, the physical record is the smallest unit of data

that the operating system supports on a particular drive. (Sometimes the

word block is used as a synonym fora sector or groupofsectors. To avoid

confusion, we do notuse it in that way here.) Figure 3.8 illustrates the
difference between one view of data on a sectored track and that on a

blocked track.
A block organization does not present the sector-spanning and frag-

mentation problems of sectors because blocks can vary in size to fit the

logical organization of the data. A block is usually organized to hold an
integral numberoflogical records. The term blockingfactoris used to indi-

cate the numberof records that are to be stored in each blockin file.

https://hemanthrajhemu.github.io

56 Chapter 3 Secondary Storage and System Software

Sector 2 Sector4 Sector 5 ’ Sector 6

Figure 3.8 Sector organization versus block organization.

Hence, if we had file with 300-byte records, a block-addressing scheme

would let us define a block to be some convenient multiple of 300 bytes,
depending on the needs of the program. No space wouldbelost to inter-

nal fragmentation, and there would be no needto load two blocks to

retrieve onerecord.
Generally speaking, blocks are superior to sectors whenit is desirable

to have the physical allocation of space for records correspondto. their
logical organization. (There are disk drives that allow both sector address-
ing and block addressing, but we do not describe them here. See Bohl,
1981.)

In block-addressing schemes, each block of data is usually accompa-
nied by one or more subblocks containing extra information aboutthe data
block. Typically there is a count subblock that contains (among other

things) the numberof bytes in the accompanying data block (Fig. 3.9a).

There mayalso be a key subblock containing the key for the last record in
the data block (Fig. 3.9b). When key subblocksare used, the disk controller
can search a track for a block or record identified by a given key. This

meansthat a program canaskits disk drive to search amongall the blocks
on a track for a block with a desired key. This approach can result in much

more efficient searches than are normally possible with sector-addressable
schemes, in which keys generally cannot be interpreted withoutfirst load-

ing them into primary memory.

3.1.5 Nondata Overhead

Both blocks and sectors require that a certain amountof space be taken up

on the disk in the form of nondata overhead. Some of the overhead

consists of information that is stored on the disk during preformatting,
which is donebefore the disk can be used.

https://hemanthrajhemu.github.io

Disks 57

Count | Data . Count Data

subblock subblock subblock subblock

(a)

Count.’ ' Key Data Count Key: Data
subblock subbiock |: subblock subblock subblock subblock

(b)

Figure 3.9 Block addressing requires that each physical data block be accompanied by

one or more subblocks containinginformation aboutits contents.

On sector-addressable disks, preformatting involves storing, at the

beginning of each sector, information such as sector address, track
address, and condition (whether the sector is usable or deféctive).

Preformatting also involves placing gaps and synchronization marks
betweenfields of information to help the read/write mechanism distin-
guish between them. This nondata overhead usually is of no concernto

the programmer. When thesector size is given for acertain drive, the
programmercan assumethatthis is the amountof actual data that can be

stored in a sector.
On a block-organized disk, some of the nondata overheadis invisible

to the programmer, but someofit must be accountedfor. Since subblocks
and interblock gaps have to be provided with every block,there is general-

ly more nondata information provided with blocks than with sectors. Also,
since the number andsize of blocks can vary.from one application to

another, the relative amountof space taken up byoverhead can vary when

block addressingis used.This is illustrated in the following example.
Suppose we have a block-addressable disk drive with 20 000 bytes per

track and the amountof space taken up by subblocks and interblock gaps
is equivalent to 300 bytes per block. We wantto store a file containing 100-

byte recordson the disk. How manyrecords can be stored pertrackif the
blocking factoris 10? If it is 60? |

1. Ifthere are ten 100-byte records per block, each block holds 1000 bytes

of data and uses 300 + 1000,or 1300, bytes of track space when over-

head is taken into account. The number ofblocks that can fit on a
20 000-byte track can be expressed as

https://hemanthrajhemu.github.io

58 Chapter 3 Secondary Storage and System Software

20000
1300

So fifteen blocks, or 150 records, can be stored per track. (Note that we

have to take the floor of the result because a block cannot span two

tracks.)

2. If there are sixty 100-byte records per block, each block holds 6000
bytes of data and uses 6300 bytes of track space. The numberof blocks
per track can be expressedas -

20 000

6300

So three blocks, or 180 records, can be stored per track,

= 15.38 =15

= 3

Clearly, the larger blocking factor can lead to moreefficient use of
storage. Whenblocks are larger, fewer blocks are required to hold file, so

there is less space consumed by the 300 bytes of overhead that accompany
each block.

Can we conclude from this example that larger blocking factors always
lead to moreefficient storage? Not necessarily. Since we can put only an

integral numberof blocks on a track andsince tracksare fixed in length, we

almost always lose some spaceat the end ofa track. Here we have theinter-
nal fragmentation problem again, butthis time it applies to fragmentation

within a track. The greater the blocksize, the greater potential amountof

internal track fragmentation. What would have happenedifwe had chosen
a blocking factor of 98 in the preceding example? What about 97?

The flexibility introduced by the use of blocks, rather than sectors, can
save time, sinceit lets the programmer determineto a large extent how

data is to be organized physically on a disk. On the negativeside, blocking

schemes require the programmer and/or operating system to do the extra
work of determining the data organization.Also, the very flexibility intro-
duced bythe use of blocking schemes precludes the.synchronization of
I/O operations with the physical movementofthe disk, which sectoring

permits. This means thatstrategies such as sectorinterleaving cannot be

used to improve performance.

3.1.6 The Cost of a Disk Access

To give youa feel for the factors contributing to the total amount oftime
needed to access a file on a fixed disk, we calculate some access times. A

disk access can bedividedinto three distinct physical operations, each with
its own cost: seek time, rotational delay, and transfer time.

https://hemanthrajhemu.github.io

Disks: 59

Seek Time

Seek time is the time required to move the access arm to the correct

cylinder. The amount of time spent seeking during a disk access
depends, of course, on how far the arm has to move.If we are accessing

a file sequentially and thefile is packed into several consecutive cylin-
ders, seeking needs to be doneonlyafter all the tracks on a cylinder have

been processed, and then the read/write head needs to movethe width of

only one track. At the other extreme, if we are alternately accessing

sectors from twofiles that are stored at opposite extremes on disk (one

at the innermostcylinder, one at the outermostcylinder), seekingis very

expensive.
Seekingis likely to be more costly in a multiuser environment, where

several processes are contending for use of the disk at one time, than in a

single-user environment, where disk usageis dedicated to one process.
Since seeking can be very costly, system designers often go to great

extremes to minimize seeking. In an application that mergesthreefiles, for

example,it is not unusual to see the three inputfiles stored on three differ-
ent drives and the outputfile stored on a fourth drive, so no seeking need

be done as I/O operations jump from file to file.
Since it is usually impossible to know exactly how manytracks will be

traversed in every seek, we usually try to determine the average seek time

required for a particular file operation.If the starting and endingpositions

for each access are random,it turns out that the average seek traverses one-
third of the total numberofcylinders that the read/write head ranges
over. Manufacturers’ specifications for disk drives often list this figure as
the average séek time for the drives. Most hard disks available today have

average seek timesofless than 10 milliseconds (msec), and high-perfor-

mance disks have average seek times as low as 7.5 msec.

Rotational Delay

Rotational delay refers to the timeit takes for the disk to rotate so the
sector we wantis under the read/write head. Hard disks usually rotate at
about 5000 rpm, which is one r.volution per 12 msec. On average, the

rotational delay is half a revolution, or about 6 msec. On floppydisks,
which often rotate at only 360 rpm,average rotational delay is a sluggish

83.3 msec,

3. Derivations of this result, as well as more detailed and refined models, can be found in Wiederhold

(1983), Knuth (1998), Teory and Fry (1982), and Salzberg (1988).

https://hemanthrajhemu.github.io

60 Chapter 3 Secondary Storage and SystemSoftware

’

As in the case of seeking, these averages apply only when the

read/write head moves from some random place onthedisk surface to the
target track. In many circumstances, rotational delay can be muchless

than the average. For example, suppose that you havea file that requires
two or moretracks,that thereare plenty of available tracks on onecylin-
.der, and that you write the file to disk sequentially, with one write call.
Whenthefirst track is filled, the disk can immediately begin writing to the
second track, without any rotational delay. The “beginning”of the second
track is effectively staggered by just the amountoftime it takes to switch

from the read/write head on thefirst track to the read/write head on the
‘second. Rotationaldelay, as it were,is virtually nonexistent. Furthermore,

when you read the file back, the position of data on the second track
ensures that there is no rotational delay in switching from onetrack to

another. Figure 3.10 illustrates this staggered arrangement.

Transfer Time

Once the data we want is under the read/write head,it can be transferred.

Thetransfer timeis given by the formula

numberofbytes transferred

numberofbytes oma track
xX rotation time Transfer time =

If a drive is sectored, the transfer time for one sector depends on the

numberof sectors on a track. For example,if there are sixty-three sectors
pertrack,the time requiredto transfer one sector would be 1/63 of a revo-

Figure 3.10 Whena single file can span severaltracks ona cylinder, we can
stagger the beginningsof the tracks to avoid rotational delay when moving

from track to track during sequential access.

https://hemanthrajhemu.github.io

Disks 61

lution, or 0.19 msec. The Seagate Cheetah rotates at 10 000 rpm. The

transfer time for a single sector (170 sectors per track) is 0.036 msec. This

results in a peak transfer rate of more than 14 megabytesper second.

Some Timing Computations

Let’s look at two different file processing situations that show howdiffer-
ent types of file access can affect access times. We will compare the timeit
takes to access file in sequence with the timeit takes to access all of the

recordsin the file randomly. In the former case, we use as muchofthefile

as we can whenever weaccessit. In the random-access case, we are able to

use only one record on each access.

The basis for our calculationsis the high.performance Seagate Cheetah

9-gigabyte fixed disk described in Table 3.1. Althoughit is typical only of a
certain class offixed disk, the observations we draw as we perform these
calculations are quite general. The disks used with personal computers are

smaller and slowerthan this disk, but the nature andrelative costs of the
factors contributing to total access timesare essentially the same.

The highest performancefor data transfer is achieved whenfiles are in
one-track units. Sectors are interleaved with an interleave factor of 1, so
data on a given track can betransferred atthe stated transferrate.

Let’s suppose that we wish to know howlongit will take, using this
drive, to read an 8 704 000-byte file that is dividedinto thirty-four thousand
256-byte records. First we need to know howthefile is distributed on the
disk. Since the 4096-byte cluster holds sixteen records,thefile will be stored

as a sequence of 2125 4096-byte sectors occupying one hundred tracks.
This meansthat the disk needs one hundredtracks to hold the entire

8704 kilobytes that we want to read. We assumea situation in which the
one hundred tracks are randomly dispersed over the surface of the disk.

(This is an extremesituation chosen to dramatize the point we want to
make.Still, it is not so extremethat it could noteasily occur on typical
overloaded disk that has a large numberof smallfiles.)

Now weare ready to calculate the time it would take to read the §704-
kilobytefile from the disk. We first estimate the timeit takes to read the file

sector by sector im sequence. This process involves the following operations
for each track:

Average seek 8 msec

Rotational delay 3 msec

Read onetrack 6 msec

- Total 17 msec

https://hemanthrajhemu.github.io

62 Chapter 3 Secondary Storage and System Software

Wewantto find and read one hundredtracks, so

Total time = 100 X'17 msec = 1700 msec = 1.7 seconds

Nowlet’s calculate the time it would take to read in the samethirty-

four thousand records using random access instead of sequential access. In
‘other words, rather than being able to read onesector right after another,
we assumethat we have to access the records in an order that requires

jumping from track to track every time we read a new sector. This process

involves the following operations for each record:

Average seek 8 msec

Rotational delay 3 msec

Readonecluster (1/21.5 X 6 msec) 0.28 msec

Total 11.28 msec

Total time = 34 000 x 11.28 msec = 9250 msec = 9.25 seconds

This difference in performance between sequential access and random
access is very important. If we can getto the right locationonthedisk and
read a lot of information sequentially, we are clearly much better off than

if we have to jump around, seeking every time we need a newrecord.

Rememberthat seek time is very expensive; when we are performing disk

operations, we should try to minimize seeking.

3.1.7 Effect of Block Size on Performance: A Unix Example

In deciding how best to organize disk storage allocation for several
versions of BSD Unix, the Computer Systems Research Group (CSRG)in

Berkeley investigated the trade-offs between block size and performancein
a Unix environment(Leffler et al., 1989). The results of the research

provide an interesting case study involving trade-offs between block size,
‘fragmentation, andaccess time.

The CSRG research indicated that a minimum blocksize of 512 bytes,

standard at the time on Unix systems, wasnotveryefficient in a typical
Unix environment. Files that were several blocks long often werescattered

over manycylinders, resulting in frequent seeks and thereby significantly
decreasing throughput. Theresearchers found that doublingthe blocksize
to 1024 bytes improved performance by morethan a factorof 2. But even

with 1024-byte blocks, they found that throughput was only about 4

percent of the theoretical maximum. Eventually, they found that 4096-

byte blocks provided the fastest throughput, but this led to large amounts
of wasted space dueto internal fragmentation. These results are summa-
rized in Table 3.2.

https://hemanthrajhemu.github.io

Disks 63

Table 3.2 The amountof wasted space as a function of blocksize.

Space Used (MB) Percent Waste Organization

775.2
807.8
828.7

866.5

948.5
1128.3

0.0 Data only, no separation between files

4,2 Data only, each file starts on 512-byte boundary

6.9 Data + inodes, 512-byte block Unix file system

11.8 Data’+ inodes, 1024-byte block Unix filesystem

22.4 Data + inodes, 2048-byte block Unix file system

45.6 Data + inodes, 4096-byte block Unix file system

From The Design and Implementationofthe 4.3BSD Unix Operating System, Leffleretal., p. 198.

To gain the advantages of both the 4096-byte and the 512-byte systems,
the Berkeley group implemented a variation of the cluster concept (see

Section 3.1.3). In the new implementation, the researchers allocate 4096-

byte blocksforfiles that are big enough to need them;but for smallerfiles,

they allow the large blocks to be divided into one or more fragments. With

a fragmentsize of 512 bytes, as many aseight smallfiles can be stored in

one block, greatly reducing internal fragmentation. With the 4096/512

system, wasted space was found to decline to about 12 percent.

3.1.8 Disk as Bottleneck

Disk performanceis increasing steadily, even dramatically, but disk speeds
still lag far behind local network speeds. A high-performance disk drive

with 50 kilobytes per track can transmit at a peak rate of about 5 megabytes
per second, and only a fraction of that under normal conditions. High-

performance networks, in contrast, can transmit at rates of as much as 100

megabytes per second. The result can often mean that a process is disk
bound—the network and the computer's central processing unit. (CPU)

have to wait inordinate lengths oftime for the disk to transmit data.
A numberof techniquesare used to solve this problem. Oneis multi-

programming, in which the CPU works on other jobs while waiting for the
data to-arrive. But ifmultiprogrammingis not available orif the process

simply cannotafford to lose so muchtimewaiting for the disk, methods
must be found to speed up disk I/O.

Onetechnique now offered on many high-performance systemsis

called striping. Disk striping involvessplitting the parts of a file on several
different drives, then letting the separate drives deliver parts of thefile to

the network simultaneously. Disk striping can be used to put different

https://hemanthrajhemu.github.io

64 ‘Chapter 3 Secondary Storage and System Software

blocks of the file on different drivesor to spread individual blocks onto

different drives.
‘Disk striping exemplifies an important coricept that we see more

and more in system configurations—parallelism. Wheneverthereisa
bottleneck at somepointin the system, consider duplicating the source

-of the bottleneck and configure the system so several of them operate in

parallel.
If we putdifferent blocks on different drives, independentprocesses

accessing the samefile will not necessarily interfere with each other. This

improves the throughputof the system by improving the speed of multi-
ple jobs, but it does not necessarily improve thespeed ofa single drive.
Thereis a significant possibility of a reduction in seek time, but there is no
guarantee.

The speedofsingle jobs that do large amounts of I/O can be signifi-
cantly improved by spreading each block onto many drives. This is
commonly implemented in RAID (redundant array of independent
disks) systems which are commercially available for most computer
systems. For an eight-drive RAID, for example, the controller receives a
single block to write and breaksit into eight pieces, each with enough

data for a full track. The first piece is written to a particular track ofthe
first disk, the second piece to the sametrack of the second disk, and so
on. The write occurs at a sustained rate of eight timesthe rate of a single
drive. The read operation is similar, the same track is read from each

drive, the block in reassembled in cache, and the cache contents are
transmitted back through the 1/O channel. RAID systemsare supported

by a large memorycache on the disk controller to support very large
blocks.

Another approachto solving the disk bottleneck is to avoid accessing

the disk at all. As the cost of memorysteadily decreases, more and more
programmers are using memory to hold data that a few years ago had to
be kept on a disk. Two effective ways in which memorycan be used to

replace secondary storage are memorydisks and disk caches.
A RAMdiskis a large part of memory configured to simulate the

behavior of a mechanical disk in every respect except speed and volatility.

Since data can be located in memory withouta seek or rotational delay,

RAM disks can provide much faster access than mechanical disks. Since
memory is normally volatile, the contents of a RAM disk are lost when the

computer is turned off. RAMdisks are often usedin place of floppy disks

because they are much faster than floppies andbecauserelatively little

memoryis needed to simulate atypical floppy disk.

https://hemanthrajhemu.github.io

3.2

Magnetic Tape 65

A disk cache’ is a large block of memory configured to contain pages

of data from a disk. A typical disk-caching scheme mightuse a 256-kilo-
byte cache with a disk. When data is requested from secondary memory,
the file managerfirst looks into the disk cacheto seeif it contains the page
with the requesteddata.If it does, the data can be processed immediately.

Otherwise,the file manager reads the page containing the data from disk,
replacing some pagealready in the disk cache.

Cache memory can provide substantial improvements in perfor-

mance, especially when a program’s data access patterns exhibit a high

degree oflocality. Locality exists in a file when blocks that are accessed in
close temporal sequenceare stored close to one another on the disk. When
a disk cache is used, blocks that are close to one another on thedisk are

much morelikely to belong to the page or pages that are read in with a
single read, diminishing the likelihood that extra reads are needed for
extra accesses.

RAM disks and cache memory are examples of buffering, a very
important and frequently used family of I/O techniques. Wetake a closer
look at buffering in Section 3.9.

In these three techniques we see once again examples ofthe need to

make trade-offs in file processing. With RAMdisks and disk caches, there
is tension between the cost/capacity advantages of disk over memory on
the one hand, and the speed of memory on the other. Striping provides
opportunities to increase throughput enormously, but at the cost of a

more complex and sophisticated disk management system. Goodfile

design balances these tensions and costs creatively.

Magnetic Tape

Magnetic tape units belongto a class of devices that provide no direct
accessing facility but can provide very rapid sequential access to data.
Tapes are compact, stand up well under different environmental condi-
tions, are easy to store and transport, and are less expensive than disks.

Manyyears ago tape systems were widely used to store application data.

An application that needed data from a specific tape would issue a request

4, The term cache (as opposed to disk cache) generally refers to a very high-speed block of primary
memory that performs the sametypes of performance-enhancing operations with respectto
memory that a disk cache does with respect to secondary memory.

https://hemanthrajhemu.github.io

66 Chapter 3 Secondary Storage and System Software

for the tape, which would be mounted by an operator onto a tape drive.

The application could then directly read and write on the tape. The
tremendous reduction in the cost of disk systems has changed the way
tapes are used. At present, tapes are primarily used as archival storage.

Thatis, data is written to tape to provide low cost storage and then copied

to disk wheneverit is needed. Tapes are very commonas backup devices
for PC systems. In high performance and high volumeapplications, tapes

are commonlystored in racks and supported by a robot system thatis

capable of moving tapes between storage racks and tape drives.

3.2.1 Types of Tape Systems

There has been tremendous improvementin tape technology in the past

few years. There are now a variety of tape formats with prices ranging
from $150 to $150,000 per tape drive. For $150, a PC owner can add a tape

backup system,with sophisticated backupsoftware,thatis capableofstor-
ing 4 gigabytes of data on a single $30 tape. For larger systems, a high
performancetape system could easily store hundredsofterabytes in a tape

robot system costing millions of dollars. Table 3.3 shows a comparison of

some current tape systems.

In the past, most computer installations had a numberofreel-to-reel
tape drives and large numbers of racks or cabinets holding tapes. The
primary media was one-half inch magnetic tape on 10.5-inch reels with
3600 feet of tape. In the next section we look at the format and data trans-

fer capabilities of these tape systems which use nine linear tracks and are

usually referred to as nine-track tapes.

Table 3.3 Comparison of some current tape systems

Tape Model Media Format Loading Capacity Tracks Transfer Rate

9-track one-halfinch reel autoload 200 MB 9 linear 1 MB/sec

Digital linear DIT cartridge robot 35 GB 36 linear 5 MB/sec
tape

HP Colorado one-quarterinch manual 1.6 GB helical 0.5 MB/sec

T3000 cartridge

StorageTek one-half inch robot silo 50GB helical 10 MB/sec
Redwood cartridge

https://hemanthrajhemu.github.io

Magnetic Tape 67

Newer tape systems are usually based on a tape cartridge medium
where the tape andits reels are contained in a box. The tape media formats
that are available include 4 mm, 8 mm, VHS,1/2 inch, and 1/4 inch.

3.2.2 An Example of a High-Performance Tape System

The StorageTek Redwood SD3 is one of the highest-performance tape
systems available in 1997. It is usually configured in a silo that contains

storage racks, a tape robot, and multiple tape drives. The tapes are 4-by-4-
inch cartridges with one-half inch tape. The tapes are formatted with heli-.
cal tracks. Thatis, the tracks are at an angle to the linear direction of the

tape. The numberof individualtracksis related to the length ofthe tape

rather than the width ofthe tapeas in linear tapes. The expected reliable

storage time is more than twentyyears, and average durability is 1 million
head passes.

The performance of the SD3 is achieved with tape capacities of up to
50 gigabytes and a sustained transfer rate of 11 megabytes per second.This

transfer rate is necessary to store and retrieve data produced by the newest

generation of scientific experimental equipment, including the Hubbell

‘telescope, the Earth Observing System (a collection of weather satellites),

seismographic instruments, and a variety of particle accelerators.
An importantcharacteristic of a tape silo system is the speed of seek-

ing, rewinding, and loading tapes. The SD3 silo using 50-gigabyte tapes
has an-average seek time of 53 seconds and can rewind in a maximum of
89 seconds. The load timeis only 17 seconds. The time to read or write a

full tape is about 75 minutes. Hence, the overhead to rewind, unload, and

load is only 3 percent. Another wayto lookat this is that any tape in the
silo can be mounted in under 2 minutes with no operatorintervention.

3.2.3 Organization of Data on Nine-Track Tapes

Since tapes are accessed sequentially, there is no need for addressesto iden-

tify the locations of data on a tape. On tape, the logical position of a byte
within a file correspondsdirectly to its physical position relative to the start

of the file. We may envision the surface ofa typical tape as a set ofparallel
tracks, each of which is a sequenceofbits. If there are nine tracks (see Fig.

3.11), the ninebits that are at correspondingpositions in the nine respec-

tive tracks are taken to constitute | byte, plus a parity bit. So a byte can be
thoughtof asa one-bit-wideslice of tape. Such slice is called a frame.

https://hemanthrajhemu.github.io

68

Track

Chapter 3 Secondary Storage and System Software

Frame’

o
e
O
O

K
F
O
S

S
e

O
C

 }+—— Gap + | Data block ote Gap—|

Figure3.11 Nine-track tape.

Theparity bit is not part of the data but is used to check thevalidity of
the data. If odd parity is in effect, this bit is set to make the numberof1

bits in the frame odd. Even parity works similarly butis rarely.usedwith
tapes.

Frames (bytes) are groupedinto data blocks whosesize can vary from
a few bytes to many kilobytes, depending on the needs ofthe user. Since
tapes are often read one block at a time and since tapes cannotstoporstart

instantaneously, blocks are separated by interblock gaps, which contain no
information and are long enough to permit stopping and starting. When
tapes use odd parity, no valid frame can contain all 0 bits, so a large
numberof consecutive 0 framesis usedto fill the interrecord gap.

Tape drives come in many shapes, sizes, and speeds. Performance
differences amongdrives can usually be measured in termsof three quan-

tities:

Tape density—commonly 800, 1600, or 6250bits per inch (bpi) per track,

but recently as much as 30 000 bpi; |

Tape speed—commonly 30 to 200 inches per second(ips); and

Size of interblock gap—commonly between 0.3 inch and 0.75 inch..

Note that a 6250-bpi nine-track tape contains 6250 bits per inch pertrack,
and 6250 bytes per inch when the full nine tracks are taken together. Thus

in the computationsthat follow, 6250 bpi is usually taken to mean 6250

bytes of data per inch.

https://hemanthrajhemu.github.io

Magnetic Tape 69

3.2.4 Estimating Tape Length Requirements

Suppose we want to store a backupcopy ofa large mailing-list file with

one million 100-byte records: If we wantto store thefile on a 6250-bpi
tape that has an interblock gap of0.3 inches, how muchtapeis needed?

To answer this question wefirst need to determine what takes up space

on the tape. There are two primary contributors: interblock gaps and data

blocks. For every data block there is an interblock gap.If welet

b = the physical length of a data block,

g= the lengthofan interblock gap, and

n = the numberof data blocks

then the space requirements for storingthefileis

s=nX (b+ g)

We knowthat gis 0.3 inch, but we do not know what b andmare.In fact, b

is whatever we wantit to be, and n depends on our choice of b. Suppose we
choose each data block to contain one 100-byte record. Then }, the length

of each block,is given by

b= block size (bytes per block) 100
= - = 0.016 inch

tape density (bytes perinch) 6250

and n, the numberof blocks, is 1 million (one per record).

The numberof records stored in a physical blockis called the blocking
factor. It has the same meaning it had when it was applied to the use of

blocks for disk storage.The blocking factor we have chosenhere is 1
because each block has only one record. Hence, the space requirementfor

the file is

s = 1000 000 X (0.016 + 0.3) inch
= 1 000 000 x 0.316 inch

= 316 000 inches

= 26 333 feet

Magnetic tapes range in length from 300 feet to 3600 feet, with 2400

feet being the most commonlength. Clearly, we need quite a few 2400-foot
tapes to store thefile. Or do we? You may have noticed that our choice of
block size was not a very smart one from the standpointof space usage.

The interblock gapsin the physical representation ofthe file take up about
nineteen times as much space as the data blocks do. If we were to take a

snapshotofourtape, it would look somethinglike this:

https://hemanthrajhemu.github.io

70 Chapter 3 Secondary Storage and System Software

q ae I.
\ \ \ \ \ ‘A \
Data Gap Data Gap Data Gap Data

Mostof the space on the tapeis not used!
Clearly, we should consider increasing the relative amount of space

used for actual data if we want to try to squeeze thefile onto one 2400-foot

tape. If we increase the blocking factor, we can decrease the numberof

blocks, which decreases the numberof interblock gaps, which in turn

decreases the amountof space consumedbyinterblock gaps. For example,

if we increase the blocking factor from 1 to 50, the number of blocks

becomes

n= 1000000 _ 50 000
50

and the space requirement for interblock gaps decreases from 300 000
inches to 6000 inches. The space requirementfor the datais of course the
same as waspreviously. What has changedis the relative amount of space

occupied by the gaps, as compared to the data. Now a snapshotofthe tape

would look much different: |

fy I a
A A a On
Data Gap Data Gap Data Gap Data Gap Data

Weleaveit to you to showthatthefile canfit easily on one 2400-foot

tape when a blockingfactor of 50 is used.

When we compute the space requirements for our file, we produce

numbersthat are quite specific to ourfile. A more general measure ofthe
effect of choosing different block sizes is effective recording density, The
effective recording density is supposedto reflect the amountof actual data
that can be stored perinch oftape. Since this depends exclusively on the
relative sizes of the interblock gap and the data block,it can be defined as

numberof bytes per block -

numberof inches required to store a block

Whena blockingfactor of 1 is used in our.example, the numberof bytes
per block is 100, and the numberof inches required to store a blockis

0.316. Hence, the effective recordingdensity is

100 bytes
=316.4 bpi
0.316 inches

whichis a far cry from the nominal recording density of 6250 bpi.

https://hemanthrajhemu.github.io

Magnetic Tape 71

Either way you look atit, space utilizationis sensitive to the relative
sizes of data blocks and interblock gaps. Let us now see howtheyaffect the

amountof time it takes to transmit tape data.

3.2.5 Estimating Data Transmission Times

If you understandtherole of interblock gaps and data blocksizes in deter-

miningeffective recording density, you can probably see immediately that

these two factors also affect the rate of data transmission. Two other

factors that affect the rate of data transmission to or from tape are the

nominal recording density and the speed with which the tape passes the
read/write head. If we know these two values, we can compute the nominal

data transmission rate:

Nominal rate = tape density (bpi) tape speed (ips)

Hence, our 6250-bpi, 200-ips tape has a nominal transmission rate of

6250 X 200 = 1 250 000 bytes/sec

= 1250 kilobytes/sec

This rate is competitive with most disk drives.
But what aboutthose interblock gaps? Once ourdata gets dispersed by

interblock gaps, the effective transmission rate certainly suffers. Suppose,
for example, that we use our blocking factor of 1 with the samefile and
tape drive discussed inthe preceding section (one million 100-byte

records,0.3-inch gap). We sawthat the effective recording density for this

tape organization is 316.4 bpi. If the tape is moving at a rate of 200 ips,
thenitseffective transmissionrate is

316.4 X 200 = 63 280 bytes/sec

= 63,3 kilobytes/sec

a rate that is about one-twentieth the nominalrate!
It should be clear that a blocking factor larger than 1 improves onthis

result and that a substantially larger blocking factor improves onit
substantially.

Although there are other factors that can influence performance,
block size is generally considered to be the one variable with the greatest

influence onspace utilization anddata transmissionrate. The other factors

we have included—gapsize, tape speed, and recording density—areoften
beyond the control. of the user. Another factor that can sometimes be
important is the time it takes to start and stop the tape. We consider

start/stop timein the exercises at the end of this chapter.

https://hemanthrajhemu.github.io

72

3.3

Chapter 3 Secondary Storage and System Software

Disk versus Tape

In the past, magnetic tape and magnetic disk accountedfor the lion’s share
of all secondarystorage applications. Disk was excellent for random access

and storageoffiles for which immediate access was desired; tape wasideal

for processing data sequentially and for long-term storage offiles. Over
time, these roles have changed somewhatin favorofdisk.

. The major reason that tape was preferable to disk for sequential
processing is that tapes are dedicated to one process, while disk generally

serves several processes. This means that between accesses a disk
read/write head tends to move away from the location where the next

sequential access will occur, resulting in an expensive seek; the tape drive,

being dedicated to one process, pays no suchpricein seek time.
This problem of excessive seeking has gradually diminished, and disk

has taken over much ofthe secondary storage niche previously occupied
by tape. This changeis largely because of the continued dramatic decreas-
es in the cost of disk and memorystorage. To understandthis changefully,
we need to understand the role of memory buffer space in performing

1/O.° Briefly, it is that performance dependslargely on how big a chunk of
file we can transmitat any time; as more memory space becomesavailable

for 1/O buffers, the numberof accesses decreases correspondingly, which

means that the numberofseeks required goes downas well. Most systems
now available, even small systems, have enough memoryto decrease the

numberof accesses required to process mostfiles that disk becomes quite
competitive with tape for sequential processing. This change, along with
the superior versatility and decreasing costs of disks, has resulted in use of
disk for most sequential processing, which in the past was primarily the
domain oftape.

This is not to say that tapes should notbe used for sequential process-
ing. If a file is kept on tape and there are enough drives available to use
them for sequential processing, it may be moreefficient to process thefile
directly from tape than to streamit to disk and processit sequentially. .

Althoughit has lost groundto disk in sequential processing applica-

tions, tape remains important as a medium for long-term archivalstorage.
Tape is still far less expensive than magnetic disk, and it is very easy and
fast to stream large files or sets of files between tape and disk. In this

context, tape has emerged as one of our most important media (along

with CD-ROM)fortertiary storage.

5, Techniques for memorybuffering are covered in Section 3.9.

https://hemanthrajhemu.github.io

3.4

Introduction to CD-ROM 73

Introduction to CD-ROM

CD-ROMis an acronym for Compact Disc, Read-Only Memory.It is a
CD audio disc that contains digital data rather than digital sound. CD-
ROMis commercially interesting because it can hold lot of data and can

be reproduced cheaply. A single disc can hold more than 600 megabytes of
data. That is approximately two hundred thousandprinted pages, enough
storage to hold almost four hundred books thesize of this one. Replicates

can be stamped from a master disc for about only a dollar a copy.

CD-ROMis read-only (or write-once) in the same sense as a CD
audio disc: once it has been recorded, it cannot be changed.It is a publish-

ing medium,used for distributing information to manyusers, rather than

a data storage and retrieval medium like magnetic disks. CD-ROMhas
becomethe preferred medium for distribution ofall types of software and
for publication of database information suchas telephonedirectories, zip
codes, and demographic information. There are also many CD-ROM

products that deliver textual data, such as bibliographic indexes, abstracts,

dictionaries, and encyclopedias,often in association with digitized images

stored on the disc. They are also used to publish video information and,of
course,digital audio.

3.4.1 A Short History of CD-ROM

CD-ROMisthe offspring of videodisc technology developedin the late
1960s and early 1970s, before the advent of the home VCR. The goal was

to store movies on disc. Different companies developed a number of
methodsfor storing video signals, including the use of a needle to respond
mechanically to groovesin a disc, muchlike avinyl LP record does. The
consumerproducts industry spent a great deal of money developing the
different technologies, including several approaches to optical storage,
then spent years fighting over which approach should becomestandard.
The surviving formatis one called LaserVision. By the time LaserVision
emerged as the winner, the competing developers had not only spent enor-
mous sums of money but hadalso lost important market opportunities.

These hard lessons were put to use in the subsequent development of CD
audio and CD-ROM.

6. Usually we spell disk with a k, but the convention amongoptical disc manufacturersisto spellit
with a c.

https://hemanthrajhemu.github.io

74 Chapter 3 Secondary Storage and System Software

From the outset, there was an interest in using LaserVision discs to do
more than just record movies. The LaserVision format supports recording
in both a constant linear velocity (CLV) format that maximizes storage
capacity and a constant angular velocity (CAV) formatthat enables fast

seek performance. By using the CAVformat to access individual video
frames quickly, a numberof organizations, including the MIT Media Lab,

produced prototypeinteractive video discs that could be used to teach and
entertain. . |

In the early 1980s, a numberoffirms began looking at the possibility

of storing digital, textual information on LaserVision discs. LaserVision

stores data in an analog form;itis, after all, storing an analog videosignal.

Different firms came up with different ways of encoding digital informa-
tion in analog form so it could be stored on the disc. The capabilities
demonstrated in the prototypes andearly, narrowly distributed products

were impressive. The videodisc has a number of performance character-

istics that make it a technically more desirable medium than the CD-
ROM;in particular, one can build drives that seek quickly and deliver
information from the disc at a high rate of speed. But, reminiscent. of the

earlier disputes over the physical format of the videodisc, each of these

pioneers in the use of LaserVision discs as computer peripherals had
incompatible encoding schemesanderror correction techniques. There
was no standard format, and noneof the firms. was large enough to

impose its format over the others through sheer marketing muscle.
Potential buyers were frightened by the lack of a standard; consequently,

the market never grew.
During this same period Philips and Sony began work on a way to

store music on optical discs. Rather than storing the music in the kind of

analog form used on videodiscs, they developed a digital data format.

Philips and Sony had learned hard lessons from the expensive standards

- battles over videodiscs. This time they worked with other players in the
consumer products industry to develop a licensing system that resulted in
the emergence of CD audio as a broadly accepted, standard format as soon

as the first discs and players were introduced. CD audio appearedin the
United States in early 1984. CD-ROM,whichis a digital data format built
on top of the CD audio standard, emerged shortly thereafter. The first
commercially available CD-ROM drives appeared in 1985,

Not surprisingly, the firms that were delivering digital data on

LaserVision discs saw CD-ROMasa threat to their existence. They also

recognized, however, that CD-ROM promised to provide whathad always

https://hemanthrajhemu.github.io

Introduction to CD-ROM 75

eluded them in the past: a standard physical format. Anyone with a CD-

ROM drive was guaranteed that he or she could find and read a sector off

of any disc manufactured by anyfirm. For a storage mediumto be used in

publishing, standardization at such a fundamental level is essential.

What happened next is remarkable considering the history of stan-

dards and cooperation within an industry. The firms that had been work-
ing on productsto deliver computerdata from videodiscs recognized that
a standard physical format, such as that provided by CD-ROM,was not
enough. A standard physical format meant that everyone would be able to
read sectors off of any disc. But computer applications do not work in

terms of sectors; theystore data in files. Having an agreement aboutfind-

ing sectors, without further agreement about how to organizethe sectors
into files, is like everyone agreeing on an alphabet without havingsettled

on howletters are to be organized into words on a page.In late 1985 the
firms emerging from the videodisc/digital data industry, all of which were
‘relatively small, called together many of the muchlargerfirms movinginto
the CD-ROM industry to begin work on a standardfile system that would

be built on top of the CD-ROM format. In a rare display of cooperation,

the different firms, large and small, worked out the main featuresofa file

system standard by early summerof 1986; that work has becomeanoffi-

cial international standard for organizing files on CD-ROM.
The CD-ROMindustryis still young, though in the past years it has

begun to show signs of maturity: it is moving away from concentration on
such. matters as disc formats to a concern with CD-ROM applications.
Rather than focusing on the new medium in isolation, vendorsare seeing
it as an enabling mechanism for new systems. As it finds more uses in a
broader array of applications, CD-ROMlookslike an optical publishing

technology that will be with us over the long term.
Recordable CD drives make it possible for users to store information

on CD. Theprice of the drives and the price of the blank recordable CDs
make this technology very appealing for backup. Unfortunately, while the

speed of CD readers has increased substantially, with 12X (twelve times
CD audio speed) as the current standard, CD recorders work no faster

than 2X, or about 300 kilobytes per second.

The latest new technology for CDs is the DVD, whichstands for

Digital Video Disc, or Digital Versatile Disk. The Sony Corporation has

developed DVD for the video market, especially for the new high defini-
tion TVs, but DVDis also available for storingfiles. The density of both
tracks and bits has beenincreased to yield a sevenfold increase in storage

https://hemanthrajhemu.github.io

76

3.5

Chapter 3 Secondary Storage and System Software

capacity. DVDis also available in a two-sided medium that yields 10 giga-
bytes per disc.

3.4.2 CD-ROM as File Structure Problem

-CD-ROMpresentsinteresting file structure problems becauseit is a medi-
um with great strengths and weaknesses. The strengths of CD-ROM
includeits high storage capacity, its inexpensive price, and its durability.
The key weaknessis that seek performance on a CD-ROMisveryslow,
often taking from a half second to a second perseek. In the introduction

to this textbook we compared memoryaccess and magnetic disk access
and showed that if memory access is analogous to your taking twenty

secondsto look up something in the indexto this textbook,the equivalent
disk access wouldtake fifty-eight days, or almost 2 months. With a CD-

ROM the analogystretches the disc access to more than two and a half
years! This kind.of performance, or lack ofit, makes intelligentfile struc-
ture design a critical concern for CD-ROM applications. CD-ROM

provides an excellenttest of our ability to integrate and adaptthe princi-
ples we have developed in the preceding chaptersof this book.

Physical Organization of CD-ROM

CD-ROMis the child of CD audio.In this instance, the impact ofheredi-
ty 1s strong, with both positive and negative aspects. Commercially, the CD
audio parentage is probably wholly responsible for CD-ROM's viability.It

is because of the enormous CD audio market that it is possible to make

these discs so inexpensively. Similarly, advances in the design and decreas-

es in the costs of making CD audio players affect the performance and
price of CD-ROMdrives. Other optical disc media withoutthe benefits of

‘this parentage have not experienced the commercial success of CD-ROM.
Onthe other hand, making use of the manufacturing capacity associ-

ated with CD audio means adhering to the fundamental physical organi-
zation of the CD audio disc. Audio discs are designed to play music, notto

provide fast, random access to data. This biases CD toward having high
storage capacity and moderate data transfer rates and against decent seek
performance.If an application requires good random-access performance,

that performance has to emerge from ourfile structure designefforts;it

won't come from anything inherentin the medium.

https://hemanthrajhemu.github.io

Physical Organization of CD-ROM 77

3.5.1 Reading Pits and Lands

CD-ROMsare stamped from a master disc. The masteris formed by using
the digital data we want to encode'to turn a powerfullaser on and off very

quickly. The master disc, which is made ofglass, has a coating that is
changedbythe laser beam. Whenthe coating is developed, the areas hit by
the laser beam turn into pits along the track followed by the beam. The
smooth, unchanged areas between the pits are called lands. The copies

formed from the masterretain this pattern of pits andlands. _
Whenweread the stamped copyofthe disc, we focus a beam oflaser

light on the track as it moves under the optical pickup. The pits scatter the
light,but the lands reflect most of it back to the pickup. Thisalternating
pattern of high- and low-intensity reflected light is the signal used to

reconstruct the original digital information. The encoding scheme used
for this signal is not simply a matter of calling a pita 1 anda land 0.
Instead, the 1s are represented by the transitions from pit to land and back

again. Every time the light intensity changes, we get a I. The Os are repre-

sented by the amountof time between transitions; the longer between
transitions, the more Os we have.

If you think about this encoding scheme, you realize thatit is not

possible to have two adjacent 1s—l1s are always separated by Os.In fact,
dueto the limits of the resolution of the optical pickup, there mustbeat
least two Os between any pair of 1s. This means that the raw pattern of Is

and Os has to be translated to get the 8-bit patterns of 1s and Os that form
the bytes of the original data. This translation scheme, which is done

through a lookuptable, turns the original 8 bits of data into 14 expanded
bits that can be represented in the pits and lands on thedisc; the reading
processreversesthis translation. Figure 3.12 shows a portion of the lookup

table values. Readers who have lookedclosely atthe specifications for CD

players may have encountered the term EFM encoding. EFM stands for
“eight to fourteen modulation”andrefersto this translation scheme.

Decimal Original Translated

value bits bits ©

00000000 01001000100000

00000001 10000100000000

00000010 10010000100000

00000011 10001000100000

00000100 01000100000000

00000101 00000100010000

00000110 00070000100000

00000111 00100100000000
00001000 01001001000000

Figure 3.12 A portion of the

EFM encodingtable.

O
n
y
n
N
n
a
W
r
w
-

oO

https://hemanthrajhemu.github.io

78 Chapter 3 Secondary Storage and System Software

It is importantto realize that since we represent the Os in the EFM-
encoded data by the length of time between transitions, our ability to read

the data is dependent on movingthepits and lands underthe optical pick-
up at a precise and constantspeed.As wewill see, this affects the CD-ROM

drive’s ability to seek quickly.

3.5.2 CLV Instead of CAV

Data on a CD-ROMisstoredin single, spiral track that windsfor almost

3 miles from the center to the outer edge ofthe disc. This spiral pattern is.
part of the CD-ROM’s heritage from CD audio. For audio data, which

requires a lot of storage space, we want to pack the data on the disc as

tightly as possible. Since we “play” audio data,often from start to finish
without interruption, seeking is not important.As Fig. 3.13 shows,a spiral
pattern serves these needs well. A sector toward the outer edge ofthe disc
takes the same amountof space as a sector toward the centerofthedisc.
This meansthat we canwrite all of the sectors at the maximum density

permitted by the storage medium.Since reading the data requires thatit
pass under the optical pickup device at a constantrate, the constant data

density implies that the disc has to spin more slowly when weare reading.
at the outer edges than when weare reading toward the center. This is why

the spiral is a Constant Linear Velocity (CLV) format: as we seek from.the

center to the edge, we change therate of rotation of the disc so the linear

speedof the spiral past the pickup device stays the same.

By contrast, the familiar Constant Angular Velocity (CAV) arrange-
ment shownin Fig. 3.13, with its concentric tracks and pie-shapedsectors,
writes data less densely in the outer tracks than in the tracks toward the
center. We are wasting storage capacityin the outer tracks but have the
advantage of being ableto spin thedisc at the same speed forall positions
‘of the read head. Given the sector arrangement shownin thefigure, one

rotation reads eight sectors, no matter where we are on the disc.

Furthermore, a timing mark placed on the disk makesit easy to find the

start of a sector.
The CLV formatis responsible, in large part, for the poor seeking

performance of CD-ROM drives. The CAV formatprovides definite track
boundaries and a timing mark to find the start of a sector. But the CLV

format provides no straightforward way to jumpto a specific location.

Part of the problem is associated with the need to change rotational speed
as we seek across the disc. To read the address information that is stored on

the disc along with the user’s data, we need to be movingthe data under

https://hemanthrajhemu.github.io

Physical Organization ofCD-ROM 79

Constant angular
velocity

Constant linear

velocity

Figure 3.13 CLV and CAV recording.

the optical pickup at the correct speed. But to knowhowto adjust the
speed, we need to be able to read the address information so we know
where we are. How doesthe drive’s control mechanism break outofthis

loop? In practice, the answer often involves making guesses and finding
the correct speed throughtrial and error. This takes time and slows down
seek performance.

Onthe positive side, the CLV sector arrangementcontributes to the

CD-ROM’s large storage capacity. Given a CAV arrangement, the CD-
ROM would have onlya little better than half its present capacity.

3.5.3 Addressing

The use of the CLV organization meansthat the familiar cylinder, track,
sector method of identifying a sector address will not work on a CD-

ROM.Instead, we use'a sector-addressing schemethat is related to the

CD-ROM’s roots as an audio playback device. Each second ofplaying time
on a CDis divided into seventy-five sectors, each of which holds2 kilo-

bytes of data. According to the original Philips/Sony standard, a CD,

whetherused for audio or CD-ROM,contains at least one hourof playing

time. That means that the disc is capable ofholding at least 540 000 kilo-

bytes of data:

60 minutes X 60 seconds/minute X 75 sectors/second = 270 000 sectors

https://hemanthrajhemu.github.io

80

32767

-32767

T
T
T
E
r
T
r
Y
r
r
r
y

ft

/

P
P
r
r
Y
r
p
r
t
p
y
T
r

i

Chapter 3 Secondary Storage and System Software

In fact, sinceit is possible to put more than seventy minutesofplaying

time on a CD,the capacity of the disk is over 600 megabytes.
We address a given sector by referring to the minute, second, and

sector of play. So, the thirty-fourth sector in the twenty-second second in
the sixteenth minute of play would be addressed with the three numbers
16:22:34,

3.5.4 Structure of a Sector

It is interesting to see how the fundamental design of the CD disc,initial-
ly intended to deliver digital audio information, has been adapted for
computer data storage. This investigation will also help answer the ques-
tion: If the disc is capable of storing a quarter of a million printed pages,

whydoesit hold only an hour’s worth of Roy Orbison?
When wewantto store sound, weneed to convert a wave pattern into

digital form. Figure 3.14 shows a wave. At any given pointin time, the wave

has a specific amplitude. Wedigitize the wave by measuring the amplitude

at very frequent intervals and storing the measurements.So, the question
of how muchstorage space we need to represent a wave digitally turns into
two other questions: How much space does it take to store each amplitude

sample? How often do we take samples?

actual wave

— ee eewave reconstructed

from sample data .

sampling frequency

Figure 3.14 Digital sampling of a wave,

https://hemanthrajhemu.github.io

Physical Organization of CD-ROM 81

actual wave

— —— = wavereconstructed

_ from sample data

“

S74

Nd NZ Se Ng
a 7S oy PN

sampling frequency

Figure 3.15 The effect of sampling at less than twice the frequency of the wave.

CD audio uses 16 bits to store each amplitude measurement; that

means that the “ruler” we use to measure theheight ofthe wave has 65 536
different gradations. To approximate a wave accurately through digital
sampling, we need to take the samples at a rate that is more than twice as
frequent as the highest frequency wewant to capture. This makessenseif

you look at the wave in Fig. 3.15. You can see that if we sample-atless than
twice the frequency of the wave, we lose information about the variation
in the wave pattern. The designers of CD audio selected a sampling

frequency of 44.1 kilohertz, or 44 100 times per second, so they could

record sounds with frequencies ranging up to 20 kilohertz (20 000 cycles
per second), which is toward the upper boundof what people can hear.

So,if we are taking a 16-bit, or 2-byte, sample 44 100 times per second,
we need to store 88 200 bytes per second. Since we want to store stereo
sound, we need double this and store 176 400 bytes per second. You can
see why storing an hourof Roy Orbison takes so much space.

If you divide the 176 400-byte-per-second storage capacity of the CD
into seventy-five sectors per second, you have 2352 bytes per sector. CD-

ROM divides up this “raw” sectorstorage as shownin Fig, 3.16 to provide
2 kilobytes of user data storage, along with addressing information,error

detection, and error correction information. The error correction infor-

mation is necessary because, although CD audio contains redundancy for
error correction,it is not adequate to meet computerdata storage needs.

https://hemanthrajhemu.github.io

82 Chapter 3 Secondary Storage and System Software

12 bytes 4 bytes 2,048 bytes 4 bytes 8 bytes 276 bytes
synch sector ID user data. error null error

detection - correction

Figure 3.16 Structure of a CD-ROM Sector.

3.6

The audio error correction would result in an average of one incorrect
byte for every two discs. The additional error correction information
stored within the 2352-byte sector decreases this error rate to 1 uncor-

rectable byte in every twenty thousanddiscs.

CD-ROM Strengths and Weaknesses

As we say throughoutthis book, goodfile design is responsiveto the
nature of the medium, makinguse of strengths and minimizing weak-

nesses. We begin, then, by cataloging the strengths and weaknesses of

CD-ROM.

3.6.1 Seek Performance

The chief weakness of CD-ROM is the random-access performance.

Current magnetic disk technology is such that the average time for a

random data access, combining seek time androtational delay, is about 30
msec. On a CD-ROM,this average access takes 500 msec and can take up
to a second or more.Clearly, ourfile design strategies must avoid seeksto

an even greater extent than on magnetic disks,

3.6.2 Data Transfer Rate

A CD-ROM drive reads seventy sectors, or 150 kilobytes of data per

second. This data transfer rate is part of the fundamental definition of
CD-ROM;it can’t be changed without leaving behind the commercial
advantages of adheringto the CD audio standard.It is a modest transfer

rate, aboutfive times faster than the transfer rate for floppydisks, and an
order of magnitude slower than the rate for good Winchester disks. The

inadequacy of the transfer rate makesitself felt when weare loading large
files, such as those associated with digitized images. On the other hand,the

https://hemanthrajhemu.github.io

CD-ROM Strengths and Weaknesses 83

transfer rate is fast enough relative to the CD-ROM’s seek performance
that we havea design incentive to organize data into blocks, reading more

data with each seek in the hope that we can avoid as much seeking as

possible.

3.6.3 Storage Capacity

A CD-ROMholds more than 600 megabytes of data. Althoughit is possible
to use up this storage area very quickly, particularly if you are storing raster
images, 600 megabytes is big when it comes to text applications. If you
decide to download 600 megabytes of text with a 2400-baud modem,it will

take about three days of constant data transmission, assuming errorless
transmission conditions. Manytypical text databases and documentcollec-

tions published on CD-ROM useonly fraction ofthedisc’s capacity.
The design benefit arising from such large capacity is that it enables us

to build indexes andother supportstructures that can help overcome some
of the limitations associated with CD-ROM’s poorseek performance.

3.6.4 Read-Only Access

From a design standpoint, the fact that CD-ROM is a publishing medium,
a storage device that cannot be changed after manufacture, provides
significant advantages. We never have to worryabout updating. This not

only simplifies someofthe file structures but also meansthatit is worth-

while to optimize our index structures and other aspects offile organiza-
tion, We know that our efforts to optimize access will not be lost through

later additionsor deletions.

3.6.5 Asymmetric Writing and Reading

For most media, files are written and read using the same computer

system. Often, reading and writing are both interactive and are therefore

constrained by the need to provide quick responseto the user. CD-ROM is
different. We create thefiles to be placed on the disc once; then wedistrib-
ute the disc, and it is accessed thousands, even millions, of times. We are in

a position to bring substantial computing powerto thetaskoffile organi-

zation and creation, even whenthedisc will be used on systems with much
less capability. In fact, we can use extensive batch-mode processing on

large computers to try to provide systemsthat will perform well on small
machines. We make the investmentin intelligent, carefully designedfile

https://hemanthrajhemu.github.io

84 Chapter 3 Secondary Storage and System Software

structures only once; users can enjoy the benefits ofthis investment again

and again.

3.7 Storage as a Hierarchy

Although the best mixture of devices for a computing system depends on
the needsof the system’s users, we can imagine any computing system as a
hierarchy of storage devices of different speed, capacity, and cost. Figure
3,17 summarizes the different types of storage foundat different levels in
such hierarchies and shows approximately how they compare in terms of

access time, capacity, andcost.

Types of Devices and Access times Capacities Cost
memory media (sec) (bytes) (Gents/bit)

p—— Primary—

Registers .
Semiconductors 10-*-10°° 10° - 10? 10°-1077

Memory

RAMdisk
and

disk cache

p— Secondary

Direct-access Magnetic disks 107? -107' 10* — 10? 10-?-107°

Serial Tape and 10' -10? 10° - 10"! 107° ~107?

mass storage

(~—Offine

Archival Removable 10° — 10? 10* -10'? 1072-107?

and magnetic disks,

backup optical discs,
and tapes

Figure 3.17 Approximate comparisonsof types of storage.

https://hemanthrajhemu.github.io

3.8

A Journey of a Byte 85

A Journey of a Byte—

What happens when a program writes a byte to a file on a disk? We know
what the program does(it makesa call to a write function), and we now

know something about how the byte is stored on a disk. But we haven’t
looked at what happens between the program and the disk. The whole
story of what happens to data between program anddisk is not one we can
tell here, but we can give you an idea of the manydifferent pieces of hard-

ware and software involved and the many jobs that have to be done by
looking at an example of a journey of 1 byte.

Suppose we want to append a byte representing the character P stored

in a character variable ch to a file named in the variable text file

stored somewhere on a disk. From the program’s point ofview,the entire

journeythat the byte will take might be represented by the statement

write(textfile, ch, 1)

but the journey is much longer than this simple statement suggests.

The write statementresults in a call to the computer’s operating
system, which has the task of seeing that the rest of the journey is complet-

ed successfully (Fig. 3.18). Often our program can provide the operating
systemwith information that helps it carry out this task more effectively,
but once the operating system has taken over,the job of overseeingthe rest

of the journeyis largely beyond our program’s control.

Operating system’s

User’s program: file I/O system:

Lt textfile, ch, 1 _

werk | = ener)neGet one bytefrom variable ch

in user program ’5 data area.

Write it to current location

in teatfile.

User’s data area:

ch: P

Figure 3.18 The write statementtells the operating system to send one

characterto disk and gives the operating system the location of the character,

The operating system takes over the job of writing, and then returnscontrol
to the calling program.

https://hemanthrajhemu.github.io

60 Chapter 3 Secondary Storage and System Software

3.8.1 The File Manager

An operating system is not a single program buta collection of programs,
each one designed to manage a different partof the computer’s resources.
Among these programsare onesthat deal with file-related matters and I/O
devices. Wecall this subset of programsthe operating system’sfile manag-
er. The file manager maybe thoughtofas severallayers of procedures (Fig.
3.19), with the upper layers dealing mostly with symbolic, or logical,
aspects of file management, and the lower layers dealing more with the

Logical

1. Theprogram asks theoperating system to‘write the contents‘of the

variable c to the next available position in TEXT. "3

about:Gt,‘such|as.whether,the file is open and available for use, what °
types,of‘acceas are allowed,if any, and what physical file the logic

name;“TEXT corresponds to. :

4. Thefilemanager.searches a file allocation ‘table for the physica
location’of the-séctor that is to contain the byte. 3

5. The‘file amianagér®smaikes sure that the Jast sector in the.file has.been
storedin:a system. V/O buffer in RAM,then deposits theP intoits ;
properposition in the buffer.

 6. The e£ managergives instructions to the vO processor about+whe

the byteis.stored inRAM and whereit needs to be sent onnthe«disk, 7

"7, The;UO 5processor,“findsa time whenthe driveis available to rreceiv
the.data.and puts the data in proper format.for the disk, It may’alse
buffer‘the datato send itout in chunks ofthe- proper size for the

disk,. *

8. The vO processor sends the data to the disk controller.

9, The.controller instructs.the drive to-move the read/write headt th

proper‘irack, waits for the desired. sector to come underthe
read/write head, then sends the byte to the drive to ‘be-deposited

’ by-bit; on the surface of thedisk : oo v
Physical

Figure 3,19 Layers of procedures involved in transmitting a byte from a
program's data area toa file called textfile on disk.

https://hemanthrajhemu.github.io

A Journeyof a Byte 87

physical aspects. Each layercalls the one below it, until, at the lowestlevel,

the byte is written to the disk.
. Thefile manager beginsby finding out whetherthe logical characteris-

tics of the file are consistent with what we are askingit to do withthefile. It

may look up the requestedfile in a table, where it finds out such things as
whetherthefile has been opened, whattypeoffile the byte is being sentto

(a binaryfile, a text file, or some other organization), whothefile’s owner

is, and whetherwrite access is allowed for this particular userofthefile.
The file manager must also determine wherein the filetext file

the P is to be deposited. Since the P is to be appendedto the file, thefile

manager needs to know where the endofthefile is—the physical location

ofthe last sector in the file. This information is obtained from thefile allo-
cation table (FAT) described earlier. From the FAT,the file managerlocates

the drive, cylinder, track, and sector where the byte is to be stored.

3.8.2 The 1/O Buffer

Next, the filé manager determines whetherthe sector that is to contain the
P is already in memoryor needsto be loaded into memory. If the sector

needs to be loaded, the file manager must find an available system I/O

buffer space for it and then readit from the disk. Once it has the sectorin

a buffer in memory, the file manager can deposit the P intoits proper posi-
tion in the buffer (Fig. 3.20). The system I/O buffer allowsthefile manag-

er to read and write data in sector-sized or block-sized units. In other

words,it enables the filemanager to ensure that the organization of data
in memory conformsto the organization it will have on thedisk.

Instead of sending the sector immediately to thedisk,the file manag-

er usually waits to see if it can accumulate more bytes going to the same
sector before transmitting anything. Even though the statement
write (textfile,ch,1) seems to imply that our characteris being

sent immediatelyto the disk, it may in fact be Kept in memoryfor some

time beforeit is sent. (There are manysituations in whichthefile manag-
er cannotwait until a bufferis filled before transmitting it. Forinstance,if

text file were closed, it would haveto flush all output buffers holding
data waiting to be written to text file so the data would not belost.)

3.8.3 TheByte Leaves Memory: The 1/0 Processor

andDisk Controller

So far, all of our byte’s activities have occurred within the computer’s

primary memory and have probably been carried out by the computer’s

https://hemanthrajhemu.github.io

88 Chapter 3 Secondary Storage and System Software -

File I/O system:

User’s program: 1. If necessary, load Jast

write (textfile, ch,1) sector from textfile into

system output buffer
2. Move P into system

output buffer

User’s data area: a

ch: P “@ Y

eel ‘ — output vy

| | Poeket

{ l x

! | @ 4e
Lo|
Lo

Figure 3.20 Thefile manager moves P from the program's data area to'a

system output buffer whereit may join other bytes headedfor the sameplace
on the disk. If necessary, the file manager may haveto load the corresponding
sector from the disk into the system output buffer.

central processing unit. The byte has traveled along data paths that are
designedto be very fast and arerelatively expensive. Nowitis timefor the
byte to travel along a data path thatis likely to be slower and narrower
than the one in primary memory. (A typical computer might have an
internal data-path width of 4 bytes, whereas the width of the path leading

to the disk might be only 2 bytes.)
Becauseof bottlenecks created by these differences in speed anddata-

path widths, our byte and its companions might have to wait for an exter-
nal data path to becomeavailable. This also means that the CPU has extra

time on its handsas it deals out information in small enough chunks and

at slow enough speedsthatthe world outside can handle them.In fact, the
differences between the internal and external speeds for transmitting data
are often so great that the CPU can transmit to several external devices
simultaneously.

The processes of disassembling and assembling groups of bytes for

transmission to and from external devices are so specialized that it is

unreasonableto ask an expensive, general-purpose CPUto spendits valu-

https://hemanthrajhemu.github.io

A Journey of a Byte 89

able time doing I/O when a simpler device could do the job and free the

CPU to do the work that it is most suited for. Such a special-purpose
device is called an I/O processor.

An I/O processor may be anything from a simple chip capable of

taking a byte and passingit along one cue, to a powerful, small computer
capable of executing very sophisticated programs and communicating
with many devices simultaneously. The I/O processortakesits instructions
from the operating system, but once it begins processing I/O,it runs inde-
pendently, relieving the operating system (and the CPU)ofthe task of

communicating with secondary storage devices. This allows I/O processes
and internal computing to overlap,’ |

In a typical computer, the file manager might nowtell the I/O proces-
sor that there is data in the buffer to be transmitted to the disk, how much

data there is, and where it is to go on the disk. This information might

comeinthe form of a little program that the operating system constructs
and the I/O processor executes(Fig. 3.21). |

The job of controlling the operation of the disk is done by a device

called a disk controller. The I/O processor asks the disk controllerif the
disk driveis available for writing. If there is much I/O processing,there is
a good chance that the drive will not be available and that our byte will
have to wait in its buffer until the drive becomesavailable.

What happens next often makes the time spentso far seem insignifi-
cant in comparison: the disk drive is instructed to move its read/write
head to the track and sector on the drive where our byte and its compan-
ions are to be stored.Forthefirst time, a device is being asked to do some-

thing mechanical! The. read/write head must seek to the proper track
(unless it is already there) and then wait until the disk has spun around so

the desired sector is under the head. Once the track andsectorare located,
the I/O processor (or perhaps the controller) can send outbytes, one at a

time,to the drive. Our byte waits until its turn comes;thenit travels alone

to the drive, where it probablyis stored in little 1-byte buffer whileit
waits to be deposited on thedisk.

Finally, as the disk spins under the read/write head,the 8 bits of our

byte are deposited, one at a time, on the surface of the disk (Fig. 3.21).
There the P remains, at the end of its journey, spinningat leisurely 50 to

100 miles per hour.

7, On manysystems the I/O processor can take data directly from memory, without further involve-

ment from the CPU.This process is called direct memery access (DMA). Onother systems, the CPU
mustplace the data in special I/O registers before the I/O processor can have accesstoit.

https://hemanthrajhemu.github.io

90

3.9

Chapter 3 Secondary Storage and System Software-

File
Manager

User’s program: Invoke I/O processor

I/O
processor

program

‘controlier

User's data area:

Cc:

Lo I/O processor

Figure 3.21 The file manager sends the I/O processorinstructions in the
form of an 1/O processor program.The I/O processor gets the data from the

system buffer, preparesit for storing on the disk, then sendsit to the disk
controller, which deposits it on the surface of the disk.

Buffer Management

Anyuser offiles can benefit from some knowledge of what happens to
data traveling between a program’s data area and secondarystorage. One
aspect of this process that is particularly importantis the use of buffers.
Buffering involves working with large chunks of data in memoryso the
numberof accesses to secondary storage can be reduced. We concentrate

on the operation of system I/O buffers; but be awarethat the use of buffers

within programscan also substantially affect performance.

3.9.1 Buffer Bottlenecks

We knowthat a file managerallocates I/O buffers that are big enough to

hold incoming data, but we have said nothing so far about how many

buffers are used. In fact, it is commonforfile managersto allocate several

buffers for performingI/O.

https://hemanthrajhemu.github.io

Buffer Management 91

To understand the need for several system buffers, consider what
happensif a program is performing both input and output on one char-
acter at a time and onlyone I/O bufferis available. When the program asks
for its first character, the I/O buffer is loaded with the sector containing

the character, and the character is transmitted to the program.If the
program then decides to output a -haracter, the I/O bufferis filled with the
sector into which the output character needsto go, destroyingits original

contents. Then when the next input character is needed, the buffer

contents have to be written to disk to make room for the (original) sector
containing the second input character, and so on.

Fortunately, there is a simple and generally effective solution to this
ridiculous state of affairs, and that is to use more than one system buffer.
For this reason, I/O systems almost alwaysuse at least two buffers—one

for input and one for output.
Even if a program transmits data in only one direction, the use of a

single system I/O buffer can slow it down considerably. We know,for
instance, that the operation of reading a sector from a disk is extremely
slow compared with the amountoftimeit takes to move data in memory,

so we can guess that a program that reads manysectors from file might

have to spend muchofits time waiting for the I/O system tofill its buffer

every time a read operation is performedbefore it can begin processing.
Whenthis happens, the program that is running is said to be I/O bound—

the CPU spends muchofits timejust waiting for I/O to be performed. The
solution to this problem is to use more than one buffer andto have the I/O
system filling the next sector or block of data while the CPU is processing
the current one.

3.9.2 Buffering Strategies

Multiple Buffering

Suppose that a program is only writing to a disk and that it is I/O bound.
The CPU wantsto be filling a buffer at the same time that I/O is being

performed.If two buffers are used and I/O-CPUoverlappingis permitted,

the CPU can befilling one buffer while the contents of the other are being

transmittedto disk. When bothtasksarefinished,the roles of the buffers
can be exchanged. This method of swapping theroles of two buffers after

each output(or input) operationis called double buffering. Double buffer-

ing allows the operating system to operate on one buffer while the other
buffer is being loadéd or emptied (Fig. 3.22).

https://hemanthrajhemu.github.io

92 Chapter 3 Secondary Storage and System Software

V/O buffer 1 } To disk

Program data area

banal} VO buffer 2

(a) °

pr} Vo buffer]

Program data area

vO buffer 2 To disk

(b)

Figure 3.22 Double buffering: (a) the contents of system I/O buffer 1 are sent
to disk while I/O buffer 2 is being filled; and (b) the contents of buffer 2 are

sent to disk while |/O buffer 1 is being filled. ©

This technique of swapping system buffers.to allow processing and
I/O to overlap need not be restricted to two buffers. In theory, any number
of buffers can be used, and they can be organized in a variety of ways. The
actual managementof system buffers is usually done by the operating
systern and canrarely be controlled by programmers who do not work at
the systemslevel. It is common, however, for programmersto be able to

contro] the number of system buffers assigned to jobs.

Somefile systems use a buffering schemecalled buffer pooling: when a
system buffer is needed,it is taken from a poolof available buffers and
used. When the system receives a request to read a certain sector orblock,
it looks to see if one ofits buffers already contains that sector or block.If

no buffer containsit, the system finds from its pool of buffers onethatis
not currently in use andloads the sectoror block intoit.

Several different schemesare used to decide which buffer to take from
a buffer pool. One generally effective strategy is to take the buffer thatis
least recently used. When a buffer is accessed,it is put on a least-recently-

used queue soit is allowed toretain its data until all other less-recently-

used buffers have been accessed. The least-recently-used (LRU) strategy

for replacing old data with new data has many applications in computing.

https://hemanthrajhemu.github.io

Buffer Management 93

It is based on the assumption that a block of data that has been used

recently is more likely to be needed in the near future than onethat has
been usedless recently. (We encounter LRU againin later chapters.)

It is difficult to predict the point at which the addition of extra buffers

ceases to contribute to improved performance. As the cost of memory
continuesto decrease, so does the cost of using more andbigger buffers.
On theother hand, the more buffers there are, the more time it takes for
the file system to manage them. When in doubt, consider experimenting
withdifferent numbersofbuffers.

Move Mode and Locate Mode

Sometimes it is not necessary to distinguish between a program’s data area

and system buffers. When data must always be copied from a system buffer

to a program buffer (or vice versa), the amountof time taken to perform

the move can be substantial. This way of handling buffered data is called

move mode, as it involves moving chunksof data from one place in memo-
ry to anotherbefore they can be accessed.

There are two ways that move mode can be avoided.If the file manag-
er can perform I/O directly between secondary storage and the program's
data area, no extra moveis necessary. Alternatively, the file manager could
use system buffers to handle all I/O but provide the program with the loca-

tions, using pointer variables, of the system buffers. Both techniques are
examples of a general approach to buffering called locate mode. When
locate modeis used, a program is able to operate directly on data in the

1/O buffer, eliminating the need to transfer data between an I/O buffer and

a program butfer.

Scatter/Gather I/O

Suppose you are reading in a file with many blocks, and each block

consists of a header followed by data. You would like to put the headersin
one buffer and the data in a different buffer so the data can be processedas
a single entity. The obvious wayto do this is to read the wholeblock into a

single big buffer; then move the different parts to their own buffers.

Sometimes we can avoid this two-step process using a techniquecalled
scatter input. With scatter input, a single read cail identifies not one, but a
collection of buffers into which data from a single blockis to be scattered.

The converse ofscatter input is gather output. With gather output,
several buffers can be gathered and written with a single writecall; this
avoids the need to copy them to a single output buffer. When the cost of

https://hemanthrajhemu.github.io

94

3.10

Chapter 3 Secondary Storage and System Software

copying several buffers into a single output buffer is high, scatter/gather
can have a significant effect on the running time of a program.

It is not always obvious whenfeatureslike scatter/gather, locate mode,

and buffer pooling are available in an operating system. You often have to

go looking for them. Sometimes you can invoke them by communicating
with your operating system, and sometimes you can cause them to be

invoked by organizing your program in ways that are compatible with the

waythe operating system does I/O. Throughout this text we return many
times to the issue of how to enhanceperformance by thinking about how

buffers work and adapting programis andfile structures accordingly:

1/0 in Unix

Wesee in the journeyof a byte that we can view I/O as proceeding through
several layers. Unix provides a good example of how these layers occur in
a real operating system, so we concludethis chapter with a look at Unix.It

is of course beyondthe scope ofthis text to describe the Unix I/O layersin
detail. Rather, our objective hereis just to pick a few features of Unix that
illustrate points madein the text. A secondary objectiveis to familiarize

you with some of the important terminology used in describing Unix
systems. For a comprehensive, detailed look at how Unix works, plus a
thorough discussion of the design decisions involved in creating and

improving Unix,see Leffler et al. (1989).

3.10.1 The Kernel

In Figure 3.19 we see howtheprocessof transmitting data from a program
to an external device can be described as proceeding througha series of

layers. The topmostlayer deals with data in logical, structural terms. We

store in a file a name, a bodyof text, an image, an array of numbers, or

someotherlogical entity. This reflects the view that an application has of
what goesinto file. The layers that follow collectively carry out the task

of turning the logical object.into a collection of bits on a physicaldevice.
Likewise, the topmostI/O layer in Unix deals with data primarily in

logical terms. This layer in Unix consists of processes that imposecertain

logical views on files. Processes are associated with solving some problem,

such as counting the wordsin thefile or searching for sornebody’s address.
Processes includeshell routines like cat and tail, user programs that

https://hemanthrajhemu.github.io

1/O in Unix ° 95

operate on files, and library routines like scanf and freadthat are
called from programsto read strings, numbers, and so on.

Belowthis layer is the Unix kernel, which incorporatesall the rest of

the layers.8 The components of the kernel that do [/O are illustrated in

Figure 3.23. The kernel viewsall I/O as operating on a sequenceof bytes,
sO Once we pass control to the kernelall assumptions aboutthe logical
view of a file are gone. The decision to design Unix this way—to makeall

operations below thetop layer independentofan application’s logical view

of a file—is unusual.It is also one of the mainattractions in choosing Unix
as a focus for this text, for Unix lets us makeall of the decisions about the

logical structure ofa file, imposing no restrictions on howwethink about

the file beyondthe fact that it must be built from a sequenceofbytes.

8. It is beyond the scope of this text to describe the Unix kernel in detail. For a full description of the
Unix kernel, including the I/O system,see Leffler et al. (1989).

PROCESSES User programs Shell commands

|

System call

—aw interface ToS

I/O system

KERNEL a N,
Block YO Character Network

system I/O system I/O syst

(normal (terminals, (sokets)
files) printers, etc.) .

HN
blockdedevicedrdrivers

Vd
disk disk...

LIN SIN
aw character device drivers ~~ network interface drivers

sae J oe Loy Lous uN

... networks...consoles printers...

HARDWARE

Figure 3.23 Kerneli/O structure.

https://hemanthrajhemu.github.io

96 Chapter 3 Secondary Storage and System Software

Let's illustrate the journey of a byte through the kernel,as we did earli-

er in this chapter by tracing the results of an I/O statement. We assumein
this example that we are writing a character to disk. This corresponds to

the left branch of the I/O system in Fig. 3.23.
When your program executes a system call such as

write (fd, &ch, 1);

the kernel is invoked immediately. The routines that let processes
communicate directly with the kernel make up the system call interface. In
this case, the system call instructs the kernel to write a character to file.

The kernel I/O system begins by connectingthefile descriptor (£d)in

your program to somefile or device in the file system. It does this by

proceeding through series of four tables that enable the kernelto findits
way from a process to the places on the disk that will hold thefile they
refer to. The fourtables are

m file descriptor table;

mM an openfile table, with information about openfiles;

m file allocation table, which is part of a structurecalled an index node;

and

m table of index nodes, with one entry for eachfile in use.

Although these tables are managedbythe kernel’s I/O system, they

are, in a sense, owned”bydifferent parts of the system:

m Thefile descriptor table is owned by the process (your program).

m= The open file table and index node table are ownedbythe kernel.

m The index nodeis part of the file system.

The four tables are invoked in turn by the kernel to get the informationit

needs to write to yourfile on disk. Let’s see how this works by lookingat

the functionsof the tables.
The file descriptor table (Fig. 3.24a) is a simple table that associates

each ofthefile descriptors used by a process with an entry in another
table, the open file table. Every process has its own descriptor table, which

includes entries for all files it has opened, including the “files” stdin,
stdout, and stderr.

9, This should not be confused with a library call, such as printf, which invokes the standardlibrary

to perform someadditional operations on the data, such as converting it to an ASCII format, and

then makes a correspondingsystem call,

https://hemanthrajhemu.github.io

1/O-in Unix

(a) descriptor table

97

File File table

descriptor entry

0 (keyboard) oo >

1 (screen) +e >

2 (error) e —»> to openfile

3 (normal file) eo > table

4 (normal file) - >>

5 (normal file) >

(b) openfile table

Number of Offset ptr to inode
R/W processes of next write table

mode usingit access routine one entry

to inode

table

: =f write’) routine
for this type
” of File

Figure 3.24 Descriptor table and open file table.

The open file table (Fig. 3.24b) contains entries for every openfile.
Every time file is opened or created, a new entry is addedto the openfile
table. These entries are called file structures, and they contain important
information about how the correspondingfile is to be used, such as the

read/write mode used when it was opened, the number of processes
currently usingit, and the offset within thefile to be used for the next read
or write. The openfile table also contains an array of pointers to generic

functions that can be used to operate. on the file. These functions will
differ depending on the typeoffile.

It is possible for several different processes to refer to the same open
file table entry so one process could readpartofa file, another process

https://hemanthrajhemu.github.io

98 Chapter 3 Secondary Storage and System Software

could read the nextpart, and so forth, with each process taking over where
the previous one stopped. Onthe other hand,if the samefile is opened by
two separate open statements, two separate entries are madein thetable,

and the two processes operate on thefile quite independently.!®

The information in the open file table is transitory.It tells the kernel
what it can do with a file that has been opened in a certain way and
provides information on how it can operate on thefile. The kernelstil!

needs more information aboutthefile, such as whére thefile is stored on
disk, how big thefile is, and who ownsit. This information is found in an

index node, more commonlyreferred to as an inode(Fig. 3.25).

An inode is a more permanentstructure than an openfile table’s file

structure. A file structure exists only while a file is open for access, but an
inode exists as long as its corresponding file exists. For this reason, a file’s
inode is kept on disk with the file (though not physically adjacent to the
file). When a file is opened, a copyof its inode is usually loaded into
memory where it is added to the aforementioned inode table for rapid
access,

For the purposesofourdiscussion, the most important componentof
the inodeis a list (index) of the disk blocks that make up the file. This list

is the Unix counterpartto thefile allocationtable that we described earli-
er in this chapter.!! Once the kernel’s 1/O system has the inode informa-
tion, it knowsall it needs to know aboutthefile. It then invokes an I/O
processor program that is appropriate for the type of data, the type of
operation, and the type of device that is to be written. In Unix, this

program is called a device driver.

The device driver sees that your data is moved from its buffer to its

proper place on disk. Before we look at the role of device drivers in Unix,
It is instructive to look at how the kernel distinguishes amongthe different

kindsof file data it must deal with.

3.10.2 Linking File Namesto Files

It is instructive to look a little more closely at howa filenameis linked to
the correspondingfile. All referencesto files begin with a directory,forit is

10. Of course, there are risks in letting this happen. If vou are writing to a file with ane process at the

same time that you are independentlyreading from thefile with another, the meaning ofthese

mayhedifficult to determine.
11. This might not be a simple linear array. To accommodate both large and small files, this table

often has a dynamic,tree-like structure.

https://hemanthrajhemu.github.io

1/0 in Unix pone Mea 99

device

permissions

owner’s userid

file size

block count

on

file -
allocation ©"

table

Figure 3.25 An inode.The inodeis the data structure used by Unix to
describe the file. !t includes the device containing the file, permissions, owner

and graup IDs, andfileallocation table, among otherthings.

in directories that file names are kept.In fact, a directory is just a small file
that contains, for each file, a file name together with a pointer to the file’s
inode on disk.}2 This pointer from a directory to the inodeofa file is
called a hard link. It provides a direct reference from thefile nametoall

other information aboutthefile. When file is opened, this hardlinkis
used to bring the inode into memory and to set up the corresponding
entry in the openfile table.

It is possible for several file names to point to the sameinode, so one
file can have several different names.A field in the inodetells how many

hardlinks there are to the inode. This meansthatif a file nameis deleted
and there are otherfile namesfor the same file,the file itself is not deleted;

its inode’s hard-link countis just decremented by one. .
There is another kind of link,called a soft link, or symbolic link. A

symbolic link links a file nameto anotherfile namerather thanto an actu-

12. The actual structure ofa directoryis a little more complex than this, but these are the essential

parts. See Leffler, et al. (1989) for details.

https://hemanthrajhemu.github.io

100 Chapter 3 Secondary Storage and‘System Software

alfile. Instead of being a pointer to an inode,asoft link is a pathnameof

somefile. Since a symbolic link does not point to an actualfile,it can refer
to a directory or even to file in a different file system. Symbolic links are

not supported on all Unix systems. Unix System 4.3BSD supports symbol-
ic links, but System V does not.

3.10.3 Normal Files, Special Files, and Sockets

The “everythingis a file” concept in Unix works only when we recognize

that somefiles are quite a bit different from others. We see in Fig. 3.23 that
the kernel distinguishes amongthree different types of files. Normalfiles

are the files that this text is about. Special files almost always represent a
stream of characters and contro]signals that drive some device, such as a

line printer or a graphics device. The first three file descriptors in the
descriptor table (Fig. 3.24a) are special files. Sockets are abstractions that

serve as endpoints for interprocess communication.
Ata certain conceptuallevel, these three different types of Unixfiles

are very similar, and many of the same routines can be used to access any

of them. For instance, you can establish accessto all three types by open-
ing them, and you can write to them with the write system call.

3.10.4 Block I/O

In Fig. 3.23, we see that the three different typesoffiles access their respec-
tive devices via three different I/O systems: the block I/O system, the char-

acter I/O system, and the network I/O system. Henceforthwe ignore the

second and third categories, since it is normal file I/O that we are most

concerned with in this text.!3

The block I/O system is the Unix counterpart of the file manager in
the journey of a byte. It concernsitself with how to transmit normal file
data, viewed by the user as a sequence of bytes, onto a block-oriented
device like a disk or tape. Given a byte to store on disk, for example,it
arranges to read in the sector containing the byte to be replaced, to replace

the byte, and to write the sector back to the disk.
The Unix view of a block device most closely resembles thatofa disk.

It is a randomly addressable array of fixed blocks. Originally, all blocks

13. This is not entirely true. Sockets, for example, can be used to move normalfiles from place to

place,In fact, high-performance network systems bypass the normalfile system in favor of sock-

ets to squeeze every bit of performance outof the network.

https://hemanthrajhemu.github.io

1/0 inUnix 101

weré 512 bytes, which was the commonsectorsize on mostdisks. No other

organization (such as clusters) was imposed on the placementoffiles on
disk. (In Section 3.1.7 we saw how the design of later Unix systems dealt

with this convention.)

3.10.5 Device Drivers

For each peripheral device thereis a separateset of routines,called a device

driver, that performs the I/O between the I/O buffer and the device. A

device driver is roughly equivalent to the I/O processor program described
in the journeyofa byte.

Since the block I/O system views a peripheral device as an array of
physical blocks, addressed as block 0, block 1; and’so on,a block I/O device

driver’s job is to take a block from a buffer, destined for one of these phys-
ical blocks,-and see thatit gets deposited in the proper physical place on

the device. This saves the block I/O partof the kernel from having to know

anything aboutthe specific device it is writing to, other than its identity

and that it is a block device. A thorough discussion of device drivers for

block, character, and network I/O can be found in Leffler et al. (1989).

3.10.6 The Kernel and File Systems

In Chapter 2 we described the Unix conceptofa file syster. A Unix file
system is a collection offiles, together with secondary information about
the files in the system. A file system includes the directory structure,the
directories, ordinary files, and the inodes that describethefiles.

In our discussions we talk aboutthe file system asif it is part of the

kernel’s I/O system,whichitis, but it is also in a sense separate from it. All

parts of a file system reside on disk, rather than in memory where the

kernel doesits work. These parts are brought into memorybythe kernel as
needed. This separation of the file system from the kernel has many
advantages, One important advantage is that we can tune file system toa
particular device or usage pattern independently of how the kernel views
files. The discussions of BSD Unix block organization in Section 3.1.7 are
file-systern concerns, for example, and need not have anyeffect on how the

kernel works.
Another advantage of keeping the file system and I/O system

distinct is that we can have separate: file systems that are organized

differently, perhaps on different devices, but are accessible by the same

kernel. In Appendix A, for instance, we describe the design of a file

https://hemanthrajhemu.github.io

102 Chapter 3 Secondary Storage and System Software

system on CD-ROMthatis organized quite differently from a typical

disk-basedfile system yet looksjust like any otherfile system to the user
andto the I/O system.

3.10.7 Magnetic Tape and Unix

Importantasit is to computing, magnetic tape is somewhat of an orphan
in the Unix view of I/O. A magnetic tape unit has characteristics similar to

both block I/O devices (block oriented) and character devices (primarily

used for sequential access) but does notfit nicely into either category.
Character devices read and write streams of data, not blocks, and block

devices in general access blocks randomly, not sequentially.
Since block I/O is generally the less inappropriate of the two inappro-

priate paradigmsfor tape, a tape device is normally considered in Unix to
be a block I/O device and henceis accessed through the block I/O interface.
But because the block I/O interface is most often used to write to random-

access devices,disks, it does not require blocks to be written in sequence,as

they must be written to a tape. This problem is solved by allowing only one
write request at a time per tape drive. When high-performanceI/O is

required, the character device interface can be used in a raw modeto

stream data to tapes, bypassing thestage that requiresthe datato be collect-

ed into relatively small blocks before or after transmission.

SUMMARY

In this chapter we look at the software environment in whichfile process-

ing programs mustoperate and at someof the hardware devices on which
files are commonly stored, hoping to understand howthey influence the
ways we design and processfiles. We begin by looking at the two most

common storage media: magnetic disks and tapes.

A disk drive consists of a set of read/write heads that are interspersed
among one or moreplatters. Each platter contributes one or two surfaces,
each surface containsa set of concentric tracks, and eachtrack is divided

into sectors or blocks. Theset of tracks that can be read without moving

the read/write headsis called acylinder.
There are two basic ways to address data on disks: by sector and by

block. Used in this context, the term block refers to a group of records that

are stored togetheron a disk andtreated as a unit for I/O purposes. When

https://hemanthrajhemu.github.io

Summary 103

blocks are used,the user is better able to make the physical organization of
data correspondto its logical organization, and hence can sometimes
improve performance. Block-organized drives also sometimes makeit

possible for the disk drive to search amongblocks on a track for a record
with a certain key without first having to transmit the unwanted blocks
into memory.

Three possible disadvantages of block-organized devices are the
danger of interna] track fragmentation, the burden of dealing with the
extra complexity that the user hasto bear, andthe loss of opportunitiesto
do someof the kinds of synchronization (such as sector interleaving) that
sector-addressing devices provide.

Thecost of a disk access can be measuredin termsofthe timeit takes

for seeking, rotational delay, and transfer time. If sector interleaving is

uséd, it is possible to access logically adjacent sectors by separating them
physically by one or more sectors. Although it takes much less time to
access.a single record directly than sequentially, the extra seek time

required for doing direct accesses makes it much slower than sequential

access when series ofrecordsis to be accessed.

Despiteincreasing disk performance, network speeds have improved

to the point that disk access is often a significant bottleneck in an overall
1/O system. A numberof techniquesare available to address this problem,

includingstriping, the use of RAM disks, and disk caching.
Research done in connection with BSD Unix showsthatblock size can

have a major effect on performance. By increasing the default block size
from 512 bytes to 4096 bytes, throughput was improved enormously, espe-

cially for large files, because eight times as much data could be transferred
in a single access. A negative consequenceofthis reorganization wasthat

wasted storage increased from 6.9 percent for 512-byte blocks to 45.6

percent for 4096-byte blocks. It turned out that this problem of wasted

space could be dealt with by treating the 4096-byte blocks as clusters of
512-byte blocks, which could be allocated to differentfiles.

Though not as important as disks, magnetic tape has an important

nichein file processing, Tapes are inexpensive, reasonably fast for sequen-
tial processing, compact, robust, and easyto store and transport. Datais
usually organized on tapes in 1-bit-wide parallel tracks, with a bit-wide

cross section of tracks interpreted as 1 or more bytes. When estimating
processing speed andspaceutilization, it is important to recognizethe role

played by the interblock gap. Effective recording density and effective

transmissionrate are useful measurements of the performance one can
expect to achievefor a given physicalfile organization.

https://hemanthrajhemu.github.io

104 Chapter 3 Secondary Storage and System Software

In comparing disk and tape as secondarystorage media, we see that
disks are replacing tape in more and morecases. This is largely because

memory is becomingless expensive relative to secondary storage, which

meansthat oneoftheearlier advantages oftape overdisk, the ability to do
sequential access without seeking, has diminished significantly.

CD-ROMis an electronic publishing medium thatallows us to repli-
cate and distribute large amounts of information very inexpensively. The
primary disadvantage of CD-ROM is that seek performanceIs relatively

slow. This is not a problem that can be solved simply by building better
drives; the limits in seekperformance growdirectly from the fact that CD-
ROM is built on top of the CD audio standard. Adherenceto this standard,
even givenits limitations, is the basis for CD-ROM’s successas a publish-
ing medium. Consequently, CD-ROMapplication developers must lookto
carefulfile structure design to build fast, responsiveretrieval software.

This chapter follows a journeyof a byte asit is sent from memoryto
disk. The journey involves the participation of many different programs

and devices, including

mM auser’s program, which makestheinitial call to the operating system;

mM the operating system’s file manager, which maintains tables of infor-
mation that it uses to translate between the program’s logical view of
the file and the physical file where the byteis to be stored;

mM an /1/O processor and its software, which transmit the byte, synchro-

nizing the transmission of the byte between an I/Obuffer in memory
and the disk;

mM the disk controller and its software, which instruct the drive about
how tofind the propertrack andsector and then send the byte; and

mM the disk drive, which accepts the byte and deposits it on the disk
surface.

Next, we take a closer lookat buffering, focusing mainly on techniques

for managing buffers to improve performance. Sometechniquesinclude

double buffering, buffer pooling, locate-mode buffering, and scatter/gath-
er buffering.

We conclude with a second look.at I/O layers,this tume concentrating

on Unix. We see that every I/O system call begins with acall to the Unix
kernel, which knows nothing about the logical structure ofa file, treating

all data essentially the same—as a sequence ofbytesto be transmitted to
some external device. In doing its work the I/O system in the kernel
invokesfour tables:a file descriptor table, an open file table, an inodetable,

https://hemanthrajhemu.github.io

Key Terms 705

and a file access table in the file’s inode. Once the kernel has determined
which device to use and howto accessit, it calls on a device driver to carry
out the accessing.

Althoughit treats every file as a sequence of bytes, the kernel I/O

system deals differently with three different types of I/O: block I/O, char-
acter I/O, and network I/O. In this text we concentrate on block I/O. We

look briefly at the special role of the file system within the kernel, describ-
ing how it uses links to connectfile names in directories to their corre-
sponding inodes. Finally, we remark on the reasons that magnetic tape
doesnotfit well into the Unix paradigm for I/O.

KEY TERMS

Block. Unit of data organization corresponding to the amountof data

transferred in a single access. Block often refers to a collection of
records, but it may be a collection of sectors (see cluster) whose size

has no correspondence to the organization of the data. A block is

. sometimes called a physical record; a sector is sometimes called a
block.

Block device. In Unix, a device such as a disk drive that is organized in

blocks and accessed accordingly.

Block I/O. I/O between a computer and a block device.

Block organization. Disk drive organization thatallows the userto define

the size and organization of blocks and then access a block by givingits

blockaddress or the key of oneofits records. (See sector organization.)

Blocking factor. The numberof records stored in one block.

bpi. Bits per inch per track. On a disk, data is recordedserially on tracks.
On a tape, data isrecorded in parallel on several tracks, so a 6250-bpi
nine-track tape contains 6250 bytes per inch, whenall nine tracksare

taken into account (one track used forparity).

Cartridge tape. Tape systems in which the mediaare stored in a contain-

er, rather than on independenttapereels.

Character device. In Unix, a device such as a keyboardor printer (or tape

drive when stream I/O is used) that sends or receives data in the form

of a stream of characters.-

Character I/O. I/O between a computer and a characterdevice.

https://hemanthrajhemu.github.io

106 Chapter 3 Secondary Storage and System Software

Cluster. Minimum unit of space allocation on a sectored disk, consisting
of one or more contiguous sectors. The use of large clusters can
improve sequential access times by guaranteeing the ability to read
longer spans of data without seeking. Small clusters tend to decrease

internal fragmentation.

Controller. Device that directly controls the operation of one or more

secondary storage devices, suchas disk drives and magnetic tape units.

Count subblock. On block-organizeddrives, a smal! block that precedes

each data block and contains information about the data block, such
as its byte count andits address.

Cylinder. The set of tracks on a disk that are directly above and below each
other. All of the tracks in a given cylinder can be accessed without
having to move the access arm—they can be accessed without the

expenseofseek time.

Descriptor table. In Unix, a table associated with a single process that

links all of the file descriptors generated by that process to corre-

sponding entries in an openfile table.

Device driver. In Unix, an I/O processor program invoked by the kernel
that performs I/O for a particular device.

Direct access storage device (DASD). Disk or other secondary storage
device that permits access to a specific sector or block of data without
first requiring the reading of the blocks that precedeit.

Direct memory access (DMA). Transfer of data directly between memory

and peripheral devices, without significant involvement by the CPU.

Disk cache. A segment of memory configured to contain pages of data

from a disk. Disk caches can lead to substantia! improvements in
access time when access requests exhibit a high degree of locality.

Disk drive. An assemblage of magnetic disks mounted on the sameverti-
cal shaft. A disk drive is treated as a single unit consisting of a number

of cylinders equivalent to the numberoftracks per surface.

Disk striping. Storing information on multiple disk drives bysplitting up

the information and accessing all of the drives in parallel.

Effective recording density. Recording density after taking into account
the space used by interblock gaps, nondata subblocks, and other
space-consuming items that accompanydata.

Effective transmission rate. Transmission rate after taking into account
the time used to locate and transmit the block of data in which a

desired record occurs. -

https://hemanthrajhemu.github.io

Key Terms: 107

Extent. One or more adjacentclusters allocated as part (orall) ofa file.

The numberof extentsin file reflects how dispersed the file is over
the disk. The more disperseda file, the more seeking must be donein

moving from onepart ofthefile to another.

File allocation table (FAT). A table that contains mappings to the physical
locationsofall the clusters in all files on disk storage.

File manager. The part of an operating system that is responsible for

managing files, including a collection of programs whoseresponsibil-
ities range from keeping track of files to invoking I/O processes that
transmit information between primary and secondarystorage.

File structure. In connection with the openfile table in a Unix kernel, the
term file structure refers to a structure that holds information the

kernel needs about an openfile. File structure information includes

such things as thefile’s read/write mode, the number of processes

currently using it, and the offset within thefile to be used for the next

read or write.

File system. In Unix, a hierarchical collection offiles, usually kept on a

single secondary device, such as a hard disk or CD-ROM.

Fixed disk. A disk drive with platters that may not be removed.

Formatting. The process of preparing a disk for data storage, involving
such things as laying out sectors, setting up the disk’s file allocation
table, and checking for damageto the recording medium.

Fragmentation. Space that goes unused withina cluster, block, track, or

other unit of physical storage. For instance, track fragmentation

occurs when space on a track goes unused because there is not enough
space left to accommodate a complete block.

Frame. A 1-bit-wideslice of tape, usually representing a single byte.

Hardlink. In Unix, an entry ina "rectory that connects file nameto the

inode of the correspondingfile. There can be several hard links to a

single file; hence afile can have several names.A file is not deleted

until all hardlinks to thefile are deleted.

Index node. In Unix, a data structure associated witha file that describes

the file. An index node includes such informationasa file’s type,its
owner and group IDs, anda list of the disk blocks that comprise the
file. A more common namefor index nodeis inode.

Inode. See index node.

Interblock gap. An interval of blank space that separates sectors, blocks,
or subblocks on tape or disk. In the case of tape, the gap provides

https://hemanthrajhemu.github.io

108 Chapter 3 Secondary Storage and System Software ~

sufficient space for the tape to accelerate or decelerate whenstarting

or stopping. On both tapes and disks the gaps enable the read/write
heads to tell accurately when onesector (or block or subblock) ends

and anotherbegins.

Interleaving factor. Since it is often not possible to read physically adja-

cent sectors of a disk, logically adjacent sectors are sometimes

arranged so they are not physically. adjacent. Thisis called interleav-
ing. Theinterleaving factor refers to the numberofphysicalsectors the
next logically adjacent sectoris located from the currentsector being
read or written.

I/O processor. A device that carries out [/O tasks, allowing the CPU to
work on non-I/O tasks.

Kernel. The central part of the Unix operating system.

Key subblock. On block-addressable drives, a block that containsthe key
of the last record in the data block thatfollowsit, allowing the drive to
search amongthe blocks on track for a block containing a certain
key, without havingto load the blocks into primary memory. ,

Massstorage system. General term applied to storage units with large
capacity, Also applied to very high-capacity secondary storage systems

that are capableof transmitting data between a disk and anyofsever-
al thousand tape cartridges within a few seconds.

Nominalrecording density. Recording density on disk track or magnet-
ic tape without taking into account the effects of gaps or nondata

subblocks.

Nominal transmission rate. Transmission rate of a disk or tape unit with-

out taking into accountthe effects of such extra operations as seek
timefor disks and interblock gap traversal timefor tapes.

Openfile table. In Unix, a table owned by the kernel with an entry, called.

a file structure, for each openfile. See file structure,

Parity. An error-checking technique in which an extra parity bit accompa-

mies each byte andis set in such a waythat the total number of1 bits
is even (even parity) or odd (oddparity).

Platter. One disk in the stack of diskson a disk drive.

Process, An executing program. In Unix, several instances of the same
program can be executing at the sametime, as separate processes. The

kernel keeps a separatefile descriptor table for each process.

https://hemanthrajhemu.github.io

Key Terms 109

RAID disk system. An array of disk drives that provide access to the

disks in parallel. Storage offiles on RAID systemsoften involves disk
striping.

RAMdisk. Block of memoryconfigured to simulate a disk.

Rotational delay. The timeit takes for the disk to rotate so the desired

sector is under the read/write head.

Scatter/gatherI/O. Buffering techniques that involve, on input, scattering
incoming data into more than one buffer and, on output; gathering
data from several buffers to be output as a single chunk ofdata.

Sector. The fixed-sized data blocks that together make up the tracks on
certain disk drives. Sectors are the smallest addressable unit on a disk

whose tracks are made upofsectors.

Sector organization. Disk drive organization that uses sectors.

Seek time. Thetime required to move the access arm to the correct cylin-
der on disk drive.

Sequential access device. A device, such as a magnetic tape unit or card
reader, in which the medium (for example, tape) must be. accessed

from the beginning. Sometimescalled a serial device.

Socket. In Unix, a socket is an abstraction that serves as an endpoint of
communication within some domain. For example, a socket can be

used to provide direct communication between two computers.
Although in some ways the kernel treats sockets like files, we do not
deal with sockets in this text.

Soft link. See symbolic link.

Specialfile. In Unix, the term special file refers to a stream of characters
and control signals that drive some device, such as line printer ora

graphics device.

Streaming tape drive. A tape drive whose primary purpose is to dump
large amounts of data from disk to tape or from tape to disk.

Subblock. When blockingis used, there are often separate groupings of
information concerned with each individual block. For example, a

count subblock, a key subblock, and a data subblockmight all be
present.

Symbolic link. In Unix, an entry |in a directory that gives the pathname of

a file. Since a symboliclink is an indirect pointerto a file, it is not as

closely associated with thefile as a hard link. Symbolic links can point
to directories or evento files in other file systems.

https://hemanthrajhemu.github.io

110 Chapter 3 Secondary Storage and System Software

Track. The set of bytes on a single surface of a disk that can be accessed
without seeking (without moving the access arm). The surface of a
disk can be thoughtof as a series of concentric circles with eachcircle
corresponding to a particular position of the access arm and

read/write heads. Each of thesecirclesis a track.

Transfer time. Once the data we want is under the read/write head, we

have to wait for it to pass under the head as weread it. The amount of

time required for this motion and readingis the transfer time.

FURTHER READINGS

Many textbooks contain more detailed information on the material

covered in this chapter. In the area of operating systems and file manage-
ment systems, we have found the operating system texts by Deitel (1989),
Silberschatz and Galvin (1998), and Tannenbaum,et al. (1997) useful.

Hanson (1982) has a great deal of material on blocking and buffering,

secondary storage devices, and performance.

Ritchie and Thompson (1974), Kernighan and Ritchie (1978), and

McKusicket al. (1984) provide information on howfile I/O is handled in

the Unix operating system. The latter provides a good case study of ways

in which a file system can be altered to provide substantially faster
throughputfor certain applications. A comprehensive coverage of Unix
Y/Ofrom the design perspective can be found in Leffler et al. (1989).

Information about I/O devices and file system services for Windows 95

and Windows NTis covered in Hart (1997).

Information on specific systems and devices can often be found in
manuals and documentation published by manufacturers and in websites.
Information on specific disks, tapes, and CDs that is presented in this

' chapter comes from websites for Seagate, Western Digital, StorageTek, and

Sony, amongothers.

EXERCISES

1. Determineas well as you can what the journey of a byte would belike

on your system. You mayhave.to consult technical reference manuals

that describe your computer’s file management system, operating

system, and peripheral devices. You may also want to talk to local

gurus who have experience using your system.

https://hemanthrajhemu.github.io

Exercises 111.

2. Suppose you are writing a list of namesto a text file, one name per

write statement. Whyis it not a good ideato closethefile after every
write and then reopenit before the next write?

3. Find out whatutility routines for monitoring I/O performance and

disk utilization are available on your computer system.If you have a
large computing system, there are different routines available for

different kinds of users, depending on what privileges and responsi-

bilities they have.

4. When youcreate or open file in C++, you must provide certain
information to your computer's file managerso it can handle your file
properly. Comparedto certain languages, such as Cobol, the amount

of information you must provide in C++ is very small. Find a text or
manual on PL/I or Cobol and look up the ENVIRONMENTfile

description attribute, which can be usedtotell the file managera great
deal about how you expect a file to be organized and used. Compare

PL/I or Cobo! with C++ in termsof the typesoffile specifications
availableto the programmer.

5. Muchis said in section 3.1 about how disk space is organized physi-
cally to store files. Assume that no such complex organizationis used

and that everyfile must occupy a single contiguouspiece of a disk,
somewhatthe waya file is stored on tape. How doesthissimplify disk
storage? What problemsdoesit create?

6. A disk drive uses 512-byte sectors. If a program requests that a 128-byte

record be written to disk, the file manager may haveto reada sector
from the disk before it can write the record. Why? Whatcould you do
to decrease the numberoftimes such an extra readis likely to occur?

7. Use the Internet to determine the detailed characteristics of current
disk drives, Reproduce the information in Table 3.1 for three new disk
drives.

8. In early Unix systems, inodes were kept together on one partofa disk,
while the correspondingdata was scattered elsewhere on the disk.
Later editions divided disk drives into groups of adjacent cylinders

called cylinder groups,in which eachcylinder group contains inodes
and their corresponding data. How does this new organization

improve performance?

9. In early Unix systems, the minimum block size was 512 bytes, with a

cluster size of one. The block size was increased to 1024 bytes in

4.0BSD, more thandoublingits throughput. Explain how this could
occur.

https://hemanthrajhemu.github.io

112 Chapter 3 Secondary Storage and System Software

10. Draw pictures that illustrate the role of fragmentation in determining

11.

the numbersin Table 3.2, section 3.1.7.

The IBM 3350 disk drive uses block addressing. The two subblock

organizations described in thetext are available:

Count-data, where the extra space used by count subblock and
interblock gapsis equivalent to 185 bytes; and

Count-key-data, where the extra space used by the count and key
subblocks and accompanying gaps is equivalent to 267 bytes, plus

the keysize.

An IBM 3350 has 19 069 usable bytes available per track, 30 tracks per
cylinder, and 555 cylinders per drive. Suppose you have file with
350 000 80-byte records that you want to store on a 3350 drive.

Answerthe following questions. Unless otherwise directed, assume
that the blocking factor is 10 and that the count-data subblock orga-
nization is used.

a. How manyblocks can be stored on one track? How manyrecords?

b. How manyblocks can be stored on onetrack if the count-key-data
subblock organization is used and keysize is 13 bytes?

c. Make a graph that showsthe effect of block size on storageutiliza-

tion, assuming count-data subblocks. Use the graph to help predict

the best and worst ~ossible blocking factor in terms of storage

utilization. |
d. Assuming thataccessto thefile is always sequential, use the graph

from 1 1c to predict the best and worst blockingfactor.Justify your
answerin terms of efficiency of storage utilization and processing
time.

e. How manycylinders are required to hold the file (blocking factor

10 and count-data format)? How much spacewill go unused due
to internal track fragmentation?

f.. If the file were stored on contiguouscylinders andif there were no
interference from other processes using the disk drive, the average

seek time for a random access of the file would be about 12 msec.
Use this rate to compute the average time needed to access one
record randomly.

g. Explain howretrieval time for random accesses of recordsis affect-
ed by increasing block size. Discuss trade-offs between storageeffi-

ciency and retrieval when different block sizes are used. Make a

table with different block sizesto illustrate your explanations.

h. Supposethefile is to be sorted, and a shell sort is to be usedto sort
the file. Since thefile is too large to read into memory,it will be

https://hemanthrajhemu.github.io

Exercises 113

sorted in place, on the disk.It is estimated (Knuth, 1973b,p. 380)

that this requires about 15 N!-29 moves of records, where N repre-
sents the total numberofrecordsin thefile. Each move requires a

random access. [f all of the precedingis true, how longdoesit take
to sort the file? (As youwill see, this is not a very good solution. We

provide much better ones in Chapter 7, which deals with cose-
quential processing.)

12. A sectored disk drive differs from one with a block organization in

13.

that thereis less of a correspondence between the logical and physical

organization of data records or blocks.
For example, consider the Seagate Cheetah 9 disk drive, described

in Table 3.1. From the drive’s (and drive controller’s) point of view,a

file is just a vector of bytes divided into 512-byte sectors. Since the
drive knows nothing about where one record ends and another

begins, a record can span two or moresectors,tracks, or cylinders.
One common waythat records are formattedis to place a two-byte

field at the beginning of each block, giving the numberof bytes of
data, followed by the dataitself. There is no extra gap and no other
overhead. Assumingthat this organization is used, and that you want

to store a file with 350 000 80-byte records, answer the following

questions:

a. How many records can be stored on one track if one record is

stored per block?

b. How manycylinders are required to hold thefile?
c. How might you block records so each physical record access results

in 10 actual records being accessed? What are the benefits of doing

this? .

Suppose you havea collection of 500 large imagesstoredin files, one

image perfile, and you wish to “animate” these images by displaying
them in sequence ona workstation at a rateofat least 15 images per

second over a high-speed network. Your secondarystorage consists of
a disk farm with 30 disk drives, and your disk manager permits strip-
ing over as many as 30 drives, if you requestit.Your drives are guar-

anteed to perform I/O at a steady rate of 2 megabytes per second.
Each image is 3 megabytes in size. Network transmission. speeds are
not a problem.

a. Describe in broad terms the steps involved in doing such an

animation in real time from disk.

b. Describe the performanceissues that you have to consider in
implementing the animation. Use numbers.

https://hemanthrajhemu.github.io

114 Chapter 3 Secondary Storage and System Software

14.

15.

16.

Cc, Howmight you configure your I/O system to achieve the desired

performance?
Consider the 1 000 000-record mailing-list file discussed in the text.
Thefile is to be backed up on 2400-foot reels of 6250-bpi tape with

0,3-inch interblock gaps. Tape speed is 200 inches per second.

a.

b.

h.

Showthat only one tape would be required to back up thefile if a
blocking factor of 50 is used.
If a blockingfactor of 50 is used, how manyextra records could be

accommodated on a 2400-foot tape?

Whatis the effective recording density when a blocking factorof
50 is used?

. How large doesthe blocking factor have to’be to achieve the maxi-

mum effective recording density? What negative results can result
from increasing the blocking factor? (Note: An I/O buffer large

enough to hold a block mustbe allocated.)

. What would be the minimum blockingfactor required to fit the

‘file’ onto the tape?
If a blocking factor of 50 is used, how long wouldit take to read

one block, including the gap? What would the effective transmis-

sion rate be? How long wouldit take to read the entirefile?

. Howlongwould it take to perform a binary search for one record
in thefile, assumingthatit is not possible to read backwards on the
tape? (Assume that it takes 60 seconds to rewind the tape.)

Compare this with the expected average time it would take for a
sequential search for one record. |
We implicitly assumein ourdiscussions of tape performance that
the tape driveis always reading or writing at full speed, so no time

is lost by starting and stopping. This is not necessarily the case. For

example, some drives automatically stop after writing each block.

Suppose that the extra time it takes to start.before reading a

block and to stop after reading the block totals 1 msec and that the
_drive must start before and stop after reading each block. How
muchwill the effective transmission rate be decreased duetostart-

ing and stoppingif the blocking factoris 1? Whatif it is 50?

Whyare there interblock gaps onlinear tapes? In other words, why do
we not just jam all records into one block?

The use oflarge blocks canlead to severe internal fragmentation of

tracks on disks. Does this occur when tapes are used? Explain.

https://hemanthrajhemu.github.io

Exercises 115

17. Each MS-DOSfile system (or drive) uses a FAT with 64K entries. For

18.

each disk in Table 3.1, give the minimum sectorsize if the disk is

configured as a single MS-DOSdrive. Each file uses a minimum of

one sector.

Use the Internet to determinethe characteristics of the second gener-
ation of Digital Versatile Disc (DVD). Whatare the plans to put four
independent surfaces on a single disc? What are the density, sector
size, and transfer rate for these new disc systems?

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

CHAPTER

 Fundamental

File Structure
Concepts

CHAPTER OBJECTIVES

“+ Introduce file structure concepts dealing with

~ Stream files, .

— Reading and writing fields and records,

— Field and record: boundaries,

~ Fixed-length and variable-length fields and records, and

~ Packing and unpacking records and buffers..

“* Present an object-oriented approachtofile structures

~ Methodsof encapsulating object value and behaviorin classes,

- Classes for buffer manipulation,

~ Class hierarchy for buffer and file objects and operations,

~ Inheritance and virtual functions, and

- Template classes,

117https://hemanthrajhemu.github.io

118

4.1

Chapter 4 Fundamental File Structure Concepts

CHAPTER OUTLINE

4.1 Field and Record Organization

4.1.1 A Stream File

4.1,2 Field Structures
4,1.3 Reading a Stream ofFields

4.1.4 Record Structures
4.1.5 A Record Structure That Uses a Length Indicator

4.1.6 Mixing Numbers and Characters: Use of a File Dump
4.2 Using Classes to Manipulate Buffers

4.2.1 Buffer Class for Delimited Text Fields

4,2.2 Extending Class Person with Buffer Operations
4.2.3 Buffer Classes for Length-Based and Fixed-Length Fields

4.3 Using Inheritance for Record Buffer Classes

4.3.1 Inheritance in the C++ Stream Classes

4.3.2 A Class Hierarchy for Record Buffer Objects
4.4 Managing Fixed-Length, Fixed-Field Buffers

4.5 An Object-Oriented Class for Record Files

Field and Record Organization

When we build file structures, we are making it possible to make data

persistent. That is,one program can create data in memory andstore it in
a file andanother program can readthefile and re-create the datain its

memory. The basic unit of data is the field, which contains a single data
value. Fields are organized into aggregates; either as many copies ofa
“single field (an array). or as a list of different fields (a record). Program-

ming language type definitionsallowsus to definethe structure of records.

When arecord 1s stored in memory, werefer to it as an object andrefer to
its fields as members. When that objectis stored ina file, we call it simply a
record,

In this chapter weinvestigate the many ways that objects can be repre-

sented as records in files. We begin by considering howto representfields
and continue with representations of aggregates. The simplest representa-

tion is with a file organized as a stream of bytes.

https://hemanthrajhemu.github.io

Field and Record Organization 119

4.1.1 A Stream File

Suppose the objects we wish to store contain name and address informa-

tion abouta collection of people. We will use objects of class Person,
from Section 1.5, “Using Objects in C++,” to store information about
individuals. Figure 4.1 (and file writestr.cpp) gives a C++ function

(operator <<) to write the fields of a Person to file as a stream of

bytes.
File writstrm. cpp in Appendix D includesthis output function,

together with a function to accept names and addresses from the keyboard

and a main program. You should compile and runthis program. We useit

as the basis for a numberof experiments, and you can get a better feel for
thedifferences between the file structures we are discussing if you perform

the experiments yourself,
The following names and addressesare used as inputto the program:

Mary Ames Alan Mason

123 Maple 90 Eastgate

Stillwater, OK 74075 Ada, OK 74820

Whenwelist the output file on our terminal screen, here is what wesee:

AmesMary123 MapleStillwaterOK74075MasonAlan90 EastgateAdaOK74820

The program writes the information outto thefile precisely as specified,
as a stream of bytes containing no added information. But in meeting our
specifications, the program creates a kind of reverse Humpty-Dumpty

problem. Once we put all that information together as a single byte
stream, there is no wayto get it apart again.

ostream & operator << (ostream & outputFile, Person & p)

{ // insert (write) fields into stream

outputFile << p.LastName

<<

<<

<<

<<

<<

.FirstName

-Address

.City

.State

ZipCode;d
v
d

Ud
SD

return outputFile;

}

Figure 4.1 Function to write (<<) a’Person as streamof bytes.

https://hemanthrajhemu.github.io

120 Chapter 4 FundamentalFile Structure Concepts

Wehavelost the integrity ofthe fundamentalorganizational units of
our input data; these fundamental units are not the individual charac-

ters but meaningful aggregates of characters, such as “Ames” or “123

Maple.” When weare working with files, we call these fundamentalag-

gregatesfields. A field is the smallest logically meaningful unit of informa-
tion in a file.}

A field is a logical notion;it is a conceptual tool. A field does not neces-
sarily exist in any physical sense, yet it is important to the file’s structure.
When we write out our name and address information as a stream of
undifferentiated bytes, welose track ofthe fields that make the informa-
tion meaningful. We need to organizethe file in some waythatlets us keep

‘ the information dividedinto fields.

4.1.2 Field Structures

There are many ways of addingstructureto files to maintain the identity
offields. Four of the most common methods follow:

m Force the fields into a predictable length.

mM Begin each field with a length indicator.

m= Place a delimiter at the end of eachfield to separate it from the next,
field.

m Use a “keyword = value” expression to identify each field andits
contents.

Method1: Fix the Length ofFields

The fields in our sample file vary in length. If we force the fieldsinto
predictable lengths, we can pull them back outofthe file simply by count-

ing our way to the end ofthe field. We can define a Struct in Cora

class in C++ to hold these fixed-length fields, as shown in Fig. 4.2. As
you can see,the only difference between the C and C++ versionsis the use

of the keyword struct or class and the designationofthe fields of

class Personas public in C++.

1. Readers should not confuse the terms field and record with the meanings given to them by some

programming languages, including Ada. In Ada, a record is an aggregate data structure that can

contain members ofdifferent types, where each memberis referred to as a field. As we shall see,

thereis often a direct correspondence between these definitions of the terms andthe fields and
records that are used in files. However, the termsfield and record as we use them have much more

general meanings than they do in Ada.

https://hemanthrajhemu.github.io

Field and Record Organization 121

In C; In C++:

struct Person{ class Person { public:

char last [11]; char last [11];

char first [(11]; char first [11];

char address [16]; char address [16];

char city [16]; char city [16];

char state [3]; char state [3];

char zip [10]; char zip [10];

i };

Figure 4.2 Definition of record to hold person information.

In this example, eachfield is a character array that can hold a string
value of some maximum size. Thesize of the array is one larger thanthe
longest string it can hold. This is because strings in C and C++ are.
stored with a terminating 0 byte. The string “Mary” requires five charac-

ters to store. The functions in string.h assume that each stringis
stored this way. A fixed-size field in a file does not need to addthis extra
character. Hence, an object of class Person can be stored in 61 bytes:
10+10+15+154+2+9. .

Usingthis kind of fixed-field length structurechanges our outputsoit

lookslike that shownin Fig. 4.3(a). Simple arithmeticis sufficienttolet us

recoverthe data from theoriginal fields.
One obvious disadvantage of this approach is that adding all the.

padding required to bring thefields up to a fixed length makesthe file
muchlarger. Rather than using 4 bytes to store the last name “Ames,” we
use 10. We can also encounter problemswith data thatis too longto fit
into the allocated amountof space. We could solve this second problem

by fixing all the fields at lengths that are large enoughto coverall cases,
but this would make thefirst problem of wasted spacein the file even

worse.
Becauseofthese difficulties, the fixed-field approach to structuring

data is often inappropriate for data that inherently contains a large

amount of variability in the length of fields, such as names and address-
es. But there are kinds of data for which fixed-length fields are highly
appropriate. If every field is already fixed in length orif there is verylittle

variation in field lengths, using a file structure consisting of a continuous

stream of bytes organized into fixed-length fields is often a very good

solution.

https://hemanthrajhemu.github.io

122 Chapter 4 Fundamental File Structure Concepts

Ames Mary 123 Maple Stillwater OK74075

Mason Alan 90 Eastgate Ada OK74820

(a)

O4AmesO4Mary09123 MaplelOStillwater020K0574075

O5Mason04Alanl1190 EastgateQ3Ada020K0574820

(b)

Ames |Mary!123 Maple|Stillwater|OK|74075|

Mason/Alan|90 Eastgate|AdalOK|74820|

(c)

last=Ames|first=Mary|address=123 Maplelcity=Stillwater|

state=OK]zip=74075|

(d)

Figure4.3 Four methodsfor organizing fields within records. (a) Eachfield is

of fixed length. (b} Each field begins with a length indicator. (c) Each field ends
with a delimiter |. (d) Each field is identified by a key word.

Method2: Begin Each Field with a Length Indicator

Another way to makeit possible to count to the end ofa field is to store the
field length just aheadofthefield, as illustrated in Fig. 4.3(b). If thefields
are not too long (less than 256 bytes), it is possible to store the length in a

single byte at the start of each field. We refer to thesefields as length-based.

‘Method3:Separate the Fields with Delimiters

We canalso preserve theidentityoffields by separating them with delim-
iters. All we need to do is choose some special charactér or sequence of
characters that will not appear within a field and then insert that delimiter
into the file afterwriting each field.

The choice of a delimiter character can be very important as it must be

a character that does not get in the way of processing. In many instances

white-space characters (blank, new line, tab) make excellent delimiters

because they provide a clean separation between fields when welist them

https://hemanthrajhemu.github.io

Field and Record Organization 123

on the console. Also, most programming languages includeI/O statements
which,by default, assumethat fields are separated by white space.

Unfortunately, white space would be a poor choicefor ourfile since

blanks often occur as legitimate characters within an address field.

Therefore, instead of white space we uSe the vertical bar character as our

delimiter, so ourfile appears as in Fig. 4.3(c). Readers should modify the

original stream-of-bytes program, writstrm.cpp,so that it places a

delimiter after each field. We use this delimited field format in the next few

sample programs.

Method4: Use a “Keyword = Value”Expression to Identify Fields

This option, illustrated in Fig. 4.3(d), has an advantage that the others do
not:it is the first structure in which a field provides information aboutitself.

Such self-describing structures can be very useful tools for organizingfiles in
manyapplications.It is easy to tell which fields are containedin afile, even

if we don’t know aheadof time whichfieldsthefile is supposed to contain.
It is also a good format for dealing with missingfields.If a field is missing,

this format makesit obvious, because the keywordis simply not there.

_ You may have-noticed in Fig, 4.3(d) that this formatis used in combi-

nation with another format, a delimiter to separate fields. While this may
not always be necessary, in this case it is helpful because it showsthe divi-
sion between each value and the keywordfor the followingfield.

Unfortunately, for the address file this format also wastes a lot of

space: 50 percent or more of the file’s space could be taken up by the
keywords. But there are applications in which this format does not

demand so much overhead. We discuss some of these applications in
Section 5.6: “Portability and Standardization.”

4.1.3 Reading a Stream ofFields

Given a modified version of operator << that uses delimiters to sepa-

rate fields, we can write a function that overloads the extraction operator
(operator >>) that reads the stream of bytes back in, breaking the stream
into fields and storing it as a Person object. Figure 4.4 contains the

implementation of theextraction operation. Extensive use is made of the

istream method get line. The arguments to get linearea charac-

ter array to hold the string, a maximumlength, and a delimiter. Get line
reads up to the first occurrence of the delimiter, or the end-of-line,

https://hemanthrajhemu.github.io

124 Chapter 4 Fundamental File Structure Concepts

istream & operator >> (istream & stream, Person & p)

{ // read delimited fields from file

char delim; ,

stream.getline(p.LastName, 30,'|');

if (strlen(p.LastName)==0) return stream;

stream.getline(p.FirstName,30,'|');

stream.getline(p.Address,30,'|');

stream.getline(p.Gity, 30,'!');

stream.getline(p.State,15,'|');

stream.getline(p.ZipCode,10,'|');

return stream;

}

Figure 4.4 Extraction operator for reading delimitedfields into a Person

object.

whichever comesfirst. A full implementation of the program to read a
stream of delimited Person objects in C++, readdel . cpp,is includ-

ed in Appendix D.
Whenthis program is run using our delimited-field version of the file

containing data for Mary Ames and Alan Mason,the output lookslike
this:

Last Name ‘Ames'

First Name 'Mary'

Address '123 Maple'

City 'Stillwater'

State 'OK'

Zip Code '74075'

Last Name 'Mason'

First Name '‘Alan'

Address '90 Eastgate'

City 'Ada'

State "OR’

Zip Code "74820!

Clearly, we now preserve the notion of a field as we store and retrieve

this data. But somethingis still missing. We do notreally think ofthisfile

as a stream offields. In fact, the fields are grouped into records. Thefirst

six fields form a record associated with Mary Ames. The next six are a

record associated with Alan Mason.

https://hemanthrajhemu.github.io

Field and Record Organization 125

4.1.4 Record Structures

A record can be definedasa setoffields that belong together when the file is
viewed in termsofa higherlevel of organization. Like the notionofa field,
a record is another conceptualtool.It is another level of organization that
we impose on the data to preserve meaning. Records do not necessarily

exist in the file in any physical sense, yet they are an importantlogical
notion included in the file’s structure.

-Most often, as in the example above, a record in a file represents a

structured data object. Writing a record into a file can be thoughtofas

saving the state (or value) of an object that is stored in memory.Reading

a record from a file into a memoryresident objectrestoresthe state of the
object. It is our goal in designingfile structures to facilitate this transfer

of information between memoryandfiles. We will use the term objectto
refer to data residing in memory andthe term record to refer to data

residing in file.
In C++ we use class declarations to describe objects that reside in

memory. The members,or attributes, of an object of a particular class

correspond tothe fields that need to be stored in file record. The C++
programming examples are focused on adding methodsto classes to

‘supportusingfiles to preserve the state of objects.
Following are someof the most often used methods for organizing the

records of a file:

m= Require that the records be a predictable numberof bytes in length.

m Require that the records be a predictable numberoffields in length.

m™ Begin each record witha length indicator consisting of a countofthe

numberof bytes that the record contains.

mM Use a secondfile to keep track of the beginning byte address for each

record. .

m Place a delimiter at the end of each recordto separateit from the next
record.

Method 1: Make Records a Predictable NumberofBytes

(Fixed-Length Records)

A fixed-length record file is one in which each record contains the same
numberof bytes. This method of recognizing records is analogousto the

first method wediscussed for-makingfields recognizable. As wewill see in

https://hemanthrajhemu.github.io

126 Chapter 4 Fundamental! File Structure Concepts

the chaptersthatfollow,fixed-length record structures are among the most

- commonly used methodsfor organizingfiles.
The C structure Person (or the C++ class of the same name) that we

define in our discussion offixed-length fields is actually an example of a

fixed-length record as well as an exampleoffixed-lengthfields. We have a
fixed numberoffields, each with a predetermined length, that combine to

make a fixed-length record. This kind offield and record structureis illus-

trated in Fig. 4.5(a).
It is importantto realize, however, that fixing the numberofbytes in a

record doesnot implythat the size or numberoffields in the record must
be fixed. Fixed-length records are frequently used as containers to hold

variable numbers of variable-lengthfields. It is also possible to mix fixed-

and variable-length fields within a record. Figure 4.5(b) illustrates how
variable-length fields might be placed in a fixed-length record.

Method 2: Make Records a Predictable NumberofFields

Rather than specify that each record in a file contain somefixed number of
bytes, we can specify that it will contain a fixed numberoffields. This is a
-good wayto organize the records in the name and addressfile we have
been looking at. The program in writstrm. cppasksforsix pieces of

information for every person,so there aresix contiguousfieldsin thefile
for each record (Fig. 4.5c). We could modify readdelto recognizefields

simply by counting the fields modulo six, outputting record boundary
information to the screen every time the countstarts over.

Method 3: Begin Each Record with a Length Indicator

We can communicate the length of records by beginning each record with

a field containing an integer that indicates how manybytesthere are in the

rest of the record (Fig. 4.6a on page 128). This is a commonly used method

for handling variable-length records. Wewill look at it more closely in the
next section.

Method4: Use an Index to Keep Track ofAddresses

We can use an index to keep a byte offset for each record in theoriginal

file. The byte offsets allow us to find the beginning of each successive

record and compute the length of each record. We look up the position of

a recordin theindex thenseek to the record in the datafile. Figure 4.6(b)

illustratesthis two-file mechanism.

https://hemanthrajhemu.github.io

Field and Record Organization 127

Ames Mary 123 Maple Stillwater OK74075

Mason Alan 90 Eastgate Ada 0K74820

(a)

Anes! Mary !123 Maple'Stilliwater' OK | T4075 | ¢—— Unused space-——>

Mason; Alan|90 Eastgate | Ada, OK | 74820 | ¢———_ Unused space ———+

(b}

Ames! Mary !123 Maple!Stillwater '0K!74075 }Mason;Alan|90 Eastgate'Ada!OK .

(c)

Figure 4.5 Three ways of making the lengthsof records constant and predictable.
(a) Counting bytes:fixed-length records with fixed-lengthfields. (b) Counting bytes:
fixed-length records with variable-length fields. (c) Counting fields: six fields per
record, '

Method5: Place a Delimiter at the End ofEach Record

This option, at a record level, is exactly analogousto the solution we used

to keep the fields distinct in the sample program we developed. As with
fields, the delimiter character must not get in the way ofprocessing.

Because we often want to read files directly at our console, a common

‘choice of a record delimiter for files that contain readable text is the end-

of-line character (carriage return/new-line pair or, on Unix systems,just a
new-line character: \n). In Fig 4.6(c) we use a # character as the record

delimiter.

4.1.5 A Record Structure That Uses a Length Indicator

Noneof these approachesto preserving the idea of a record in file is
appropriate forall situations. Selection of a methodfor record organi-

zation depends on the nature of the data and on what you need to do
/ with it. We begin by looking at a record structure that uses a record-

length field at the beginning of the record. This approach lets us
preserve the variability in the length of records that is inherent in our
initial stream file.

https://hemanthrajhemu.github.io

128 Chapter 4 Fundamental; .' ‘tructure Concepts

40Ames | Mary; 123 Maple | Stillwater |0K!74075'36Mason!Alan!90 Eastgate .

{a)

Data file: anes ;Mary/123 Maple|Stillwater;0K{|74075,Mason;Alan .

Index file; g00 40 ...,

(b)

Anes |Mary|123 Maple! Stillwater! 0OK!74075! #Mason,Alan{90 Rastgate|Ada/OxK .

{c)

Figure 4.6 Record structures for variable-length records.(a) Beginning each record with

a length indicator. (b} Using an indexfile to keep track of record addresses. (c) Placing the
delimiter # at the end of each record.

Writing the Variable-Length RecordstotheFile

Implementing variable-length recordsis partially a matter of building on
the program in writstrm.cpp that we created earlier in this chapter,

butit also involves addressing some new problems:

m If we wantto put a length indicator at the beginning of every record
(before any otherfields), we must know the sum ofthe lengths of the

fields in each record before we can begin writing the record to the file.
We need to accumulate the entire contents of a record in a buffer

before writingit out.

m In what form should we write the record-lengthfield to the file? As a

binary integer? As a series of ASCII characters?

The concept of buffering is one we run into again and again as we
work withfiles. In this case, the buffer can simply be a character arrayinto
which weplace the fields and field delimiters as we collect them. A C++

function WritePerson,written using the C string functions,is found in
Figure 4.7. This function creates a buffer; fills it with the delimited field

values using strcat, the string concatenation function; calculates the

length ofthe of the buffer using strlen; then writes the buffer length

‘and the buffer to the output stream.

https://hemanthrajhemu.github.io

a

Field and Record Organization 129

const int MaxBufferSize = 200;

int WritePerson (ostream & Stream, Person & p)

{

}

char buffer [MaxBufferSize]; // create buffer of fixed size

strepy (buffer, p.LastName); strceat(buffer,"!");

strceat (buffer, p.FirstName); strceat (buffer,"|");

strceat (buffer, p.Address); streat(buffer,"|");

streat (buffer, p.City); strceat(buffer,"["); —

strceat (buffer, p.State); strceat(buffer,"{");

streat (buffer, p.ZipCode); strceat(buffer,"|");

‘short length=strlen(buffer) ;

stream.write (&length, sizeof(length)); // write length

stream.write (&buffer, length);

Figure 4,7 Function WritéPersonwrites a variable-length, delimited buffer to file.

Representing the Record Length

The question of how to represent the record lengthis a little more diffi-
cult. One option would be to write the length in the form of a 2-byte bina-
ry integer before each record. This is a natural solution in C, since it does
not require us to go to the trouble of converting the record length into
character form. Furthermore, we can represent much bigger numbers

with an integer than we can with the same numberof ASCII bytes (for

example, 32 767 versus 99). It is also conceptually interesting, sinceit illus-.

trates the use of a fixed-length binaryfield in combination with variable-
length characterfields.

Another optionis to convert the length into a character string using
formatted output. With C streams, we use fprint £; with C++ stream
classes, we use the overloaded insertion operator (<<):

fprintf (file, "%d ", length); // with C streams

stream << length << ' '; // with C++ stream classes

Each of these lines inserts the length as a decimalstring followed by a

single blank that functions as a delimiter.
In short,it is easy to store the integersin thefile as fixed-length, 2-byte

fields containing integers. It is just as easy to make use of the automatic
conversion of integers into characters for text files. File structure design is

always an exercise in flexibility. Neither of these approachesis correct;

good design consists of choosing the approach thatis most appropriate for
a given language and computing environment. In the functionsincluded

https://hemanthrajhemu.github.io

130 Chapter 4 FundamentalFile Structure Concepts

40 Ames|Mary|123 Maple!Stillwater|/OK{74075{36

Mason|Alan!90 EastgatelAdalOK|74820

Figure 4.8 Records preceded by record-lengthfields in character form.

in program readvar.cpp in Appendix D, we have implemented our

record structure using binaryfield to hold the length. The output from an
implementation with a text length field is shown in Fig. 4.8. Each record

nowhasa record length field preceding thedata fields. This field is delim-.
ited by a blank. For example, the first record (for Mary Ames) contains 40
characters, counting fromthefirst A in “Ames”to the final delimiterafter

“74075,” so the characters 4 and 0 are placed before the record,followed by

a blank.
Since the implementation of variable-length records presented in

Section 4.2 uses binary integers for the record length, we cannot simply
print it to a-console screen. We need a wayto interpret the noncharacter
portion ofthefile. In the next section, we introduce thefile dump,a valu-
able tool for viewing the contentsoffiles. Butfirst, let’s look at how to read

in any file written with variable-length records.

Reading the Variable-Length Recordsfrom theFile

Given ourfile structure of variable-length records preceded by record-

length fields, it is easy to write a program that reads through thefile,
record by record, displaying the fields from each of the records on the

screen. The program must read the length of a record movethe charac-
ters of the record into a buffer, then break the record into fields. The code
to read and break up the record is included in function
ReadVariablePerson in Fig. 4.9. The function is quite simple
becauseit takes advantage of the extraction operator that was previously
defined for reading directly from a file. The implementation of
ReadVariablePerson maybe hard to understandbecauseit uses

features of C++ that we haven’t yet covered. In particular, class
istrstream (input stringstream) is a type of input stream that uses
the same operators as other input streams but has its value stored in a
characterstring instead ofina file. The extraction operation of Figure 4.4

worksjust as well on a string stream as it does ona file stream. This is a
wonderful result of the use of inheritance in C++ classes. We use inheri-
tance extensively in later C++ classes, but that will have to wait for

Section 4.3.

https://hemanthrajhemu.github.io

Field and Record Organization 131

int ReadVariablePerson (istream & stream, Person & p)

{ // read a variable sized record from stream and store it in p

}

short length;

stream . read (&length, sizeof(length));

char * buffer = new char[length+1];// create buffer space

stream . read (buffer, length);

buffer [length] = 0; // terminate buffer with null

istrstream strbuff (buffer); // create a string stream

strbuff >> p; // use the istream extraction operator

return 1;

Figure 4.9 Function ReadVariablePersonthatreadsa variable-sized Person
record.

4.1.6 Mixing Numbers and Characters: Use of a File Dump

File dumpsgive us the ability to look insidea file at the actual bytes that
are stored there. Consider, for instance, the record-length information in

the text file that we were examining a momentago. Thelength of the Ames
record,thefirst onein thefile, is 40 characters, including delimiters. The

actual bytes stored in thefile looklike the representation in Fig. 4.10(a). In

the mixed binary and text implementation, where we chooseto represent

the length field as a 2-byte integer, the bytes look like the representation in
Fig. 4.10(b).

As you can see, the number 40 is not the sameastheset of characters

4 and 0. The 1-byte hex value of the binary integer 40 is 0x28; the hex

values of the characters 4 and 0 are 0x34 and 0x30. (Weare using the C

language convention of identifying hexadécimal numbers throughthe use
of the prefix Ox.) So, when weare storing a numberin ASCII form,it is the
hex values of the ASCII charactersthat go intothefile, not the hex value of

the numberitself.

' Figure 4.10(b) shows the byte representation of the number40 stored

as an integer (this is called storing the number in binary form, even

though we usually view the output as a hexadecimal number). Now the
hexadecimal value stored inthe file isthat of the numberitself. The ASCII

characters that happen to be associated with the number’s hexadecimal
value have no obviousrelationship to the number. Here is what the version

of the file that uses binary integers for record lengths looks like if we
simply print it on a terminalscreen:

https://hemanthrajhemu.github.io

132

(Ames | Mary | 123 Maple } Stillwater | OK | 74075 |

0x28 is ASCII codefor '('

Blank,since '\0' is unprintable.

Chapter 4 FundamentalFile Structure Concepts

$Mason|Alan|...

; 0x28 is ASCO code for '('

Blank; '\0' is unprintable.

The ASCII representations of characters and numbersin the actual
record come out nicely enough, but the binary representations of the
length fields are displayed cryptically. Let’s take a different lookat the file,
this time using the Unix dumputility od. Entering the Unix command

‘od -xce filename

produces the following:

offset Values

0000000 \O (A m e@ s | M ar y | 1 2 3

0028 416d 6573 7c4d 6172 797¢C 3132 3320

0000020 M a p 1 e {| S$ t i 2 1 w ait ei rer

4d61 706c 657c¢ 5374 696c 6c77 6174 6572

oooo040 | 6h6cOlhUmwKKUflCUTlCUlU ACCT SCE NOS ULM aA Sl
7c4f 4bic 3734 3037 357¢ 0024 4a61 736£

oooo060)=6onl 6f|lhU AWC ULlhlccac ll dT Boas t Gg a_

6e7c 416c 616e 7039 3020 4561 7374 6761

oo00100 «tt Cel C6] hUvcAWlCcalhlcckllChCd|CUCOlCUmKLCLUWEl UL lA BY
7465 7c41 6461 704f 4b7c 3734 3832 307¢c

As you cansee,the display is divided into three different kinds of data. The

column ontheleft labeled Of fset gives the offsetofthefirst byte of the
row that is being displayed. The byteoffsets are given in octal form; since
each line contains 16 (decimal) bytes, moving from oneline to the next
adds 020 to the range. Every pair oflines in the printout containsinter-

Decimal valne Hex value stored ASCII.

of number in bytes character form

(a) 40 stored as ASCII chars: 40 34 30 4 0

(b) 40 stored as a 2-byteinteger: 40 00 28 or 8?

Figure 4.10 The number40, stored as ASCII characters and as a short integer.

https://hemanthrajhemu.github.io

Field and Record Organization 133

pretationsofthe bytes in the file in ASCII and hexadecimal, These repre-

sentations were requested on the commandline with the ~xc flag (x =

hex; c = character).

Let’s look at the first row of ASCII values. As you would expect, the

data placed in thefile in ASCII form appearsin this row in a readable way.
But there are hexadecimal values for which there is no printable ASCII
representation. The only such value appearing in this file is 0 x 00. But
there could be manyothers. For example, the hexadecimal value of the
number 500 000 000 is 0x1DCD6500.If you write this value outto file,

an-od ofthefilewith the option.-xc lookslike this:

0000000 \035\315 e \O

ldcd 6500

The only printable byte in this file is the one with the value 0x65 (e). Od
handles all of the others bylisting their equivalent octal values in the

ASCII representation.

The hex dumpof this output from writrec. shows how thisfile
structure represents an interesting mix of a numberof the organizational
tools we have encountered. In a single record we have both binary and
ASCII data. Each record consists of a fixed-length field (the byte count)
and several delimited, variable-length fields. This kindof mixingof differ-
ent data types and organizational methods is commonin real-world file
structures. .

A Note aboutByte Order

If your computer is a PC or a computer from DEC,such as a VAX, your
octal dump forthis file will probably be different from the one wesee here
These machines store the individual bytes of numeric values in a reverse

order. For example, if this dump were executed on a PC,using the MS-
DOS debug command,the hex representation of the first 2-byte value in

the file would be 0x2800 rather than 0x0028.
This reverse order also applies to long, 4-byte integers on these ma-

chines. This is an aspectof files that you need to be awareof if you expect
to make sense out of dumpslike this one. A moreserious consequence of
the byte-order differences among machines occurs when we movefiles
from a machinewith onetype ofbyte ordering to one witha different byte
ordering. We discuss this problem and ways to deal with it in Section 5.6,

“Portability and Standardization.”

https://hemanthrajhemu.github.io

134

4.2

Chapter 4 Fundamental File Structure Concepts

Using Classes.to Manipulate Buffers

Nowthat we understand how to use buffers to read and write information,

we can use C++ classes to encapsulate the pack, unpack, read, and write
operations of buffer objects. An object of one ofthese buffer classes can be
used for outputas follows: start with an empty buffer object, pack field
values into the object one by one, then write the buffer contents to an

output stream. For input, initialize a buffer object by reading a record

from an input stream, then extract the object’s field values, one by one.
Buffer objects support only this behavior. A buffer is not intended to allow,
modification of packed values nor to allow pack and unpack operationsto

be mixed. As the classes are described, you will see that no direct access is
allowed to the data members that hold the contents of the buffer. A
considerable amountof extra error checking has been included in these

classes.
There are three classes definedin this section: one for delimitedfields,

one for length-based fields, and onefor fixed-length fields. The first.two
field types use variable-length records for input and output. The fixed-
length fields are stored in fixed-length records.

4.2.1 Buffer Class for Delimited Text Fields

Thefirst buffer class, DelimTextBuffer, supports variable-length
buffers whosefields are represented as delimited text. A part ofthe class

definition is given as Fig. 4.11. The full definitionis in filedeltext.hin
Appendix E. The full implementations of the class methods are in
deltext.cpp. Operations on buffers include constructors, read and
write, and field pack and unpack. Data membersare used to store the
delimiter used in pack and unpack operations,the actual and maximum
number of bytes in the buffer, and the byte (orcharacter) array that

containsthe value of the buffer. We have also included an extension ofthe
class Person from Fig. 4.2 to illustrate the use of buffer objects.

The following code segment declares objects of class Person and

class DelimTextBuf fer, packs the person into the buffer, and writes

the buffer to file: |

Person MaryAmes;

DelimTextBuffer buffer;

buffer . Pack (MaryAmes . LastName);

buffer . Pack (MaryAmes . FirstName) ;

https://hemanthrajhemu.github.io

Using Classes to Manipulate Buffers 135

class DelimTextBuffer

{ public:

DelimTextBuffer (char Delim = '|', int maxBytes = 1000);

int Read (istream & file);

int Write (ostream & file) const;

int Pack (const char * str, int size = -1);

int Unpack (char * str);

private:

* char Delim; // delimiter character

char * Buffer; // character array to hold field values

int BufferSize; // current size of packed fields

. int MaxBytes; // maximum number of characters in the
buffer

int NextByte; // packing/unpacking position in buffer

};

Figure 4.11 Main methods and membersof class DelimTextBuffer.

buffer . Pack (MaryAmes . ZipCode);

buffer . Write (stream);

This code illustrates how default values are used in C++. The declaration

of object buffer has no arguments, but the only constructor for
DelimTextBuffer has two parameters. There is no errorhere, since

the constructor declaration has default values for both parameters. A cal

that omits the arguments has the defaults substituted. The following two
declarations are completely equivalent:

DelimTextBuffer buffer; // default arguments used

DelimTextBuffer buffer ('|‘, 1000); // arguments given explicitly

Similarly, the calls on the Pack method have only single argument, so

the second argument (size) takes on the default value -1.

The Pack method copies the characters of its argument str to the
buffer and then adds the delimiter character. If the size argumentis not
-1, it specifies the numberof characters to be written. If size is -1, the C

function strlen is used to determine the numberof characters to write.

The Unpackfunction does not need size, since the field that is being
unpacked consists ofall of the characters up to the next instance of the
delimiter. The implementation of Pack and Unpack utilize the private
member NextByte to keep track of the current position in the buffer.

The Unpack methodis implemented asfollows:

https://hemanthrajhemu.github.io

136 Chapter 4 Fundamental File Structure Concepts

int DelimTextBuffer :: Unpack (char * str).

// extract the value of the next field of the buffer

(
int len = -1; // length of packed string

int start = NextByte; // first character to be unpacked

for (int 1 = start; i < BufferSize; i++)

if (Buffer[i] == Delim)

{len = i - start; break; }

if (len == -1) return FALSE; // delimeter not found

NextByte += len + 1;

if (NextByte > BufferSize) return FALSE;

strncepy (str, &Buffer[start], len);

str {len} = 0; // zero termination for string
return TRUE;

The Read and Write methods use the variable-length strategy as
described in Section 4.1.6. A binary value is used to represent the length of

the record. Write inserts the current buffer size, then the characters of

the buffer. Read clears the current buffer contents, extracts the record

size, reads the proper numberofbytes into the buffer, andsets the buffer

Size:

int DelimTextBuffer :: Read (istream & stream)

{
Clear ();

Stream . read ((char *)&BufferSize, sizeof (BufferSize));

if (stream.fail()) retur:. SALSE;

if (BufferSize > MaxBytes} return FALSE; // buffer overflow

stream . read (Buffer, BufferSize);

return stream . good (); ;

4.2.2 Extending Class Person with Buffer Operations

The buffer classes have the capability of packing any numberandtype of
values, but they do not record how these values are combined to make

objects. In order to pack and unpack a buffer for a Person object, for
instance, we have to specify the order in which the members of Person
are packed and unpacked. Section 4.1 and thecode in Appendix D includ-

ed operationsfor packing and unpacking the membersof Person objects

in insertion (<<) and extraction (>>) operators. In this, section and

Appendix E, we add those operations as methodsofclass Person. The

https://hemanthrajhemu.github.io

Using Classes to Manipulate Buffers 137

definition of the class has the following methodfor packing delimited text
buffers. The unpack operation is equally simple:

int Person::Pack (DelimTextBuffer & Buffer) const

{// pack the fields into a DelimTextBuffer

int result;

result Buffer . Pack (LastName);

result = result && Buffer . Pack (FirstName) ;

result = result && Buffer . Pack (Address);

result = result && Buffer . Pack (City);

(

(

“result = result && Buffer’. Pack (State)

result = result && Buffer . Pack 7ipode) ;

return result;

4.2.3 Buffer Classes for Length-Based and

Fixed-length Fields

Representing records of length-basedfields and recordsoffixed-length

fields requires a change in the implementations of the Pack and

Unpack methodsof the delimited field class, but the class definitions are

almost exactly the same. The main members and methods of class
LengthTextBuf ferare given in Fig. 4.12. The full class definition and
method implementation are given in lentext.hand lentext.cpp

class LengthTextBuffer

{ public:

LengthTextBuffer (int maxBytes = 1000);

int Read (istream & file);

int Write (ostream & file) const;

int Pack (const char * field, int size = -1);

int Unpack (char * field); 7

private:

char * Buffer; // character array to hold field values

int BufferSize; // size of packed fields

int MaxBytes; // maximum number of characters in the buffer

int NextByte; // packing/unpacking position in buffer

};

Figure 4.12 Main methods and membersof class LengthTextBuffer.

https://hemanthrajhemu.github.io

138 Chapter 4 FundamentalFile Structure Concepts

in Appendix E. The only changes that are apparent from thisfigure are the
name ofthe class and the elimination of the delim parameter on the
constructor. The code for the Pack and Unpack methodsis substantial-

ly different, butthe Read and Write methodsare exactly the same.
_ Class FixedTextBuffer, whose main members and methods are
in Fig. 4.13 (full classin fixtext.hand fixtext .cpp),is different in
two ways from the other twoclasses. First, it uses a fixed collection of

fixed-length fields. Every buffer value has the same collectionoffields, and

the Pack methodneedsnosize parameter. The seconddifferenceis thatit
uses fixed-length records. Hence, the Read and Write methods do not.

use a length indicator for buffer size. They simply use the fixed size of the
buffer to determine how manybytesto read or write.

The method AddFieldis included to support the specification of
the fields and theirsizes. A buffer for objects of class Personis initialized

by the new method InitBuffer of class Person:

int Person::InitBuffer (FixedTextBuffer & Buffer)

// initialize a FixedTextBuffer to be used for Person objects

{
Buffer . Init (6, 61);//6 fields, 61 bytes total

Buffer . AddField (10); // LastName [11];

Buffer . AddField (10); // FirstName [11];

Buffer . AddField (15); // Address [16];

class FixedTextBuffer

{ public:

FixedTextBuffer (int maxBytes = 1000);

int AddField (int fieldSize);

int Read (istream & file);

int Write (ostream & file) const;

int Pack (const char * field);

int Unpack (char * field);

private:

};

char * Buffer; // character array to hold field values

int BufferSize; // size of packed fields

int MaxBytes; // maximum number of characters in the buffer

int NextByte; // packing/unpacking position in buffer

int * FieldSizes; // array of field sizes

Figure 4.13 Main methods and membersof class FixedTextBuffer.

https://hemanthrajhemu.github.io

Using Inheritance for Record Buffer Clacces 139

Buffer . AddField (15); // City [16];

Buffer . AddField (2); // State [3];

Buffer . AddField (9); // ZipCode [10];

return 1;

4,3 Using Inheritance for Record Buffer Classes

A reading ofthe cppfiles for the three classes above showsa striking simi-
larity: a large percentage of the codeis duplicated. In this section, we elim-

inate almost all of the duplication through the use of the inheritance
capabilities of C++.

4.3.1 Inheritance in the C++ Stream Classes

C++ incorporates inheritance to allow multiple classes to share members
and methods. One or morebase classes define members and methods,

which are then used by subclasses. The stream classesare defined in sucha
hierarchy. So far, our discussion has focused on class fstream, as though

it stands alone. In fact, fstream is embeddedin class hierarchy that
contains manyotherclasses. The read operations, including the extraction

operators are definedin class istream. The write operations are defined

in class ostream. Class fstream inherits these operations from its
parent class iostream, which in turn inherits from istream and
ostream. The following definitions are included in iostream.h and

fstream.h:

class istream: virtual public ios {

class ostream: virtual public ios { .

class iostream: public istream, public ostream {

class ifstream: public fstreambase, public istream {

class ofstream: public fstreambase, public ostream {

class fstream: public fstreambase, public iostream {

We can see that this is a complex collection ofclasses. There are two

base classes, ios and fstreambase,that provide commondeclarations

and basic stream operations (ios) and access to operating system file
operations (fstreambase). There are uses of multiple inheritance in
these classes; that is, classes have more than onebase class. The keyword

https://hemanthrajhemu.github.io

140 Chapter 4 Fundamental File Structure Concepts

virtual is used to ensure that class tosis included only oncein the ances-

try of any of these classes.

Objects of a class are also objects of their base classes, and generally,

include members and methods of thebase classes. An object of class
fstream, for example, is also an object of classes Estreambase,
1ostream, istream, ostream, and ios and includesall of the

members and methodsofthose baseclasses. Hence, the read method and
extraction (>>) operations defined in istream are also available in

iostream, ifstream, and fstream. The openandclose operations
of class £streambase are also membersof class fstream.

An important benefit of inheritance is that operations that work on
base class objects also work on derived class objects. We had an example of
this benefit in the function ReadVariablePersonin Section 4.1.5

that used an istrstream object strbuff to contain a string buffer.
The code of that function passed strbuf f as an argumentto the person

extraction function that expected an istream argument. Since

istrstream is derived from istream, strbuff isan istream
object and hence can be manipulated by this istream operation.

4.3.2 A Class Hierarchy for Record Buffer Objects

The characteristics of the three buffer classes of Section 4.2 can be
combinedinto a single class hierarchy, as shownin Fig. 4.14. Appendix

F has the full implementation of these classes. Themembers and meth-
ods that are commontoall of the three buffer classes are included in

the base class IOBuffer. Other methods are in classes
VariableLengthBuffer and FixedLengthBuffer, which

support the read and write operations for different types of records.
Finally the classes LengthFieldBuffer, DelimFieldBuffer, and

FixedFieldBuf fer have the pack and unpack methodsforthe specif-

ic field representations.
The main members and methodsof class [OBuf ferare given in Fig,

4.15. The full class definition is in file iobuffer.h, and the implemen-

tation of the methodsis in file iobuffer.cpp. The common members

of all of the buffer classes, Buf ferSize, MaxBytes, NextByte,and

Buffer, are declared in class IOBuf fer. These membersare in the

protectedSection of TOBuffer.

This is ourfirst use of protected access, which falls between private
(no access outside the class) and public (no accessrestrictions). Protected

membersofa class can be used by methodsofthe class and by methadsof

https://hemanthrajhemu.github.io

Using Inheritance for Record Buffer Classes 141

\OBuffer
char array for buffer value

f - J 1

VariableLengthBuffer , FixedLengthBuffer
read andwrite operations read and write operations

for variable length records for fixed length records

cc — 1 .
DelimitedFieldBuffer LengthFieldBuffer FixedFieldBuffer

pack and unpack operations pack and unpack operations pack and unpack operations for
for delimited fields for length-basedfields fixed sized fields

Figure 4.14 Buffer class hierarchy

classes derived from the class. The protected members of IOBuffer can

be used by methods in all of the classes in this hierarchy. Protected

members of VariableLengthBuf fer can be usedin its subclasses

but not in classes L[OBuffer and FixedLengthBuffer.

The constructor for class [OBuf fer has a single parameterthat spec-

ifiesthe maximum size of the buffer, Methods are declared for reading,
writing, packing, and unpacking.Since the implementation of these meth-
ods depends on the exact nature of the record andits fields, [OBuffer
must leave its implementation to the subclasses.

Class IOBuffer defines these methods as virtual to allow each

subclass to define its own implementation. The = 0 declares a pure virtual
1

class I0Buffer

{public:

TOBuffer (int maxBytes = 1000); // a maximum of maxBytes

virtual int Read (istream &) = 0; // read a buffer

virtual int Write {ostream &) const = 0; // write a buffer

virtual int Pack (const void * field, int size = -1) = 0;

virtual int Unpack (void * field, int maxbytes = -1) = 0;

protected:

char * Buffer; // character array to hold field values

int BufferSize; // sum of thesizes of packed fields

int MaxBytes; // maximum number of characters in the buffer

};

Figure 4.15 Main members and methodsof class TOBuffer.

https://hemanthrajhemu.github.io

142 Chapter 4 FundamentalFile Structure Concepts

method. This means that the class IOBuf fer does notinclude an imple-

mentation of the method. A class with pure virtual methodsis an abstract
class. No.objects of such a class can be created,but pointers and references

to objects of this class can be declared.

The full implementation ofread, write, pack, and unpack operations
for delimited text records is supported by two moreclasses. The reading

and writing of variable-length records are included in the class
VariableLengthBuf fer,as given in Figure 4.16 and files varlen.h
and varlen.cpp. Packing and unpacking delimited fields is in class

DelimitedFiel@Buf ferand in files delim.h and delim. cpp.

The code to implement these operations follows the samestructure as in

Section 4.2 but incorporates additional error checking. The Write
method of VariableLengthBufferis implementedasfollows:

int VariableLengthBuffer :: Write (ostream & stream) const

// read the length and buffer from the stream

{
int recaddr = stream . tellp ();

unsigned short bufferSize = BufferSize;

‘Stream . write ((char *)&bufferSize, sizeof (bufferSize));

if (!'stream) return -1;

stream . write (Buffer, BufferSize);

if (!stream.good ()) return -1;

return recaddr;

The methodis implementedto test for all possible errors and to return

informationto thecalling routine via the return value. Wetest for fail-
ure in the write operations using the expressions !stream and

!stream.good (), which are equivalent. These are two different ways

totest if the stream has experienced an error. The Write methodreturns
the address in the stream where the record was written. The addressis
determinedbycalling stream. tellg() at the beginning of the func-
tion. Tellg isa method of ostream thatreturns the currentlocation of
the put pointer of the stream.If either of the write operationsfails, the
value —] is returned.

Aneffective strategy for making objects persistent must make it easy

for an application to move objects from memorytofiles and back correct-

ly. One of the crucial aspects is ensuring that the fields are packed and
unpacked in the same order. The class Person has been extended to
include pack and unpack operations. The main purpose of these opera-

tions is to specify an ordering onthefields and to encapsulateerrortest-

ing. The unpack operation 1s: |

https://hemanthrajhemu.github.io

Using Inheritance for Record Buffer Classes 143

class VariableLengthBuffer: public I0Buffer
{ public:

VariableLengthBuffer (int MaxBytes = 1000);

int Read (istream &);

int Write (ostream &) const;

int SizeOfBuffer {() const; // return current Size of biffer

‘3

class DelimFieldBuffer: public VariableLengthBuffer

{ public:

DelimFieldBuffer (char Delim = -1, int maxBytes = 1000;

-int Pack (const void*, int size = -1);

int Unpack (void * field, int maxBytes = -1);

protected:

char Delim;

};

Figure 4.16 Classes VariableLengthBuffer andDelimFieldBuffer.

int Person: :Unpack (IOBuffer & Buffer)

{

Clear ();

int numBytes;

numBytes = Buffer.. Unpeck (LastName);

if (mumBytes == -1) return FALSE;

LastName [numBytes] = 0;

numBytes = Buffer . Unpack (FirstName) ;
iz (mumBytes == -1) return FALSE;

// unpack the other fields

return TRUE; ,

‘This methodillustrates the power of virtual functions. The parameter
of Person: : Unpack is an object of type IOBuffer,but a call to

Unpack supplies an argument that can be an object of any subclass
of IOBuffer. The calls to Buffer.Unpack in the method
Person: :Unpackare virtual function calls. In calls of this type, the

determinationof exactly which Unpack method to call is not made

during compilation as it is with nonvirtual calls. Instead, the actualtype of
the object Buffer is used to determine which function to call. In the
following example of calling Unpack,the calls to Buffer .Unpack use

the method DelimFieldBuffer: : Unpack.

https://hemanthrajhemu.github.io

144 Chapter 4 Fundamental File Structure Concepts

Person MaryAmes;

DelimFieldBuffer Buffer;

MaryAmes . Unpack (Buffer);

The full implementation of the I/O buffer classes includes class

LengthFieldBuffer, which supportsfield packing with length plus
value representation. This class is like DelLimFieldBuffer in that it

is implemented by specifying only the pack and unpack methods.
The read and write operations are supported by its base class,

VariableLengthBuf fer.

4.4 Managing Fixed-Length, Fixed-Field Buffers

Class FixedLengthBuffer is the subclass of IOBuffer that
supports read and write of fixed-length records.Forthis class, each record
is of the samesize. Instead of storing the record size explicitly in thefile

. along with the record, the write method just writes the fixed-size record.
The read method must know thesize in orderto read the recordcorrectly.

Each FixedLengthBuffer object has a protected field thatrecords the

record size.

Class FixedFieldBuffer, as shown in Fig. 4.17 and files

fixfld.hand fixfld.cpp,supports a fixédsetof fixed-length fields.

Onedifficulty with this strategy is that the unpack method has to know
the length ofall of the fields. To make it convenient to keep track of the

class FixedFieldBuffer: public FixedLengthBuffer

public:

FixedFieldBuffer (int maxFields, int RecordSize = 1000);

FixedFieldBuffer (int maxFields, int’ * fieldSize);

int AddField (int fieldSize); // define the next field

int Pack (const void * field, int size = -1);

int Unpack (void * field, int maxBytes = -1);

int NumberOfFields () const; // return number of defined fields

protected:

int * FieldSize; // array to hold field sizes
int MaxFields; // maximum number of fields

int NumFields; // actual number of defined fields

};

Figure 4.17 Class FixedFieldBuffer.

https://hemanthrajhemu.github.io

ManagingFixed-Length,Fixed-Field Buffers 145

field lengths, classFixedFieldBuffer keeps track of thefield sizes.
The protected member FieldSize holds thefield sizes in an integer
array. The AddField methodis usedto specify field sizes. In the case of

using aFixedFieldBufferto hold objects of class Person,the

InitBuffer method can beused to fullyinitialize the buffer:

int Person: :InitBuffer (FixedFieldBuffer & Buffer)

// initialize a FixedFieldBuffer to be used for Persons

{
int result;

result = Buffer . AddField (10); // LastName [11]; ‘

result = result && Buffer . AddField {10); //. FirstName [11];

result = result && Buffer . AddField (15); // Address [16];

result = result && Buffer . AddField (15); // City [16];

result = result && Buffer . AddField (2); // State (3];

result = result && Buffer . AddField (9); // ZipCode [10];

return result;

Starting with a buffer with nofields, InitBuffer adds thefields one at

a time, each with its ownsize. The following code prepares a buffer for use
in reading and writing objects of class Person:

FixedFieldBuffer Buffer(6, 61); // 6 fields, 61 bytes total

MaryAmes.InitBuffer (Buffer);

Unpacking FixedFieldBuffer objects has to be done carefully.
The object has to include information aboutthe state of the unpacking.

The member NextByte records the next character of the buffer to be

unpacked,just as in all of the [OBuf fer classes. FixedFieldBuffer

has additional member NextField to record the next field to be
unpacked. The method FixedFieldBuffer: :Unpack is imple-
mentedas follows:

int FixedFieldBuffer :: Unpack (void * field, int maxBytes)

{
if (NextField == NumFields || Packing)

// buffer is full or not in unpacking mode

return -1l;

int start = NextByte; // first byte to be unpacked

int packSize = FieldSize[{NextField]; // bytes to be unpacked

memcpy (field, &Buffer[start], packSize); //move the bytes

NextByte += packSize; // advance NextByte to following char

NextField ++; // advance NextField

if (NextField == NumFields) Clear (); // all fields unpacked
return packSize;

https://hemanthrajhemu.github.io

146 Chapter 4 FundamentalFile Structure Concepts

4.5 An Object-Oriented Class for Record Files

Nowthat we know howtotransfer objects to and fromfiles,it is appro-

priate to encapsulate that knowledge in a class that supports all of
our file operations. Class BufferFile (in files buffile.h and

buffile.cpp of Appendix F) supports manipulation offiles that are

tied to specific buffer types. An object of class Buf ferFile is created
from a specific buffer object and can be used to open andcreate files and
to read and write records. Figure 4.18 has the main data methods and
members of BufferFile.

Once a BufferFile object has been created and attached to an
operating system file, each read or write is performed using the same

buffer. Hence, each record is guaranteedto be of the sarne basic type. The

following code sample showshowa file can be created and used with a

DelimFieldBuffer:

DelimFieldBuffer buffer;

BufferFile file (buffer) ;

file . Open (myfile);

file . Read ();

buffer . Unpack (myobject);

class BufferFile

{public:

BufferFile (IOBuffer &); // create with a buffer

int Open (char * filename, int MODE); // open an existing file

int Create (char * filename, int MODE); // create a new file

int Close (); .

int Rewind (); // reset to the first data record

// Input and Output operations

int Read (int recaddr = -1);

int Write (int recaddr = -1);

int Append (); // write the current buffer at the end of file

protected:

TOBuffer & Buffer; // reference to the file's buffer

fstream File; // the C++ stream of the file

};

Figure 4.18 Main data members and methodsofclass Buf ferFile.

https://hemanthrajhemu.github.io

Summary 147

A buffer is created, and the BufferFile object file is attached toit.
Then Open and Read methodsare called for file. After the Read,

buffer contains the packed record, and buffer.Unpack puts the
record intomyobject. |

When BufferFile is combined with a fixed-length buffer, the
result is a file that is guaranteed to have every record the samesize. The full
implementation of BufferFile, which is described in Section 5.2,
“More about Record Structures,” puts a header record on the beginning

of eachfile. For fixed-length recordfiles, the header includes the record
size. BufferFile: : Open readsthe record sizefrom thefile header and

comparesit with the record size of the corresponding buffer. If the two are

not the same, the Open fails and the file cannot be used.

This illustrates another important aspect of object-oriented design.

Classes can be used to guarantee that operations on objects are performed
correctly. It’s easy to see that using the wrongbufferto read a file recordis

disastrous to an application. It is the encapsulation of classes like
BufferFile that add safety to ourfile operations.

SUMMARY

The lowest level of organization that we normally impose ona fileis a
stream of bytes. Unfortunately, by storing data in a file merely as a stream

of bytes, we lose the ability to distinguish among the fundamentalinfor-
mational units of our data. We call these fundamental pieces of informa-
tion fields. Fields are grouped togetherto form records. Recognizingfields
and records requires that we imposestructure on the datain thefile.

There are many ways to separate one field from the next and one
record from the next:

m= Fix the length ofeachfield or record.

m Begin each field or record with a countof the numberofbytesthatit
contains.

m Use delimiters to mark the divisions between entities.

In the case offields, another useful technique js to use a “keyword = value”
form to identify fields.

In this chapter we use the record structure with a length indicator at

the beginning of each record to develop programsfor writing and reading
‘a simplefile'of variable-length records containing names and addresses of
individuals. We use buffering to accumulate the data in an individual

record before we know its length to write it to the file. Buffers are also

https://hemanthrajhemu.github.io

148 Chapter 4 Fundamental File Structure Concepts

useful in allowing us to read in a complete record at one time. We repre-

sentthe length field of each record as a binary numberoras a sequence of

ASCII digits. In the formercase,it is useful to use a file dump to examine
the contentsofourfile.

The field packing and unpacking operations, in their various forms,
. can be encapsulated into C++ classes. The three differentfield representa-
tion strategies—delimited, length-based, and fixed-length—are imple-
mented in separate classes. Almost all of the members and methods of
theseclasses are identical. Theonly differences are in the exact packing and

unpacking and in the minordifferences in read and write between the

variable-length and fixed-length record structures.

A better strategy for representing these objectslies in the use ofa class
hierarchy. Inheritance allows related classes to share members. For exam-

ple, the two field packing strategies of delimited and length based can
share the same variable-length record read and write methods. Virtual

methods make the class hierarchy work.
The class BufferFile encapsulates the file operations of open,

create, close, read, write, and seekin a single object. Each BufferFile

object is attached to a buffer. The read and write operations move

data between file and buffer. The use of BufferFile addsa level of

protection to our file operations. Once a disk file is connected to a

. BufferFile object, it can be manipulated only with the related buffer.

 KEYTERMS
Byte countfield. A field at the beginning of a variable-length record that

gives the numberof bytes used to store the record. The use of a byte
countfield allows a program to transmit (or skip over) a variable-.

length record without having to deal with the record’s internal
Structure.

Delimiter. One or more characters used to separate fields and records in a

file,

Field. The smallest logically meaningful unit of information in file. A
recordin file is usually made up ofseveralfields.

Fixed-length record.A file organization in whichall records have the same
length. Records are padded with blanks, nulls, or other characters so

they extend to the fixed length. Since all the records have the same

length,it is possible to calculate the beginning position of any record,

makingdirect access possible.

https://hemanthrajhemu.github.io

Exercises 149

Inheritance.A strategy for allowing classes to share data members and

methods. A derived class inherits the membersof its base class and

may add additional members or modify the membersit inherits.

Record. A collection of related fields. For example, the name, address, and
so on of an individual in a mailing-list file would make up onerecord.

Stream of bytes. Term describing the lowest-level view ofa file. If we begin

with the basic stream-of-bytes viewofa file, we can then impose our
own higher levels of order onthefile, including field, record, and
block structures.

Variable-length record. A file organization in which the records have no

predetermined length. They are just as long as they need to be and

therefore make better use of space than fixed-length records do.

Unfortunately, we cannotcalculate the byte offset of a variable-length
record by knowingonly its relative record number.

Virtual method. A memberfunction that can have different versions for
different derived classes. A virtual function call dynamically selects the
appropriate version for an object.

FURTHER READINGS

Object-oriented design is quite well covered in many booksandarticles.
They range from basic introduction,as in Irvine (1996), to the presenta-
tion of examplesofsolving business problems with object-oriented meth-
ods in Yourdon and Argila (1996). Booch (1991) is a comprehensive study

of the use of object-oriented design methods. The use of files to store
information is included in many database books, including Elmasri and

Navathe (1994) and Silberschatz, Korth, and Sudarshan (1997).

EXERCISES

1. Find situations for which eachofthe fourfield structures described in

the text might be appropriate. Do the samefor each of the record
structures described.

2. Discuss the appropriateness of using the following characters to
delimit fields or records: carriage return,linefeed, space, comma, peri-

od, colon, escape. Can you think of situations in which you might

wantto use different delimiters for different fields?

https://hemanthrajhemu.github.io

150 Chapter 4 FundamentalFile Structure Concepts

3, Suppose you want to change class Person and the programs in
section 4.1 to include a phone numberfield. What changes needto be
made?

4. Suppose you need to keep file in which every record has bothfixed-

and variable-length fields. For example, suppose you want to create a
file of employee records, using fixed-length fields for each employee's
ID (primarykey), sex, birth date, and department, and using variable-

length fields for each name and address. What advantages might there

be to using such a structure? Should we put the variable-length portion
first or last? Either approachis possible; how can each be implemented?.

5. One record structure not describedin this chapteris called labeled. In
a labeled record structure eachfield that is represented is preceded by
a label describing its contents. For example,if the labels LN, FN, AD,

CT, ST, and ZP are used to describe the six fixed-length fieldsfor a

name and addressrecord,it might appearas follows:

LNAmes FNMary AD123 Maple CTStillwaterSTOKZP74075

Under what conditions might this be a reasonable, even desirable,

record structure?

Define the terms stream ofbytes, streamoffields, and streamofrecords.

7. Investigate the implementation of virtual functions in an implemen-
tation of C++. Whatdata structureis used to represent the binding of
function calls to functionbodies? Whatis the interaction between the
implementation of virtual functions and the constructors for classes?

8. Report on the basic field and record structures available in Ada or

Cobol.

9, Comparethe use of ASCII characters to represent everything in a file

with the use of binary and ASCII data mixed together. |

10. If you list the contents of a file containing both binary and ASCII
characters on your terminal screen, what results‘can you expect?
What happens whenyoulist a completely binaryfile on your screen?

(Warning: If you actually try this, do so with a very smallfile. You
could lock up or reconfigure your terminal or even log yourself off!)

11. The following is a hex dumpofthefirst few bytes from file which
uses variable-length records, a two-byte length, and delimited text
fields. How longis the first record? Whatare its contents?

00244475 6D707C46 7265647C - 38323120

4B6C7567 657C4861 636B6572 7C50417C

36353533 357C2E2E 48657861 64656369

https://hemanthrajhemu.github.io

Programming Exercises 151

12.

13.

14.

15.

16.

17.

18.

19.

The Write methods of the [OBufferclasses let the user change
records but not delete records. How mustthefile structure and access
procedures be modified to allow for deletion if we do not care about
reusing the space from deleted records? How dothefile structures
and procedures change if we do want to reuse the space?

Programming Exercises 21-26 of Chapter 6 ask you to implement
various types of deletion.

What happens when method VariableLengthBuffer: :Write

is used to replace (or update) a record in a file, and the previous

record had a different size? Describe possible solutions to this prob-
lem. Programming Exercise 25 of Chapter 6 asks you to implementa
correct Update method.

PROGRAMMING EXERCISES

Rewrite the insertion (<<) operator offilewritestr.cpp so that

it uses the followingfield representations:

a. Method1, fixed lengthfields.

b. Method2,fields with length indicators.
c. Method3, fields delimited by "|".
d. Method4,fields with keywordtags.

Rewrite the extraction (>>) operatorof file readstr.cpp so that

it uses the followingfield representations:

a. Method1,fixed lengthfields.

b, Method2,fields with length indicators.

c. Method4,fields with keywordtags.
Write a program writevar.cpp that produces file of Person
objects that is formatted to beinput to readvar. cpp.

Design and implement a class KeywordBuf fer that pack buffers
with keywordtags.

Modify class FixedLengthBuffer to support multiple field types

within a single buffer. Make sure that the buffer does not overflow.
You will need to add methods PackFixed, PackLength, and
PackDelim and the corresponding unpack methods. You will also

need to modify class Person orto create a new class, whose Pack

and Unpack operations take advantage of these new capabilities.

Repeat Programming Exercise 16 for class
VariableLengthBuffer.

https://hemanthrajhemu.github.io

152 Chapter 4 Fundamental File Structure Concepts

20.

21.

Redesign the IOBuf ferclasses toallow arbitraryfield packing as in

the previous two exercises but this time via virtual pack and unpack

methods. One purposeofthis exerciseis to allow class BufferFile
to support these new capabilities.

Implement direct read by RRN_ for buffer class

FixedLengthBuf fer. Add a new implementation for the virtual
methods DRead and DWritein class FixedLengthBuffer.

PROGRAMMING

This is the third part of the programmingproject. We add methodsto

store objects as records in files and load objects from files, using the
TOBuf fer classes of this chapter.

22.

23.

Add Pack and Unpack methods to class Student. Use class

BufferFile to create a file of studentrecords. Test these methods using
the types of buffers supported by the IOBuffer classes.

Add Pack and Unpack methods to class

CourseRegistration. Use class BufferFile to create a file of

course registrations. Test these methods using the types of buffers

supported by the IOBufferclasses.

The next part of the programmingproject is in Chapter6.

https://hemanthrajhemu.github.io

CHAPTER

Managing Files
of Records

CHAPTER OBJECTIVES

“+ Extend the file structure concepts of Chapter 4:

- Search keys and canonical forms,

— Sequential search,

- Direct access, and

— File access andfile organization.

“ Examine otherkindsoffile structures in terms. of

- Abstract data models,

- Metadata,

~ Object-orientedfile access, and

- Extensibility.

“ Examineissues of portability and standardization.

4520https://hemanthrajhemu.github.io

154

5.1

Chapter 5 ManagingFiles of Records

CHAPTER OUTLINE

5.1 Record Access

5.1.1 Record Keys

5.1.2 A Sequential Search
5.1.3 Unix Tools for Sequential Processing

5.1.4 Direct Access .

5.2. More about Record Structures

5.2.1 Choosing a Record Structure and Record Length
5.2.2 Header Records

5.2.3 Adding Headers to C++ Buffer Classes
5.3. Encapsulating Record I/O Operationsin a Single Class

5.4 File Access and File Organization

5.5 Beyond Record Structures

5.5.1 Abstract Data Models for File Access

5.5.2 Headers and Self-Describing Files
5.5.3 Metadata

5.5.4 Color Raster Images

5.5.5 Mixing Object Types in One File
5.5.6 Representation-IndependentFile Access

5.5.7 Extensibility

5.6 Portability and Standardization

5.6.1 Factors Affecting Portability

5,6.2 Achieving Portability

Record Access

5.1.1 Record Keys

Since our newfile structure so clearly focuses on a record as the quantity
of information that is being read or written, it makes sense to think in
terms of retrieving just one specific record rather than readingall the way

throughthe file, displaying everything. When looking for an individual
record, it is convenient to identify the record with a key based on the

record’s contents. For example, in.our name and address file we might
want to access the “Ames record”or the “Masonrecord”rather than think-
ing in termsofthe “first record” or “second record.” (Can you remember

https://hemanthrajhemu.github.io

Record Access 155

which record comesfirst?) This notion of a key is another fundamental
conceptual tool. We need to develop a more exact idea of what a keyis.

Whenweare looking for a record containing the last name Ames, we

wantto recognize it even if the user enters the key in the form “AMES,”

“ames,” or “Ames.” To do this, we must define a standard form for keys,

along with associated rules and procedures for converting keys into this

standard form. A standard form of this kind is often called a canonical
formfor the key. One meaning of the word canonis rule, and the word

canonical means conformingto the rule. A canonical form for a search key

is the single representation for that key that conformsto the rule.
As a simple example, we could state that the canonical form for a key

requires that the key consist solely of uppercase letters and have no extra

blanks at the end.So,if someoneenters “Ames,” we would convert the key

to the canonical] form “AMES”before searchingforit.

It is often desirable to have distinct keys, or keys that uniquely identify
a single record.If there is not a one-to-onerelationship between the key
and a single record, the program hasto provide additional mechanismsto

allow the user to resolve the confusion that can result when more than one

recordfits a particular key. Suppose, for example, that we are looking for

Mary Ames’s address. If there are several records in the file for several

different people named Mary Ames, how should the program respond?

Certainlyit should not just give the addressof the first Mary Amesit finds.

Shouldit give all the addresses at once? Should it provide a wayofscrolling

through the records?

The simplest solution is to prevent such confusion. The prevention
takes place as new records are addedto the file. When the user enters a new
record, we form a unique canonical keyfor that record and then search the
file for that key. This concern about uniqueness applies only to primary
keys. A primary key is, by definition, the key that is used to identify a

record uniquely.

It is also possible, as we seelater, to search on secondary keys. An exam-
ple of a secondary key mightbe the cityfield in our name and addressfile.
If we wantedto find all the records in the file for people wholive in towns

namedStillwater, we would use some canonical form of “Stillwater” as a

secondarykey. Typically, secondary keys do not uniquelyidentify a record.
Although a person’s name mightatfirst seem to be a goodchoicefor

a primary key, a person’s name runs a highrisk of failing the test for

uniqueness.A nameis a perfectly fine secondary key andin fact is often an
important secondary keyin a retrieval system, butthereis too greata like-
lihood that two namesin the samefile will be identical.

https://hemanthrajhemu.github.io

156 Chapter 5 Managing Files of Records

The reason a nameis a risky-choice for a primary keyis that it

contains a real data value. In general, primary keys should be dataless. Even

when wethink weare choosing a unique key,if it contains data,there is a
danger that unforeseen identical values could occur. Sweet (1985) cites an

example ofa file system that used a person’ssocial security number as a
primary key for personnelrecords. Jt turned outthat, in the particular
population that was represented in thefile, there was a large numberof

people who were not UnitedStatescitizens, and in a different part of the

organization,all of these people had been assigned the social security
number 999-99-9999!

Anotherreason, other than uniqueness,that a primary key should be

dataless is that a primary key should be unchanging. If information that
corresponds to a certain record changes and that informationis contained

in a primary key, what do you do about the primary key? You probably

cannot change the primary key, in mostcases, becausethere arelikely to be

reports, memos,indexes, or other sources of information thatrefer to the

record byits primary key. As soon as you changethekey, those references

becomeuseless, .
A goodrule of thumbis to avoid putting data into primary keys. If we

want to access records according to data content, we should assign this
content to secondary keys. We give a moredetailed look at record access by
primary and secondary keys in Chapter 6. For the rest of this chapter, we
suspend our concern about whethera key is primary or secondary and

concentrate on finding things bykey.

5.1.2 A Sequential Search

Now that you know about keys, you should be able to write a program that
reads throughthefile, record by record, looking for a record with a partic-
ular key. Such sequential searching is just a simple extension of our read-
var program—adding a comparison operation to the main looptoseeif
the key for the record matches the key we.are seeking. We leave the

program as an exercise.

Evaluating Performance ofSequential Search

In the chapters that follow, we find ways to search for records that are
faster than the sequential search mechanism. We can use sequential

searching as a kind of baseline against which to measure the improve-

ments we make.It is important, therefore, to find some way of expressing
the amountof time and work expendedin a sequential search.

https://hemanthrajhemu.github.io

Record Access 157

- Developing a performance measure requires that we decide on a unit
of work that usefully represents the constraints on the performance ofthe

whole process. When we describe the performance of searches that take
place in electronic memory, where comparison operations are more

expensive than fetch operationsto bring data in from memory,we usually

use the number of comparisons required for the search as the measure of
work. But, given that the cost of a comparison in memoryis so small

compared with the cost of a disk access, comparisons do notfairly repre-

sent the performance constraints for a search througha file on secondary
storage. Instead, we count low-level Read calls. We assumethat each
Readcall requires a seek and that any one Read call is as costly as any

other. We knowfrom the discussions of matters, such as system buffering
in Chapter 3, that these assumptions are not strictly accurate. But in a
multiuser environment where many processesare using the disk at once,

they are close enough to correctto be useful.

Suppose we havea file with a thousandrecords, and we wantto use a.
sequential search to find Al Smith’s record. How many Readcalls are

required? If Al Smith’s recordis thefirst onein thefile, the program hasto
read in only single record.If it is the last record in the file, the program
makes a thousand Readcalls before concluding the search. For an average
search, 500 calls are needed.

If we'double the numberof recordsin file, we also double both the

average and the maximum number of Read calls required. Using a

sequential search to find Al Smith’s record in a file of two thousandrecords
requires, on the average, a thousandcalls. In other words, the amountof -
work required for a sequential search is directly proportional to the

numberofrecords in thefile.
In general, the work required to search sequentially for a record ina

file with n recordsis proportional to 2: it takes at most n comparisons; on
average it takes approximately n/2 comparisons. A sequentialsearch is said

to be of the order O(n) because the timeit takes is proportional to #1!

Improving Sequential Search Performancewith Record Blocking

It is interesting and useful to apply someofthe information from Chapter
3 about disk performance to the problem of improving sequential search
performance. We learned in Chapter 3 that the majorcost associated with
a disk accessis the time required to perform a seek to the right location on

1. If you are not familiar with this “big-oh” notation, you should look it up. Knuth (1997) is a good
source.

https://hemanthrajhemu.github.io

158 Chapter 5 ManagingFiles of Records

the disk. Once data transfer begins,it is relatively fast, althoughstill much
slower than a data transfer within memory. Consequently, the costof seek-
ing and reading a record, then seeking and reading anotherrecord,is
greater than the cost of seeking just once then reading two successive

records. (Once again, we are assuming a multiuser environment in which
a seek is required for each separate Readcall.) It follows that we should be
able to improve the performance of sequential searching by reading in a

block of several records all at once and then processing that block of
records in memory.

We beganthe previous chapter with a stream of bytes. We grouped the
bytes into fields, then groupedthefields into records. Now weare consid-
ering a yet higher level of organization—grouping records into blocks.

This new level of grouping, however, differs from the others. Whereas

fields and records are ways of maintaining the logical organization within
the file, blocking is done strictly as a performance measure. As such, the

block size is usually related more to the physical properties of the disk

drive than to the contentof the data. For instance, on sector-oriented
disks, the blocksize is almost always some multiple of the sector size.

Suppose that we havea file of four thousandrecords andthatthe aver-

age length of a record is 512 bytes. If our operating system uses sector-

sized buffers of 512 bytes, then an unblocked sequential search requires,

on the average, 2,000 Read calls before it can retrieve a particular record.

By blocking the records in groups of sixteen per block so each Readcall

brings in 8 kilobytes worth ofrecords, the numberofreads required for an

average search comes down to 125. Each Read requires slightly more

time, since moredata is transferred from the disk, butthis is a cost that is

usually well worth paying for such a large reduction in the numberof
reads. .

There are several things to note from this analysis and discussion of
record blocking:

m Although blocking can result in substantial performance improve-

ments,it does not change the order of the sequential search operation.
The cost of searchingisstill O(n), increasing in direct proportion to
increasesin thesize of the file.

mM Blockingclearly reflects the differences between memoryaccess speed

and the cost of accessing secondarystorage.

m@ Blocking does not change the number of comparisons that must be

done in memory, andit probably increases the amountof data trans-

ferred between disk and memory. (Wealways read a whole block, even
if the record weare seekingis the first one in the block.)

https://hemanthrajhemu.github.io

Record Access 159

m Blocking saves time because it decreases the amount of seeking. We
find, again and again,thatthis differential between the cost of seeking

and the cost of other operations, such as data transfer or memory
access, is the force that drivesfile structure design.

When Sequential SearchingIs Good

Muchof the remainderofthis text is devoted to identifying better ways to
access individual records; sequential searching is just too expensive for

mostserious retrieval situations. This is unfortunate because sequential
access has two major practical advantages over other typesof access:it is

extremely easy to program, andit requires the simplestoffile structures,

Whether sequential searching is advisable dependslargely on how the

file is to be used, how fast the computer system is that is performing the
search, and howthefile is structured. There are manysituations in which

a sequential search is reasonable. Here are some examples:

m ASCII files in which you are searching for some pattern (see grep in

the next section);

m Files with few records (for example, ten records);

" Files that hardly ever need to be searched (for example, tape files

usually used for other kinds of processing); and

m Files in which you wantall records with a certain secondary key value,
wherea large number of matchesis expected.

Fortunately, these sorts of applications do occur often in day-to-day

computing—so often,in fact, that operating systems provide manyutili-

ties for performing sequential processing. Unix is one of the best examples
of this, as we see in the next section.

5.1.3 Unix Tools for Sequential Processing

Recognizing the importance ofhaving a standard file structure that is
simple and easy to program, the most commonfile structure that occurs in
Unix is an ASCIIfile with the new-line characteras the record delimiter and,

when possible, white space as the field delimiter. Practically all files that we

create with Unix editors use this structure. And since most of the built-in C

and C++ functions that perform I/O write to this kind offile, it is common

to see data files that consist of fields of numbers or wordsseparated by

blanks or tabs and records separated by new-line characters. Suchfiles are

simple and easyto process. We can,for instance, generate an ASCIIfile with

a simple program andthen use an editor to browse throughit or alterit.

https://hemanthrajhemu.github.io

160 Chapter 5 ManagingFiles of Records

Unix provides a rich array oftools for working with files in this form.
Since this kind offile structure is inherently sequential (records are vari-
able in length, so we have to pass from record torecordto find any partic-

ular field or record), manyof these tools processfiles sequentially.
Suppose,for instance, that we choose the white-space/new-line struc-

- ture for our addressfile, ending every field with a tab and ending every

record with a newline, While this causes some problemsin distinguishing
fields (a blank is white space, but it doesn’t separate a field) and in that

sense is not an ideal structure, it buys us something very valuable: the full

use of those Unix tools that are built around the white-space/new-line
structure. For example, we can printthe file on our console using any of a

numberofutilities, some of whichfollow.

cat

% cat myfile

Ames Mary 123 Maple Stillwater OK 74075

MasonAlan 90 Eastgate Ada OK 74820

Or we can use tools like we and grep for processingthefiles..

wc

The command we (word count) reads throughan ASCIIfile sequentially
and counts the numberoflines (delimited by new lines), words (delimit-

ed by white space), and characters in file:

% wc myfile

2 14 76

grep

It is commonto wantto knowif textfile has a certain word or character
string in it. For ASCII files that can reasonably be searched sequentially,
Unix provides an excellentfilter for doing this called grep (andits vari-

ants egrep and fgrep). The word grepstandsfor generalized regular

expression, which describesthe type of pattern that grepis able to recog-
nize. In its simplest form, grep searches sequentially througha file for a
pattern. It then returns to standard output (the console) all the lines in the

file that contain the pattern.

% grep Ada myfile
MasonAlan 90 Eastgate Ada OK 74820

https://hemanthrajhemu.github.io

Record Access 161

"Wecan also combinetools to create, on thefly, some very powerfulfile
processing software. For example, to find the numberoflines containing
the word Ada and the numberofwords and bytesin those lines we use

% grep Ada myfile | we

1 7 36

As we move throughthetext, we will encounter a numberof other
powerful Unix commandsthat sequentially process files with the basic
white-space/new-linestructure.

5.1.4 Direct Access

The mostradical alternative to searching sequentially through file for a

record is a retrieval mechanism known as direct access. We have direct

access to a record when wecan seek directly to the beginningofthe record
andreadit in. Whereas sequential searching is an O(n) operation,direct
access is O(1). No matter howlargethefile is, we can still get to the record
we want with a single seek. Class TOBuffer includes direct read

(DRead)and write (DWrite) operations using the byte address of the
record as the record reference:

int IiOBuffer::DRead (istream & stream, int recref)

// read specified record.

{
stream . seekg (recref, ios::beg);

if (stream . tellg () != recref) return -1;

return Read (stream); ‘

}

The DRead function begins by seeking to the requested spot.If this does
not work, the function fails. Typically this happens when the requestis

beyond the end-of-file. After the seek succeeds, the regular, sequential
Read methodofthe buffer object is called. Because Readis virtual, the
system selects the correct one.

Here weareable to write the direct read and write methods for the base

class [OBuf fer, even thoughthatclass does not have sequential read and
write functions. In fact, even when we add new derivedclasses with their

own different Read and Write methods, westill do not have to change
Dread.Score anotheronefor inheritance and object-oriented design!

The major problem with direct access is knowing where the beginning

of the required recordis. Sometimes this information aboutrecord loca-
tion is carried in a separate indexfile. But, for the moment, we assumethat

https://hemanthrajhemu.github.io

162 Chapter 5 ManagingFiles of Records

we do not have an index. We assume that we know therelative record
number (RRN) of the record we want. RRN is an important concept that

emerges from viewinga file as a collection of records rather than as a

collection of bytes. If a file is a sequence of records, the RRN of a record

gives its position relative to the beginningofthefile. The first record in a

file has RRN 0, the next has RRN 1, andso forth.? .
In our name and addressfile, we might tie a record to its RRN by

assigning membership numbersthat are related to the order in which we
enter the recordsin the file. The person with the first record might have a
membership number of 1001, the second a number of 1002, and so on.

Given a membership number, we can subtract 1001 to get the RRN of the

record.
What can we do with this RRN? Not much,given the file structures we

have been using so far, which consist of variable-length records. The RRN
tells us the relative position of the record we want in the sequence of

records, but westill have to read sequentially throughthefile, counting
records as we go, to get to the record we want. An exercise at the end of this

chapter explores a method of moving throughthefile called skip sequen-
tial processing, which can improve performance somewhat, but looking

for a particular RRNisstill an O(n) process.

To support direct access by RRN, we need to work with records of
fixed, known length.If the recordsare all the same length, we can use a

record’s RRN to calculate the byte offset of the start of the record relative to
the start of the file. For instance, if we are interested in the record with an

RRN of 546 and ourfile has a fixed-length record size of 128 bytes per

record, we can calculate the byteoffset as

Byte offset = 546 x 128 = 69 888

In general, given a fixed-length record file wheretherecord sizeis 7, the
byte offset of a record with an RRNof n is

Byte offset = 1x r

Programming languages andoperating systemsdiffer regarding where
this byte offset calculation is done and even whetherbyte offsets are used

for addressing withinfiles. In C++ (and the Unix and MS-DOSoperating

systems), where a file is treated as just a sequence of bytes, the application

program doesthe calculation and uses the seekg and seekp methodsto

2. In keeping with the converitions of C and C++, we assumethat the RRNis a zero-based count. In

some file systems, the count starts at] rather than 0.

https://hemanthrajhemu.github.io

5.2

More about Record Structures 163

jump to the byte that begins the record. All movementwithin file is in
terms of bytes. This is a very low-level view of files; the responsibility for

translating an RRN into a byte offset belongs wholly to the application

program andnotatall to the programming language or operating system.
Class FixedLengthBuf fercan be extended with its own methods

DRead and DWrite that interpret the recref argument as RRN
instead of byte address. The methods are defined as virtual in class
TOBuf ferto allow this. The code in Appendix F does not includethis
extension;it is left as an exercise.

The Cobollanguage and the operating environments in which Cobolis

often used (OS/MVS, VMS) are examples of a muchdifferent, higher-level

view of files. The notion of a sequence ofbytesis simply not present when
you are working with record-orientedfiles in this environment. Instead,files

are viewedas collections of records that are accessed by keys. The operating
system takes care of the translation between a key and a record’s location.In

the simplest case, the key isjust the record’s RRN,but the determination of

location within thefile is still not the programmer’s concern,

More about Record Structures

5.2.1 Choosing a Record Structure and Record Length

Once we decideto fix the length of our records so we can use the RRN to

give us direct access to a record, we have to decide on a record length.
Clearly, this decision is related to the size of the fields we wantto store in
the record. Sometimes the decision is easy. Suppose we are building file

of sales transactions that contain the following information about each
transaction:

m A six-digit account numberof the purchaser,

mw Six digits for the datefield,

m@ five-character stock numberfor the item purchased,

mw A three-digit field for quantity, and

m A ten-position field for total cost.

Theseareall fixed-length fields; the sum of thefield lengthsi§ 30 bytes.
Normally we would stick with this record size, but if performance is so
important that we need to squeezeevery bit of speed outofourretrieval

system, we mighttry to fit the record size to the block organization of our

https://hemanthrajhemu.github.io

164 Chapter 5 ManagingFiles of Records

disk. For instance, if we intendto store the records ona typicalsectored disk

(see Chapter 3) with a sectr: size of 512 bytes or some other powerof 2, we
might decide to pad the record out to 32 bytes so we can place an integral

numberof recordsin a sector. That way, records will never spansectors.
The choice of a record length is more complicated whenthe lengths of

' the fields can vary, as in our name and addressfile. If we choose a record
length that is the sum ofourestimatesofthe largest possible valuesforall

the fields, we can be reasonably sure that we have enough space for every-
thing, but we also waste a lot of space.If, on the other hand, weare conser-

vative in our use of space andfix the lengthsoffields at smaller values, we

may have to leave information out ofa field. Fortunately, we can avoid this

problem to some degree by appropriate design of thefield structure with-
in a record.

In our earlier discussion of record structures, we saw that there are two
general approaches we can take toward organizingfields within a fixed-

length record. Thefirst, illustrated in Fig. 5.1(a) and implementedin class
FixedFieldBuffer,uses fixed-length fields inside the fixed-length

record. This is the approach wetook forthesales transactionfile previ-
ously described. The second approach,illustrated in Fig. 5.1(b), uses the

fixed-length record as a kind of standard-sized container for holding
something that lookslike a variable-length record.

The first approach has the virtue of simplicity:it is very easy to “break
out”the fixed-length fields from within a fixed-length record. The second
approachlets us take advantage of an averaging-out effect that usually
occurs: the longest namesare not likely to appear in the same record as the

longest address field. By letting the field boundaries vary, we can make

Ames Mary 123 Maple Stillwater OK74075

 Mason Alan 90 Eastgate Ada OK74820

(a)

Ames; Mary |}123 Maple! Stillwater | OK | 74075 ,+——\ Unused space——>

 Mason; Alan}SO Eastgate ‘Ada! 0K! 74820 } «———— Unused space——»

(b)

Figure 5.1 Two fundamental approachestofield structure within a fixed-
length record. (a) Fixed-length records with fixed-lengthfields. (b) Fixed-

length records with variable-lengthfields.

https://hemanthrajhemu.github.io

More about Record Structures 165

more efficient useof a fixed amount of space. Also, note that the two
approaches are not mutually exclusive. Given a record that contains a
numberoftruly fixed-length fields and somefields that have variable-

length information, we might design a record structure that combines
these two approaches.

One interesting question that must be resolved in the design of this
kind of structure is that of distinguishing the real-data portion of the

record from the unused-space portion. The range of possible solutions

parallels that of the solutions for recognizing variable-length records in
any other context: we can place a record-length count at the beginning of

the record, we can use a special delimiter at the end of the record, we can

countfields, and so on.As usual, there is no single right way to implement

this file structure; instead weseek the solution that is most appropriate for
our needs andsituation.

Figure 5,2 shows the hex dump output from the twostyles of repre-
senting variable-lengthfields in a fixed-length record.Eachfile has a head-

er record that contains three 2-byte values: the size of the header, the

numberof records, and the size of each record. A full discussion of head-
ers is deferred to the next section. For now, however,just look at the struc-

ture of the data records. We haveitalicized the length fields at the start of
the recordsin the file dump. Although wefilled out the records in Fig. 5.2b
with blanks to make the output more readable, this blank fill is unneces-
sary. The length field at the start of the record guarantees that we do not
read past the end of the data in the record.

5.2.2 Header Records

It is often necessary or useful to keep track of some general information

about a file to assist in future use ofthe file. A header record is often placed

at the beginningofthefile to hold this kind of information. For example,

in some languagesthere is no easy way to jumpto the end ofa file, even

though the implementation supports direct access. One simple solution is
to keep a count of the numberofrecordsin the file and to store that count
somewhere. We mightalso find it useful to include information such as

the length of the data records, the date and timeofthe file’s most recent
update, the nameofthefile, and so on. Header records can help makea file
a self-describing object, freeing the software that accesses the file from

having to know a priori everything aboutits structure, hence making the

file-access software able to deal with more variation in file structures.

The header record usually has a different structure than the data
records in thefile. Thefile of Fig. 5.2a, forinstance, uses a 32-byte header

https://hemanthrajhemu.github.io

C
h
a
p
t
e
r
5

Ma
na

gi
ng
F
i
l
e
s
of

Re
co
rd
s

1
6
6

“Spay YYHua]-ajqeiuea $P1091 AUl SdJAq ajqesn JO JOqUINU aU} $8}eI!PU! Je} Pjaly (9JAq-Z) YyHua|

-paxy e@ ym Buluutbaq (y2eRe SaiAq gQ) spioda YyHua}-paxy pue sapeay ayAq (Zp) -99 e Bujuleyuo a}t4 (q) dayDeseyd |jnu

e Aq payeusuiiay ave yey} spjayy yyBuaj-ajqeten Burulejuod (yea $ayAq 79) Sp1oI91 YHUa|-paxly Om] ue Japeay aydq (?'QZ) -Z7£

eB Huluseyuod aji4 (2) prodes YyHua|-paxiy e Ul spjayy YIHuUa|-ajqewea Aled JeU] SaNjJoNjs Puodad JUBIaYIP OML 77g BaNBly

pio.az puodsasg

pzodar ayy UT eRep Jo saqAq

jo Zequnu ayy

sutequos salqAq om}

QSaTj ut aebequr

proset 4SATy

(89) eZzTs pAzAoDer '(Z) quo. p100ez

(99) SZTS Aapeay +: tepeay

prosar pusljas

. przosar 4ASAtTA

(#9) SZTS paodea '(Z) WuNeD pazcder

‘(Ze) ezts zspeeay :‘AepesH

lozspz|xo|

epyl|eqesjse” 06|
ueTy|uosey’ $

|S£OpL|HxO| 22

FemTT tas letden ¢

ZT | ATeW | seury:)

eee eee ea eee loz

pL {yo|epy{eqebas
eq 06 |UeTY|UCSeW

eee wee we |SLop.|x

Q| taqemz [TAS |eTd

PW EZT | Aten] seuy

(q)

0z0z
oz0z
1969
3919

Ocz0c

OCOC

DLT

Cele

0000

0000

0000

0000

(e)

0000

0000

PELE

T9SP

0000

0000

FPOL

T9PP

0000

0000

0cOz

OcO?

TROL

OOTY

OcOz

0c00

LL99

OL6L

0000

0000

0000

0000

0000
0000
2L4p
OzO0£
0000
0000
ZLS9
ozee
0000

0000

0202

0200

SOL

OLE9

0¢0z2

OLSE

2969

eLT9

0000

0000

0000

6000

0000

oo00

FPL

6E9L

0000

0000

VLTS

cETE

0000

0000

O20

OL0E

‘TOLO

F9EL

OcO0¢

LEQe

VLES

PPoOLl

0000

0000

0000

0000

0000

0000

T9P9

SOT

0000

0000

LL29

9L6L

0000

Oz0z

ZEBE

PLEL
TOPp

020

PELE

OLS

€LS9

0000
0000
0000

0000

0000

ooa0

TROL

OOTP

0000

9LSE

2969

CLT

0000

Ocz0zc

azae

PELE
T9SD

’cO0

0202

oLAD

9904

B9TY

0000

‘0000

0000

PPOO

0000

0000

S9bL

9L589

6000

LEOE

PLES

Ppek

Q000

0202

0z0c

OLY

OcOE

O20.

aco7e

FPOL

TOPP

8200

0000

0000

0000

c000

0000

OLOE

T9L9

S9EL

0000

PELE

9LG9

e299

0000

0000 0000 oaF00 Zd00

020¢

020¢

SPL

6094

O0cOe

020z

cLS9

“OZEE

‘9000

0000

0000

0000

ZrOO

0000

cEBE

PLEL

TOPD

0000

OLAP

9908

POTD

0000

0c00

O0€0000

0970000

ovzooon

0220000

bOZ0000

00z0000

09TO0000

o7Toadd

oztoo0a0

ZOTOOO0

OOTQO00

0900000

0FO0000

0z00000

0000000

azz0000

00z0000

o9T0000

OFTOO00

0zTOO00

o0oTOGOO

0900000

a7vooo00

oco0000

0000000

https://hemanthrajhemu.github.io

More about Record Structures 167

record, whereas the data records each contain 64 bytes. Furthermore,the
data recordsofthis file contain only character data, whereas the header

record contains integer fields that record the header record size, the

numberof data records, and the data record size.

Header records are a widely used, important file design tool. For
example, when wereachthe point at which weare discussing the construc-
tion of tree-structured indexesforfiles, we will see that header records are

often placed at the beginningof the index to keep track of such matters as
the RRN of the record thatis the root of the index.

5.2.3 Adding Headers to C++ Buffer Classes

This section is an example of how to add header processing to the

TOBuf ferclass hierarchy. It is not intended to show anoptimal strategy

for headers. However,these headers are usedin all further examples in the
book. The Open methods of newclasses take advantage ofthis header
strategy to verify that the file being openedis appropriateforits use. The
importantprinciple is that each file contains a header that incorporates
information about the typeof objects storedin the file.

Thefull definition of our buffer class hierarchy, as given in Appendix
F, has been extendedto include methods that support header records.

Class TOBuf fer includes the following methods:

virtual int ReadHeader ();

virtual int WriteHeader ();

Mostofthe classes in the hierarchy include their own versions of these

methods. The write methods add a headerto file and return the number
of bytes in the header. The read methods read the header and check for

consistency. If the header at the beginningofa file is not the proper head-

er for the buffer object, a FALSE valueis returned;if it is the correct head-

er, TRUE is returned.

To illustrate the use-of headers, we look at fixed-length record files as
defined in classes TOBuffer and FixedLengthBuf fer. Theseclasses

were introduced in Chapter 4 and now include methods ReadHeéaderand

WriteHeader, Appendix F contains the implementation of these meth-

odsofall of the buffer classes. The Writ eHeader method for IOBuf fer
writes the string TOBuffer at the beginningof thefile. The header for

FixedLengthBuf feraddsthe string Fixed and the recordsize.
The ReadHeader method of FixedLengthBuffer reads the

record size ftom the header and checksthat its value is the same as that of

the BufferSize memberofthe buffer object. That is, ReadHeader

https://hemanthrajhemu.github.io

168

5.3

Chapter 5 ManagingFiles of Records

verifies that the file was created using fixed-size records that are the right
size for using the buffer object for reading and writing.

Another aspect of using headers in these classes is that the
header can be used to initialize the buffer.-At the end of
FixedLengthBuffer: :ReadHeader (see Appendix F), after the

. buffer has been found to be uninitialized, the record size of the bufferis set

to the record size that was read from the header.
You will recall that in Section 4.5, “An Object-Oriented Class for

RecordFiles,” we introduced class Buf ferFile asa wayto guarantee the
proper interaction between buffers and files. Now that the buffer classes
support headers, BufferFile: :Create puts the correct header in

everyfile, and Buffer: : Openeither checks for consistency orinitializes

the buffer, as appropriate. BufferFile: : ReadHeaderis called by
Open anddoesall of its work in a single virtual function call. Appendix F
has the details of the implementation of these methods.

BufferFile: : Rewind repositions the get and putfile pointers to
the beginningofthefirst data record—thatis, after the header record. This
method is required because the HeaderSize memberis protected.

Without this method,it would be impossible to initiate a sequential read

ofthe file.

Encapsulating Record I/O Operationsin a Single Class

A good object-oriented design for making objects persistent should
provide operations to read and write objects directly. So far, the write

Operation requires two separate operations: pack into a buffer and write
the buffer to a file. In this section, we introduce class RecordFile which

supports a read operation that takes an object of someclass and writesit
to a file. The use of buffers is hidden inside the class.

The major problem with defining class RecordFile is how to make

it possible to supportfiles for different object types without needing
different versions of the class. Consider the following code that appearsto

read a Person from one file and a Recording (a class defined in

Chapter 7) from anotherfile:

Person p; RecordFile pFile; pFile . Read (p);

Recording r; RecordFile rFile; rFile . Read (r);

Is it possible that class RecordFile can support read and unpack for a

Person and a Recording without change? Certainly the objects are

different—they havedifferent unpacking methods. Virtual function calls

https://hemanthrajhemu.github.io

Encapsulating Record !/O Operationsin a Single Class 169

do not help because Person and Recordingdo not have a common

base type.” It is the C++ template feature that solves our problem by
" supporting parameterized function and class definitions. Figure 5.3 gives

the definition of the template class RecordFile.

f#finclude "buffile.h"

#include "“iobuffer.h"

// template class to support direct read and write of records

// The template parameter RecType must .support the following

if. int Pack (BufferType &); pack record into buffer

// int Unpack {BufferType &); unpack record from buffer

template <class RecType>

class RecordFile: public BufferFile

{public:

int Read (RecType & record, int recaddr = -1);

int Write (const RecType & record, int recaddr = -1)};

RecordFile (I0Buffer & buffer): BufferFile (buffer) (}

i

// template method bodies

template <class RecType>

int RecordFile<RecType>::Read (RecType & record, int recaddr = -1)

{
int writeAddr, result;

writeAddr = BufferFile::Read (recaddr) ;

L£ (!writeAddr) return -1;

result = record . Unpack (Buffer);

if (!result) return -1;

return writeAddr;

template <class RecType>

int RecordFile<RecType>::Write (const RecType & record, int recad-

dr = -i)

{
int result;

result = record . Pack (Buffer) ;

if (tresult) return -1;

return BufferFile::Write (recaddr) ;

Figure 5.3 Template class RecordFile.

https://hemanthrajhemu.github.io

170 Chapter 5 ManagingFiles of Records

The definition of class RecordFile is a template in the usual
sense of the word: a pattern that is used as a guide to make some-
thing accurately. The definition does not define a specific class but

rather shows how particular record file classes can be constructed.

When a template class is supplied with values for its parameters,it
becomesa real class. For instance, the following defines an object called

PersonFile: |

RecordFile<Person> PersonFile (Buffer);

The object Personfile isa RecordFile that operates on Person

objects. All of the operations of RecordFile<Person>areavailable,
including those from the parent class Buf ferFile. The followingcode

includes legitimate uses of PersonFile:

Person person;

PersonFile.Create("person.dat", ios::in); // create a file

PersonFile.Read(person); // read a record into person

PersonFile.Append(person); // write person at end of file

PersonFile.Open("person.dat", ios::in); // open and check header

Template definitions in C++ support the reuse of code. We can write

a single class and use it in multiple contexts. The same RecordFile class

declared here and usedforfiles of Person objects will be used in subse-
quent chapters for quite different objects. No changes need be madeto
RecordFile to support these different uses.

Program test file.cpp,in Appendix F, uses RecordFile totest

all of the buffer I/O classes. It also includes a template function,

TestBuffer, whichis used forall of the buffer tests.

5.4 File Access and File Organization

In the course of our discussions in this and the previous chapter, we have
looked at

@ Variable-length records,

m Fixed-length records, .

B Sequential access, and

a Direct access.

https://hemanthrajhemu.github.io

File Access and File Organization 171

Thefirst two of these relate to aspects offile organization; the last two have
to do with file access. The interaction between file organization andfile

access is a useful one; we need to look at it more closely before continuing.
-Most of what we have consideredsofarfalls into the categoryoffile

organization:

m Can the file be divided into fields?

m Is there a higher level of organization to the file that combines the

fields into records?

m Doall the records have the same numberofbytes or fields?

m™ How do wedistinguish one record from another?

m How do weorganize the internal structure ofa fixed-length record so
we can distinguish between data and extra space?

We have seen that there are manypossible answers to these questions and

that the choice of a particular file organization depends on manythings,

includingthefile-handlingfacilities of the languageyou are using and the

use you want to make ofthefile.

Using a file implies access. We lookedfirst at sequential access, ulti-

mately developing a sequential search. As long as we did not know where

individual records began, sequential access was the only option opento us.
When we wanted direct access, wefixed the length of our records, and this

allowed us to calculate precisely where each record began and to seek
directly to it.

In other words, our desire for direct access caused us to choose fixed-

length record file organization. Does this mean that we can equate fixed-

length records with direct access? Definitely not. There is nothing about
our having fixed the length of the recordsin file that precludes sequen-
tial access; we certainly could write a program that reads seqnentially

through a fixed-length recordfile.

Not only can weelect to read throughthe fixed-length records sequen-

tially but we can also provide direct access to variable-length records
simply by keepinga list of the byte offsets from thestart of the file for the
placementof each record. We chose a fixed-length record structure for the

files of Fig. 5.2 becauseit is simple and adequatefor the data we wanted to

store. Although thelerigths of our names and addresses vary, the variation

is not so great that we cannot accommodateitin a fixed-length record.

Consider, however,the effects of using a fixed-length record organiza-
tion to provide direct access to documents ranging in length from a few
hundred bytes to more than a hundred kilobytes. Using fixed-length

https://hemanthrajhemu.github.io

172

5.9

Chapter 5 ManagingFiles of Records

records to store these documents would bedisastrously wasteful of space,

so some form of variable-length record structure would have to be found.
Developing file structures to handle such situations requires that you

clearly distinguish between the matter ofaccess and your options regard-

ing organization.

The restrictions imposed by the language and file system used to
develop your applications impose limits on your ability to take advantage

of this distinction between access method and organization. For example,

the C++ language provides the programmerwith theability to implement
direct access to variable-length records, since it allows access to any byte in

thefile. On the other hand, Pascal, even whenseeking is supported, impos-

es limitations related to the language’s definition of a file as a collection of
elements that are all of the same type and, consequently, size. Since the

elements must all be of the samesize, direct access to variable-length

" recordsis difficult, at best, in Pascal,

BeyondRecord Structures

Nowthat we have a grip on the concepts of organization and access, we
look at some interesting newfile organizations and more complex ways of

accessing files. We want to extend the notion of a file beyond the simple

idea of records and fields.
Webegin with the idea of abstract data models. Our purpose hereis to

put some distance between the physical and logical organization offiles to

allow us to focus more on the information contentof files and less on

physical format. |

5.5.1 Abstract Data Models for File Access

The history offile structures andfile processing parallels that of comput-
er hardware and software. Whenfile processing first became common on
computers, magnetic tape and punched cards were the primary means

used to store files. Memory space was dear, and programming languages

were primitive. Programmers as well as users were compelled to viewfile
data exactly as it might appear on a tape or cards—as a sequence offields

and records. Even after the data was loaded into memory, the tools for

manipulating and viewing the data were unsophisticated andreflected the
magnetic tape metaphor. Data processing meant processing fields and

records in thetraditionalsense.

https://hemanthrajhemu.github.io

Beyond Record Structures 173

Gradually, computerusers began to recognize that computers could

process more thanjust fields.and records. Computers could,for instance,

process and transmit sound, and they could process and display images
and documents (Fig. 5.4). These kinds of applications deal with informa-

tion that does notfit the metaphorof data stored as sequencesof records
that are divided into fields, even if, ultimately, the data might be stored

physically in the form offields and records.It is easier, in the mind’s eye,

to envision data objects such as documents, images, and sound as objects
we manipulate in ways that are specific to the objects, rather than simply
as fields and records on disk.

The notion that we need not view data only as it appears on partic-

ular medium iscaptured in the phrase abstract data model, a termthat
encourages an application-oriented view of data rather than a medium-

oriented one. The organization and access methods of abstract data
models are described in terms of how an application viewsthedata rather
than how the data might physically be stored.

One way wesave a user from having to know aboutobjects in file is
to keep information in thefile thatfile-access software can use to “under-

stand”those objects. A good example of how this might be doneis to put

file structure information in a header. ,

5.5.2 Headers and Self-Describing Files

We have seen how a header record can be used to keep track of how many
records there are in file. If our programming language permitsit, we can
put much moreelaborate information about a file’s structure in the head-

er. Whena file’s header contains this sort of information, wesay thefileis
self-describing. Suppose,for instance, that we store in file the following

information:

Figure 5.4 Data such as sound, images, and documents donotfit the traditional
metaphorof data stored as sequencesof records that are dividedintofields.

https://hemanthrajhemu.github.io

174 Chapter 5 ManagingFiles of Records

mw Anameforeach field,

m The width of eachfield, and

m@ The numberoffields per record.

We can now write a program that can read and print a meaningfuldisplay
‘of files with any numberof fields per record and anyvarietyof fixed-
length field widths. In general, the more file structure information we put
into a file’s header, the less our software needs to know aboutthespecific

structure of anindividualfile.

As usual, there is a trade-off: if we do not hard-codethe field and

record structuresoffiles in the programsthat read and write them,the

programs must be more sophisticated, They mustbeflexible enough to

interpret the self-descriptions they find in thefile headers.
Consider the class FixedFieldBuf fer, which keeps track of the

sizes of all fields. We can extend the header to be moreself-describing by
including the numberoffields and theirsizes. The final piece of the head-
er is created by the FixedFieldBuffer: :WriteHeader method.
Forthis header, we want'to record the numberoffields andthesize of each
field. This information is stored in the members NumFields and

FieldSize. This requires a variable-sized header, since the numberof
fields, hence the numberofsizes in the header, are different for differ-

ent record types. We chooseto store this information in the file header

by writing it directly into the file as a sequence of fixed-size binary

fields. This strategy is very compact and is easy to implement. Now
FixedFieldBuffer: : ReadHeader can checkfor full consistency

of file and buffer and canalso fully initialize a buffer when openinga file.

The resulting file with its header for our two Person objectsis given
in Fig. 5.5, The value after “Fixed”in italics (00 0000 3d) is the recordsize,

61. The value after “Field”in italics (0000 0006) is the numberoffields.

_ Thefield sizes follow, 4 bytes each.

One advantage of putting this header in the file is that the
FixedFieldBuffer object canbe initialized from the header. The

ReadHeader method of FixedFieldBuffer,after reading the

header, checks whetherthe buffer object has been initialized. If not, the
information from the headeris used toinitialize the object. The bodyof

ReadHeaderIs given in Appendix F.

5.5.3 Metadata

Suppose you.are an astronomerinterested in studying images generated by

telescopes that scan the sky, and you wantto designa file structure for the
‘

https://hemanthrajhemu.github.io

Beyond RecordStructures 175

0000000

0000020

0000040

0000060
a

0000100

0000120

0000140

0000160

0000200

0000220

0000240

Y oOo B u £ £ e xr F i x e da \O \O \O
494f 4275 6666 6572 4669° 7865 6400 0000

= F ie 1 dad \0 \O \0 006 \O \O \O \n \O \O
3d46 6965 6c64 0000 0006 0000 000a* 0000

\O \n \O \O \O 017 \O \O \O 017 \O \O \O 002 \O \O
000a 0000 o00f 0000 O00f 0000 0002 0000

\O \t A m.e s \O \O \O \O \O \O M a xr y
0009 416d 6573 0000 0000 0000 461 7279

\O \O \O \O \O \O 1 2 3 M ap 1 e \0
0000 0000 0000 3132 3320 4d61 706c 6500

‘oO \O \O \O \O S € 2 1 1 weoaet eer \0Q

0000 9000 0053 7469 6c6c 3—s7761 7465 7200
\o \O \O \O oOo kK 7 4 0 7 § \O \O \O \O mM

0000 0000 4f4b 33734 3037 3500 0000 004a
a so on \0O \O \O \O \O A 1 aon \O \Q \O

6173 . 6f6e 0000 0000 0041 6c61 6200 0000
\O \O. \O0 9 0 E aos tg a t e \O \0

0000 0039 3020 4561 7374 6761 7465 0000
\O \O A @ a \O \O \O \O \O \O \O \O \O \O \O

0000 4164 6100 0000 0000 0000 0000 0000
‘Oo O K 7 4 8 2 O \O0 \O \O \O

004F 4b37 3438 3230 0000 0000

Figure 5.5 File dumpofa fixed-field file with descriptive header.

digital representations of these images (Fig. 5.6). You expect to have many
images, perhaps thousands, that you want to study, and you wantto store

one image perfile. While you are primarily interested in studying the
images, you will certainly need information about each image: wherein
the sky the image is from, when it was made, whattelescope was used,
what other imagesare related, andso forth.

This kind of information is ‘called metadata—data that describes the
primary data in a file. Metadata can be incorporatedinto anyfile whose

primary data requires supporting information.If file is going to be

shared by many users, some of whom might not otherwise have easy
access to its metadata, it may be most convenientto store the metadata in

the file. A commonplace to store metadatain file is the header record.

Typically, a communityof usersof a particular kind of data agrees on
a standard format for holding metadata. For example, a standard format
called FITS (Flexible Image Transport System) has been developed by the

International Astronomers’ Union for storing the kind of astronomical

https://hemanthrajhemu.github.io

176

Chapter 5 ManagingFiles of Records

Figure 5.6 To make sense of this

2-megabyte image, an astronomer

needs such metadata asthe kind of

imageit is, the part of the skyit is

from, and the telescope that was
used to view it. Astronomical
metadata is often stored in the same

file as the dataitself. (This image
showspolarized radio emission from
the southern spiral galaxy NGC 5236

[M83] as observed with the Very
Large Array radio telescope in New

Mexico.)

data just described in file’s header.3 A FITS headeris a collection of 2880-

‘ byte blocks of 80-byte ASCII records, in which each record contains a
single piece of metadata. Figure 5.7 showspart of a FITS header. In a FITS
file, the header is followed by the numbers that describe the image, one
binary numberper observed pointof the image.

Note that the designers of the FITS format chose to use ASCII in the
header but binaryvalues for the image. ASCII headers are easy to read and
process and, since they occur only once, take up relatively little space.
Because the numbers that make a FITS image are rarelyread by humans
butare first processed into a picture and then displayed, binary formatis
the preferred choice for them.

A FITS imageis a good example of an abstract data model. The data is

meaningless without the interpretive information contained in the head-
er, and FITS-specific methods must be employed to convert FITSdata into
an understandable image. Another exampleis the raster image, which we

will look at next.

5.5.4 Color Raster images

From a user’s point of view, a modern computeris as much a graphical

device as it is a data processor. Whether we are working with documents,

3. For more details on FITS,see the references listed at the endof this chapter in “Further Readings.”

https://hemanthrajhemu.github.io

Beyond Record Structures 177

SIMPLE. = T /CONFORMS TO BASIC FORMAT

BITPIX = 16 / BITS PER PIXEL.

NAXIS = 2 / NUMBER OF AXES

NAXISi = 256 / RA AXIS -DIMENSION

NAXIS2 = 256 / DEC AXIS DIMENSTON

EXTEND = F / T MEANS STANDARD EXTENSIONS EXIST

BSCALE = 0.000100000 / TRUE = [TAPE*BSCALE}<p1>BZERO

BZERO = Q.000000000 / OFFSET TO TRUE PIXEL VALUES

MAPTYPE= 'REL EXPOSURE' / INTENSITY OR RELATIVE EXPOSURE MAP

BUNIT =' ' / DIMENSIONLESS PEAK EXPOSURE FRACTION

CRVAL1L = 0.625 / RA REF POINT VALUE {DEGREES}

CRPIX1L = 128.500 / RA REF POINT PIXEL LOCATION

CDELT1 = -Q0.006666700 / RA INCREMENT ALONG AXIS (DEGREES)

CTYPEL = ‘RA—TAN’ / RA TYPE

CROTAL = 0.000 / RA ROTATION
CRVAL2° = 71.967 / DEC REF POINT VALUE (DEGREES)

CRPIX2 = 128.500 / DEC REF POINT PIXEL LOCATION

CDELT2 = 0.006666700 / DEC INCREMENT ALONG AXIS (DEGREES)

CTYPE2 = 'DEC-—TAN' / DEC TYPE ©

CROTA2Z = 0.000 / DEC ROTATION

EPOCH = 1950.0 / EPOCH OF COORDINATE SYSTEM

ARR TYPE= 4 / 1=DP, 3=FP, 4=1

DATAMAX = 1.000 / PEAK INTENSITY (TRUE)

‘DATAMIN = 0.000 / MONIMUM INTENSITY (TRUE)

ROLL ANG= -22.450 / ROLL ANGLE (DEGREES)

BAD ASP = 0 / O=good, l=bad(Do not use roll angle)

TIME LIV= 5649.6 / LIVE TIME (SECONDS)

OBJECT = 'REM6791 ' / SEQUENCE NUMBER ;

AVGOFFY = 1.899 / AVG Y OFFSET IN PIXELS, 8 ARCSEC/ PIXEL

AVGOFFZ = 2.578 / AVG Z OFFSET IN PIXELS, 8 ARCSEC/PIXEL

RMSOFFY = 0.083 / ASPECT SOLN RMS Y PIXELS, 8 ARCSC/PIX

RMSOFFZ = 0.204 / ASPECT SOLN RMS Z PIXELS, 8 ARCSC/PIX

TELESCOP= ‘EINSTEIN ' / TELESCOPE

INSTRUME= ‘IPC ' / FOCAL PLANE DETECTOR

OBSERVER= '2 ' / OBSERVER #: O=CFA; 1=CAL; 2=MIT; 3=GSFC

GALL = 119.370 / GALACTIC LONGITUDE OF FIELD CENTER

GALB = 9.690 / GALACTIC LATITUDE OF FIELD CENTER

DATE OBS= '80/238 ' / YEAR & DAY NUMBER FOR OBSERVATION START

DATE STP= ‘80/238 ' / YEAR & DAY NUMBER FOR CBSERVATION STOP

TITLE = 'SNR SURVEY: CTAL '

ORIGIN = ‘HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS ‘

DATE = '22/09/1989 ' / DATE FILE WRITTEN

TIME = '05:26:53 ' / TIME FILE WRITTEN

END

Figure 5.7 Sample FITS header. On eachline, the data to the left of the / is the actual

metadata (data about the raw data thatfollowsin the file). For example, the secondline
(BITPIX = 16) indicates that the raw datain the file will be stored in 16-bit integer format.

Everything to the right of a/ is a comment, describing for the reader the meaning of the

metadata that precedesit. Even a person uninformed aboutthe FITS format can learn a
great deal aboutthisfile just by reading through the header.

https://hemanthrajhemu.github.io

178 Chapter 5 ManagingFiles of Records

spreadsheets, or numbers, we are likely to be viewing andstoring pictures
in addition to whatever other information we work with. Let’s examine

one type of image, the color raster image, as a meanstofilling in our
conceptual understanding of data objects.

A color raster imageis a rectangular array of colored dots,or pixels,4

that are displayed on a screen. A FITS imageis a raster image in the sense

that the numbers that make up a FITS image can be converted to colors,
and then displayed on a screen. There are manydifferent kinds of metada-

ta that can go with a raster image, including

m The dimensions of the image—the numberor pixels per row and the-

numberof rows.

m The numberofbits used to describe each pixel. This determines how

many colors can beassociated with each pixel. A 1-bit image can

display only two colors, usually black and white. A2-bit image can
display four.colors (2), an 8-bit image can display 256 colors (28), and

so forth.

mw <A color lookup table, or palette, indicating which coloris to be assigned

to each pixel value in the image. A 2-bit image uses a color lookup
table with 4 colors, an 8-bit image uses a table with 256 colors, and so
forth.

If we think of an image as an abstract data type, what are some meth-
ods that we might associate with images? Thereare the usual ones associ-

ated with getting things in and out of a computer: a read image routine

and a store image routine. Then there are those that dea! with imagesas

special objects:

m@ Display an image in a window on a console screen,

Associate an image witha particular color lookuptable,a

‘NM Overlay one image onto another to produce a composite image, and

E Display several images in succession, producing an animation.

The color raster image is an example ofa type ofdata object that

requires more than the traditional field/record file structure. This is
particularly true when more than one image mightbestored in single
file or when we want to store a document or other complex object
together with imagesina file. Let’s look at some ways to mix object types

in onefile.

4. Pixel standsfor “picture element.”

https://hemanthrajhemu.github.io

Beyond Record Structures 179

5.5.5 Mixing Object Types in One File

Keywords

The FITS header(Fig. 5.7) illustrates an important technique, described

earlier, for identifying fields and records: the use of keywords. In the case of

FITS headers, we do not know whichfields are going to be contained in

any given header, so we identifyeach field using a keyword = value format.
Why does this format work for FITSfiles, whereas it was inappropri-

ate for our addressfile? For the address file we saw that the use of keywords

demanded a high price in terms of space, possibly even doubling the size
of the file. In FITSfiles the amount of overhead introduced by keywordsis

quite small. When the image is included, the FITS file in the example
contains approximately 2 megabytes. The keywords in the header occupy
a total of about 400 bytes, or about 0.02 percentofthe total file space.

Tags

With the addition via keywordsoffile structure information and metada-

ta to a header, we see that a file can be more than just a collection of
repeatedfields and records.Can we extend this notion beyondthe header
to other, more elaborate objects? For example, suppose an astronomer
would like to store several FITS imagesof different sizes in a file, together
with the usual metadata, plus perhaps lab notes describing what the scien-
tist learned from the image (Fig. 5.8). Now we can think of ourfile as a

mixture of objects that may be very different in content—a view that our

previousfile structures do not hanale well. Maybe we need a new kind of
file structure.

There are many ways to address this new file design problem. One

would be simply to put each type of object into a variable-length record
and write our file processing programs so they know whateach record
looks like: the first record is a headerfor the first image, the second record

SIMPLE = °T"

MAXIS © 4

WAKIS? = $00

MAMIS2 © 600

HANIS] «2

MAXIS@ = 3

Q@SCALE = 0,015

BIERO + 50ers 4

mm. SIMPLE «= ¢T*
. > A. RAXIS « 4

“y . HAKISL © 500
Mdthin MAXISZ = 600
WAZ MAKIS3 ~ 1

® HAKIS@ ©]

a . & ASCALE = 0.015

thut ust, BIERO = 15004

Uéx=ro

Figure 5.8 Information that an astronomer wantsto include ina file,

https://hemanthrajhemu.github.io

180 Chapter 5 ManagingFiles of Records

is the image, the third record is a document, the fourth is a headerfor the
second image, and so forth. This solution is workable and simple,butit

has some familiar drawbacks:

m Objects must be accessed sequentially, making access to individual

imagesin largefiles time-consuming.

m Thefile must contain exactly the objects that are described,in exactly
the order indicated. We could not, for instance, leave out the notebook

for someof the images (or in somecases leave out the notebookalto-
gether) without rewriting all programsthat accessthefile to reflect the

changesin thefile’s structure.

A solution to these problemsis hinted at in the FITS header: each line
beginswith a keywordthat identifies the metadata field that followsin the
line. Why not use keywords to identify all objects in the file—not just the
fields in the headers but the headers themselves as well as the images and

any other objects we might need to store? Unfortunately, the “keyword =

data” format makessense in a FITS header—itis short andfits easily in an

80-byte line—butit doesn’t work atall for objects that vary enormously in

size and content. Fortunately, we can generalize the keyword idea to
address these problems by making two changes:

m@ Lift the restriction that each record be 80 bytes, and let it be big

enough to hold the objectthat is referenced by the keyword.

"m Place the keywords in an indextable, together with the byte offset of

the actual metadata (or data) and a length indicator that indicates how

many bytes the metadata (or data) occupiesin thefile.

The term tag is commonly used in place of keyword in connection
with this type of file structure. The resulting structureis illustrated in Fig.
9.9. In it we encounter two important conceptual tools for file design: (1)

the use of an index table to hold descriptive information aboutthe prima-
ry data, and (2) the use of tags to distinguish different types of objects.

These tools allow us to store in one file a mixture of objects—objects that
can vary from oneanotherin structure and content.

Tag structures are common among standard file formats in use today.

For example, a structure called TIFF (Tagged Image File Format) is a very
popular tagged file format used for storing images. HDF (Hierarchical
Data Format) is a standard tagged structure used for storing manydiffer-

ent kinds of scientific data, including images. In the world of document

storage andretrieval, SGML (Standard General Markup Language)is a

language for describing documentstructures andfordefining tags used to

mark up thatstructure. Like FITS, each of these provides an interesting.

https://hemanthrajhemu.github.io

Beyond Record Structures 181

Index table

with tags:

header notes | unage header

1.

\
SIMPLE = *T*

MAXIS “= 4

MAXESL = $00

SIMPLE =

MAXIS = 4

, BARISE «+ 300.

MAKIS2 = #00

MAMISG <1

MAMIS$ = 1

ASCALE + 0,015

BLERO = 1SGE+14
eae

-~it ayMAN[SZ « 600
HMAZIS] = 1

PARISa = 1

astaLe—e « 0.015

BZEAO = [Sard
wee

A

Udx=ro

Figure 5.9 SameasFig. 5.8, except with tags identifying the objects.

study in file design and standardization. References to further information

on eachare provided at the endofthis chapter, in “Further Readings.”

Accessing Files with Mixtures ofData Objects

The idea of allowingfiles to contain widely varying objects is compelling,
especially for applications that require large amounts of metadata or
unpredictable mixesof different kinds of data, for it frees us of the require-

mentthatall records be fundamentally the same. Asusual, we must ask

whatthis freedom costs us. To gain some insightinto the costs, imagine
that you want to write a program to access objects in such file. You now

have to read and write tags as well as data, and the structure and formatfor

different data types are likely to be different. Here are some questions you
will have to answer almost immediately:

m= =When wewantto read an object of a particular type, how do wesearch

for the object?

m= When wewant to store an object in the file, how and where do we

store its tag, and where exactly do we put the object?

m Given that different objects will have very different appearances with-

in a file, how do we determine the correct methodfor storing or
retrieving the object?

Thefirst two questions have to do with accessingthe table that-contains

the tags and pointers to the objects. Solutions to this problem are dealt

with in detail in Chapter 6, so we defer their discussion until then. The

third question, how to determine the correct methods for accessing
objects, has implications that webriefly touch on here.

https://hemanthrajhemu.github.io

182 Chapter 5 ManagingFiles of Records

5.5.6 Representation-IndependentFile Access

We have used the term abstract data model to describe the view that an

_application has of a data object. This is essentially an in-memory, applica-
tion-oriented view of an object, one that ignores the physical format of

objects as they arestored in files. Taking this viewof objects buys oursoft-
ware two things:

m It delegates to separate modules the responsibility of translating to
and from the physical format of the object, letting the application
modules concentrate on the task at hand. (For example, an image

processing program that can operate in memory on 8-bit images

should not have to.worryaboutthe fact that aparticular image comes

from file that uses the 32-bit FITS format.)

w it opens up the possibility of working with objects that at somelevel
fit the same abstract data model, even thoughtheyare stored in differ-

ent formats. The in-memory representations of the images could be

identical, even though they come from files with quite different
formats.)

As an example that illustrates both points, suppose you have an

image processing application program (we'll call it find_star) that

operates in memoryon 8-bit images, and you need to process collec-

tion of images. Somearestored in FITSfiles in a FITS format, and some

in TIFF files in a different format. A representation-independent
approach (Fig. 5.10) would provide the application program with a
routine(let’s call it read_image) for reading images into memoryin

the expected 8-bit form,letting the application concentrate on the image

processing task. For its part, the routine read_image, givena file to

get an image from, determines the format of the image within thefile,
‘invokes the proper procedure to read the image in that format, and
converts it from that format into the 8-bit memory format that the

application needs.
Tagged file formats are one way to implement this conceptual view of

file organization andfile access. The specification of a tag can be accom-
panied by a specification of methodsfor reading, writing, and otherwise
manipulating the corresponding data object according to the needs of an
application. Indeed, any specification that separates the definition of the

abstract data model from that of the correspondingfile formatlendsitself

to the representation-independent approach.

https://hemanthrajhemu.github.io

Beyond Record Structures 183

program findstar

read image("sStarl", image)

process image

end find_star

 star2

(TIEF file)

(FITS file)

Disk

Figure 5.10 Example of object-oriented access. The program find_star knows
nothing aboutthe file format of the imagethatit wants to read. The routine
read_image has methodsto convert the image from whateverformatit is stored

in on disk into the 8-bit in-memory format required by find_star.

5.5.7 Extensibility

Oneof the advantages ofusing tags to identify objects withinfiles is that we

do not have to know a priort what all of the objects that our software may
eventually have to deal with will look like. We have just seen that if our
program is to be able to access a mixture of objectsin a file, it must have
methods for reading and writing each object. Once we build into oursoft-

ware a mechanism for choosing the appropriate methodsfor a given type

of object, it'Is easy to imagine extending, at some future time, the types of
objects that our software can support. Every time we encounter a new type

of object that we would like to accommodate in our files, we can imple-

https://hemanthrajhemu.github.io

184

5.6

Chapter 5 Managing Files of Records

ment methodsfor reading and writing that object and add those methods
to the repertoire of methodsavailable to ourfile processing software.

Portability and Standardization

A recurring themein several of the examples we havejust seen is that
people often wantto sharefiles. Sharing files means makingsure that they
are accessible on all of the different computers that they might turn up on

and that they are somehow compatible with all. of the different programs

that will access them.In this final section, we look at two complementary

topics that affect the sharability of files: portability and standardization.

5.6.1 Factors Affecting Portability

Imaginethat you work for a companythat wishes to share simple datafiles
such as our addressfile with some other business. You get together with

the other business to agree on a commonfield and record format, and you

discover that your business doesall of its programming and computing in

C on a Sun computer and the other business uses Turbo Pascal on a PC.
Whatsorts of issues would you expect to arise?

Differences among Operating Systems

In Chapter 2 in the section “Special Characters in Files,” we saw that MS-
DOSaddsan extra line-feed character every time it encounters a carriage
return character, where. mn most other file systemsthis is not the case.

This meansthat every time our addressfile has a byte with hex value 0x0d,
even if that byte is not meantto be a carriage return, thefile is not extend-

ed by an extra Ox0a byte.
This example illustrates the fact that the ultimate physicalformatofthe

same logical file can vary depending on differences among operating systems.

Differences amang Languages

Earlier in this chapter, when discussing header records, we chose to make '
header records and data records different sizes, but a Pascal programmer

must use the samesize for every recordin thefile. C++ allows us to mix
and match fixed record lengths according to our needs, but Pascal requires

that all records ina nontext file be the same size.

https://hemanthrajhemu.github.io

Portability and Standardization 185

This illustrates a second factor impeding portability amongfiles: the
physical layout offiles produced with different languages may be constrained

by the way the languageslet you define structures within file.

Differences in Machine Architectures

Consider the hex dumpin Fig. 5.2 which showsa file generated by a C
program running on a Sun Ultra. Thefirst line of the hex dump contains
part of the header record:

0000000 0020 0002 0040 0000 9000 0000 0000 0000

Thefirst pair of bytes contains the size of the header record,in this case

20; ¢—or 32,9. The next two pairs of bytes also contain integer values. If
the same program is compiled and executed on a PC or a VAX,the hex

dumpofthefirst line will look like this:

0000000 2000 0200 4000 0000 0000 0000 2000 0000

Whyare the bytesreversed in this version of the program? The answer

is that in both cases the numbers were written to thefile exactly as they

appeared in memory, and the two different machines represent 2-byte
integers differently—the Sun stores the high-order byte, followed by the
low-order byte; the PC and VAX store the low-orderbyte,followed by the

high-orderbyte.
This reverse order also applies to 4-byte integers on these machines.

For example, in our discussion of file dumps we saw that the hexadecimal
value of 500 000 000),is 1ded6500,¢.If you write this value outto a file on
a PC, or someother reverse-order machine, a hex dumpofthefile created

looks like this:

0000000 0065 cdid

The problem of data representation is not restricted only to byte order
of binary numbers. The waystructures are laid out in memory can vary
from machine to machine and compiler to compiler. For example, suppose
you have a C program containing the followinglines of code:

struct {

int cost;

char ident[4];

} item;

write (fd, &item, sizeof(item));

https://hemanthrajhemu.github.io

186 Chapter 5 ManagingFiles of Records

and you wantto write files using this code on two different machines, a

Cray T90 and a Sun Ultra. Becauseit likes to operate on 64-bit words,
Cray’s C compiler allocates a‘minimum of 8 bytes for any elementin a

struct, soit allocates 16 bytes forthe struct item. Whenit executes
the write statement, then, the Cray writes 16 bytes to the file. The same

program compiled on a Sun Ultra writes only 8 bytes, as you probably
would expect, and on most PCsit writes 6 bytes: same exact program;

same language; three different results.
Text is also encoded differently on different platforms. In this case the

differences are primarilyrestricted to two different types of systems: those
that use EBCDIC® and those that use ASCII. EBCDICis a standard creat-

ed by IBM, so machinesthat need to maintain compatibility with IBM
must support EBCDIC. Most others support ASCII. A few support both.
Hence,text written to file from an EBCDIC-based machine maywell not

be readable by an ASC]I-based machine.

Equally serious, when we go beyond simple English text, is the prob-
lem ofrepresenting different character sets from different national
languages. This is an enormousproblem for developers of text databases.

5.6.2 Achieving Portability

Differences among languages, operating systems, and machine architec-

tures represent three major problems when we needto generate portable

files. Achieving portability means determining howto deal with these

differences. And the differences are often notjust differences between two
platforms, for manydifferent platforms could be involved.

The most important requirementfor achieving portability is to recog-

nize thatit is not a trivial matter and to take steps ahead oftime to insure
it. Following are some guidelines.

Agree on a StandardPhysical Record FormatandStaywith It

A physical standard is one that is represented the same physically, no

matter what language, machine,or operating system is used. FITSis a

good example of a physical standard,for it specifies exactly the physical

format of each header record, the keywords that are allowed, the order in

which keywords may appear, and the bit pattern that must be used to
represent the binary numbersthat describe the image.

5. EBCDIC stands for Extended Binary Coded Decimal Interchange Code.

https://hemanthrajhemu.github.io

“Portability and Standardization 187

Unfortunately, once a standard ts established, it is very tempting to
improve.on it by changingit in some way, thereby rendering it no longer a
standard. If the standard is sufficiently extensible, this temptation can

sometimes be avoided. FITS, for example, has been extended a few times

overits lifetime to supportdata objects that were not anticipatedin its
original design, yet all additions have remained compatible with the orig-
inal format.

One way to makesure that a standard has staying power is to makeit

simple enoughthatfiles can be written in the standard format from a wide
range of machines, languages, and operating systems. FITS again exempli-
fies such a standard. FITS headers are ASCII 80-byte records in blocks of

thirty-six records each, and FITS images are stored as one contiguous
block of numbers, both very simple structures that are easy to read and
write in most modern operating systems and languages.

Agree ona Standard Binary Encoding for Data Elements

The two most commontypesofbasic data elementsare text and numbers.

In the case of text, ASCII and EBCDIC represent the most common

encoding schemes, with ASCII standard onvirtually all machines except

IBM mainframes. Depending on the anticipated environment, one of
these should be usedto representall text.§

The situation for binary numbersis a little cloudier. Although the

number of different encoding schemes is not large, the likelihood of

havingto share data among machinesthat use different binary encodings
can be quite high, especially when the samedatais processed both onlarge
mainframes and on smaller computers. Two standardsefforts have helped

diminish the problem, however: IEEE Standard formats and External Data
Representation (XDR).

IEEE hasestablished standard format specifications for 32-bit, 64-bit,

and 128-bit floating point numbers, andfor 8-bit, 16-bit, and 32-bit inte-

gers. With a few notable exceptions (for example, IBM mainframes, Cray,

and Digital), most computer manufacturers have followdd these guide-

lines in designing their machines. This effort goes a long way toward
providing portable number encoding schemes.

XDRis an effort to go the rest of the way. XDR notonly specifies a set

of standard encodingsforall files (the IEEE encodings) but provides for a

6. Actually, there are differerit versions of both ASC! and EBCDIC. However, for most applications

and for the purposesofthis text,it is sufficient to consider each as a single character set.

https://hemanthrajhemu.github.io

188 Chapter 5 Managing Files of Records

set of routines for each machine for converting from its binary encoding
when writing to a file and vice versa (Fig. 5.11). Hence, when we wantto
store numbers in XDR, we can read or write them by replacing read and

write routines in our program with XDRroutines. The XDRroutines take

care of the conversions.’
Once again, FITS provides us with an excellent example: the binary

numbers that constitute a FITS image must conform to the IEEE
Standard. Any program written on amachine with XDR support can thus
read and write portable FITSfiles.

Numberand Text Conversion

Sometimes the use of standard data encodingsis notfeasible. For example,
suppose you are working primarily on IBM mainframeswith software that

deals with floating point numbers and text. If you choose to store your

data in IEEE Standard formats, every time your program reads or writes a

7, XDRis used for more than just number conversions. It allows a C programmerto describe arbi-

trary data structures in a machine-independent fashion. XDR originated as a Sun protocolfor

transmitting data that is accessed by more than onetype of machine. For further information, see

Sun (1986 orlater).

 A
XDR_float (a&xdrs, 4x)

Figure 5.11 XDR specifies a standard external data representationfor

numbers storedin file. XDR routines are providedfor converting to and

from the XDRrepresentation to the encoding scheme used on the host

machine. Here a routine called XDR_f1loat translates a 32-bit floating point
numberfrom its XDR representation on disk to that of the host machine.

https://hemanthrajhemu.github.io

Portability and Standardization 189

numberorcharacter, it must translate the number from the IBMformat
to the corresponding JEEE format. This is not only time-consuming but
can result in loss of accuracy.It is probably betterin this case to store your
data in native IBM formatin yourfiles.

Whathappens, then, when you want to move yourfiles back and forth
between your IBM and a VAX, which uses a different native format for

numbers and generally uses ASCII for text? You need a way to convert
from the IBM format to the VAX format and back. Onesolutionis to write

(or borrow) a program that translates IBM numbersandtext to their VAX
equivalents, and vice versa. This simple solution is illustrated in Fig.

5.12(a). .
But whatif, in addition to IBM and VAX computers, you find that

your data is likely to be shared among manydifferentplatforms that use
different numeric encodings? One way to solve this problemis to write a

program to convert from each of the representations to every otherrepre-
sentation. This solution, illustrated in Fig. 5.12(b), can get rather compli-_

-cated. In general, if you have n different encoding schemes, you will need
n(n — 1) differenttranslators. If n is large, this can be very messy. Not only
do you need manytranslators, but you need to keep track,for eachfile, of
wherethe file came from and/or whereit is going in order to knowwhich
translator to use.

In this case, a better solution would probably be to agree on a standard

intermediate format, such as XDR,andtranslate files into XDR whenever

theyare to be exported to a different platform. This solutionis illustrated in
Fig. 5.12(c). Not only does it reduce the numberoftranslatorsfrom n(n— 1)

to 2n, but it should beeasyto find translators to convert from mostplat-

forms to and from XDR. Onenegative aspect of this solution is thatit
requires two conversions to go from any oneplatform to another, a cost that

has to be weighed against the complexity of providing m{n— 1) translators.

File Structure Conversion

Suppose you are a doctor and you have X-ray raster imagesofa particular

organ taken periodically over several minutes. You want to look at a

certain imagein the collection using a program that lets you zoom in and

out and detect special features in the image. You have another program
that lets you animate thecollection of images, showing how it changes
over several minutes. Finally, you want to annotate the images and store

them in a special X-ray archive—andyou have another program for doing

that. What do you doif each of these three programs requires that your
image be in a different format? .

https://hemanthrajhemu.github.io

190 Chapter 5 Managing Files of Records

From: To:

IBM IBM

(a) Converting between IBM and Vax native format

requires two conversion routines.

From: To:

JBM IBM

Vax Vax

Cray Cray

Sun 3 Sun 3

IBM PC IBM PC

(b) Converting directly between five different native formats

requires 20 conversion routines.

To & From:
From: To:

IBM IBM

Vax———
|

IBMPC

(c) Converting between five different native formats via an .

intermediate standard format requires 10 conversion routines.

 Figure 5.12 Direct conversion between n native machines formats requires

n(n—1) conversion routines, as illustrated in (a) and (b). Conversion via an

intermediate standard format requires 2n conversion routines,asillustrated

in (c).

https://hemanthrajhemu.github.io

Portability and Standardization 191

The conversion problems that apply to atomic data encoding also

applyto file structures for more complex objects, like images, but at a

different level. Whereas character and numberencodingaretied closely to

specific platforms, more complex objects and their representationsjust as
often are tied to specific applications. —

For example, there are many software packages that deal with images

and verylittle agreement abouta file format for storing them. When we

look at this software, we find different solutions to this problem.

m Require that the user supply images in a format that is compatible
with the one used by the package. This places the responsibility on the
user to convert from one formatto another. Forsuchsituations, it may

be preferable to provide utility programs that translate from one
format to another and that are invoked whenevertranslating.

mM Process only images that adhere to some predefined standard format.
This places the responsibility on a community of users and software

developers for agreeing on and enforcing a standard. FITS is a good
exampleof this approach.

m Include different sets of I/O methods capable of converting an image

from several different formats into a standard memorystructure that

the package can work with. This places the burden on the software

developer to develop I/O methodsfor file object types that may be
stored differently but for the purposes of an application are conceptu-

ally the same. You may.recognize this approach as a variation on the
concept of object-oriented access that we discussed earlier.

File System Differences

Finally, if you move files from onefile system to another, chances are you
will find differences in the wayfiles are organized physically. For exam-

ple, Unix systems write files to tapes in 512-byte blocks, but non-Unix

systems often use different block sizes, such as 2880-bytes—thirty-six 80-
byte records. (Guess where the FITS blocking format comes from?)
Whentransferringfiles between systems, you may needto deal withthis

problem.

Unix and Portability

Recognizing problems such asthe block-size problem just described, Unix
provides a utility called dd. Although ddis intended primarily for copy-

ing tape data to and from Unix systems, it can be used to convert data

https://hemanthrajhemu.github.io

192 Chapter 5 ManagingFiles of Records

from any physical source. The dd iatility provides the following options,

among others:

m= Convert from one blocksize to another,

m Convertfixed-length records to variable-length, or vice versa,

m Convert ASCII to EBCDIC,or vice versa,

m Convert all characters to lowercase (or to uppercase), and

m Swap every pair ofbytes. |

Of course, the greatest contribution Unix makes to the problems

discussed here is Unix itself. By its simplicity and ubiquity, Unix encour-
ages the use of the same operating system,the samefile system, the same
views ofdevices, and the same generalviewsof file organization, no matter
what particular hardware platform you happento be using.

For example, one of the authors works in an organization with a

nationwide constituency that operates manydifferent computers, includ-

ing two Crays, a Connection Machine, and many Sun, Apple, IBM,Silicon

Graphics, and Digital workstations. Because each runs some flavor of
Unix,they all incorporate precisely the same viewofall external storage

devices, theyall use ASCII, and they all provide the samebasic program-

ming environment and file managementutilities. Files are not perfectly

portable within this environment, for reasons that we have covered in this

chapter; but the availability of Unix goes a long way towardfacilitating the
rapid and easy transfer of files among the applications, programming

environments, and hardware systems that the organization supports.

SUMMARY

Onehigherlevel of organization, in which records are groupedinto blocks,

is also often imposedonfiles. This level is imposed to improveI/O perfor-
mance rather than ourlogical view ofthefile.

Sometimes we identify individual records by their relative record
numbers (RRNs) ina file. It is also common, however,to identify a record .

by a key whose value is based on someofthe record’s content. Key values.

must occurin, or be converted to, some predetermined canonical form if
they are to be recognized accurately and unambiguously by programs.If

every record’s key valueis distinct from all others, the key can be used to

identify and locate the uniquerecordin the file. Keys that are used in this
wayare called primary keys.

https://hemanthrajhemu.github.io

Summary 193

‘In this chapter we look at the technique of searching sequentially

through file looking for a record with a particular key. Sequential search

can perform poorly for long files, but there are times when sequential

seatchingis reasonable. Record blocking can be used to improvethe I/O
time for a sequential search substantially. Two useful Unixutilities that
processfiles sequentially are wc and grep.

In our discussion of ways to separate records,it is clear that some of

the methods provide a mechanism for looking up orcalculating the byte
offset of the beginning of a record. This, in turn, opens up thepossibility of
accessing the record directly, by RRN, tather than sequentially.

The simplest record formats for permitting direct access by RRN

involve the use offixed-length records.When the data comesin fixed-size
quantities (for example, zip codes), fixed-length records can provide good

performance and goodspaceutilization.If thereis a lot of variation in the
amount and size of data in records, however, the, use of fixed-length

records can result in expensive waste of space. In suchcases the designer

should look carefully at the possibility of using variable-length records,
Sometimes it is helpful to keep track of general information about

files, such as the numberof records they contain. A headerrecord, stored at
the beginningofthefile it pertainsto,is a useful tool for storing this kind

of information. Header records have been addedto the I/O buffer class
and class Buf ferFile. These headers support a guarantee of consistent
access to recordsin files.

It is important to-be aware ofthe difference between file access and file

organization. We try to organizefiles in such a way that they give us the

types of access we need for a particular application. For example, one of
the advantagesofa fixed-length record organizationis thatit allows access
that is either sequential or direct.

In addition to the traditional viewofa file as a moreorless regular

collection of fields and records, we present a more purely logical view of
the contentsoffiles in terms of abstract data models, a viewthatlets appli-
cations ignore the physical structure offiles altogether.

Defining a single class to support file operations for arbitrary data

objects requires the use of C++ templates, Class RecordFile imple-
ments this abstract data model approach as a templateclass with a single
parameter. The application programmer need only define Pack and

Unpack methods, using the buffer classes defined in Chapter 4, and

RecordFiledoes the rest. The application can create, open, and close

files, and read and write records with no additional concern aboutfile

structures.)

https://hemanthrajhemu.github.io

194 Chapter 5 Managing Files of Records

This abstract data model view is often more appropriate to data
objects such as sound, images, and documents. Wecall files self-describing

when they do not require an application to reveal their structure but
provide that information themselves. Another concept that deviates from

the traditional view is metadata, in which the file contains data that

describes the primarydata in the file. FITSfiles, used for storing astro-

nomical images, contain extensive headers with metadata.
The use of abstract data models, self-describing files, and metadata

makesit possible to mix a varietyof different types of data objects in one

file.Whenthis is the case,file access is more object oriented. Abstract data

models also facilitate extensible files—files whose structures can be extend-

ed to accommodate newkindsof objects.
Portability becomesincreasingly importantasfiles are used in more

heterogeneous computing environments. Differences among operating
systems, languages, and machine architectures all lead to the need for
portability. One important wayto foster portability is standardization,

which meansagreeing on physical formats, encodings for data elements,

and file structures.

If a standard does notexist and it becomes necessary to convert from

one format to another,it is still often much simpler to have one standard

format that all converters convert into and out of. Unix providesa utility

called dd thatfacilitates data conversion. The Unix environment supports
portability simply by being commonly available on a large numberofplat-

forms,

KEY TERMS

Block. A collection of recordsstored as a physically contiguous unit on
secondary storage. In this chapter, we use record blocking to improve
I/O performance during sequential searching.

Canonical form. A standard form for a key that can be derived, by the

application of well-defined rules, from the particular, nonstandard

form of the data found in a record’s key field(s) or provided in a
search request supplied bya user.

Direct access. A file accessing modethat involves jumping to the exact

location of a record. Direct access to a fixed-length record is usually

accomplished byusingits relative record number (RRN), computingits

byte offset, and then seeking to the first byte of the record.

https://hemanthrajhemu.github.io

Key Terms: 195

Extensibility. A characteristic of some file organizations that makesit
possible to extend the types of objects that the format can accommo-

date without having to redesign the format. For example, taggedfile
formats lend themselves to extensibility, for theyallow the addition of
new tags for new data objects and associated new methodsfor access-
ing the objects. |

File-access method. The approach used to locate informationin file. In

general, the two alternatives are sequential access and direct access.

File organization method. The combination of conceptual] and physical

structures used to distinguish one record from anotherand onefield

from another. An exampleof a kindoffile organizationis fixed-length
records containing variable numbers of variable-length delimited
fields.

Headerrecord. A record placed at the beginningof file that is used to
store iriformation aboutthefile contents andthefile organization.

Key. An expression derived from one or moreofthe fields within a record
that can be used to locate that record. Thefields used to build the key
are sometimescalled the key fields. Keyed access provides a way of

performing content-based retrieval of records, rather than retrieval

based merely on a record’s position.

Metadata. Data in a file that is not the primary data but describes the

primary data in a file. Metadata can be incorporated into anyfile
whose primary data requires supporting information. Ifa file is going
to be shared by manyusers, some of whom mightnot otherwise have
easy access to its metadata, it may be most convenientto store the
metadata in thefile itself, A common place to store metadatain file

is the header record,

Portability. That characteristic offiles that describes how amenable they
are to access on a variety of different machines,via a variety of differ-

ent operating systems,languages, and applications.

Primarykey. A key that uniquely identifies each record andis used as the
primary methodof accessing the records.

Record. A collection ofrelated fields. For example, the name, address, and

so forth of an individual in a mailing list file would probably make up

one record.

Relative record number.(RRN}. An index giving the position of a record

relative to the beginningofits file. Ifa file has fixed-length records, the
RRNcan beused to calculate the byte offset of a record so the record

can be accessed directly.

https://hemanthrajhemu.github.io

196 Chapter 5 ManagingFiles of Records

Representation-independentfile access. A form offile access in which

applications access data objects in terms ofthe applications’ in-

memory view of the objects. Separate methods associated with the

objects are responsible for translatingto and from the physical format

of the object, letting the application concentrate on thetask at hand.

Self-describingfiles. Files that contain information such as the number of

records in the file and formal descriptionsof the file’s record structure,
which can be used by software in determining howto accessthefile. A

file’s headeris a good place for this information.

Sequential access, Sequential access to a file means reading thefile from
the beginning and continuing until you have read in everything that

you need. Thealternativeis direct access.

Sequential search. A method of searchinga file by readingthefile from
the beginning and continuing until the desired record has been found.

Template class. A parameterized class definition. Multiple classes can

share the same definition and code throughthe use of template class-
es and template functions in C++.

FURTHER READINGS

Sweet (1985) is a short but stimulating article on key field design. A
numberofinteresting algorithms for improving performance in sequential
searches are described in Gonnet (1984) and, of course, in Knuth (1973b).

Self-describingfile formats like FITS—see Wells, Greisen, and Harten

(1981)—for scientific files have had significant developmentoverthe past

years. Two of the most prominent format strategies are the Hierarchical
Data Format (HDF), available from the HDF Web site at

http://hd£ncsa.uiuc.edu, and the Common Data Format (CDF) which has
a web site at http://nssdc.gsfc.nasa.gov/cdf/cdf_home.html.

EXERCISES

1. Ifakeyina recordis already in canonical form andthekeyis the first
field of the record, it is possible to search for a record by key without

ever separating outthekeyfield from therestof the fields. Explain.

2. Ithas been suggested (Sweet, 1985) that primarykeys should be “data-
less, unchanging, unambiguous, and unique.” These concepts are

https://hemanthrajhemu.github.io

Exercises 197

interrelated since,for example, a key that contains data runs a greater

risk of changing than a dataless key. Discuss the importanceof each of
these concepts, and showby example howtheir absence can cause
problems. The primary key used in our example file violates at least

one of the criteria: How might you redesignthefile (and possiblyits

corresponding information content) so primary keys satisfy these
criteria?

3. How many comparisons would be required on the averageto find a

record using sequential search in a 100 000-record disk file? If the
record is notin the file, how many comparisonsare required? If the
file is blocked so that 50 records are stored per block, how manydisk

accesses are.required on average? Whatif only onerecord is stored per

block?

4, In our evaluation of performance for sequential search, we assume

that every read results in a seek. How do the assumptions change on a
single-user machine with access to a magnetic disk? Howdothese:

changed assumptionsaffect the analysis of sequential searching?

5. Design a headerstructure fora Personfile of fixed-sized recordsthat
stores the namesofthe fields in addition to thesizes of thefields. How

would you have to modify class FixedFieldBuf ferto support

the use of such a header?

6. Separate code must be generated for each instantiation of a template
class, but there is no standard for controlling this code generation.

Whatis the mechanism in your C++ compilerthat is used to describe

when to generate code for template instances?

7. In our discussion of the uses of relative record numbers (RRNs), we

suggest that you can create a file in whichthere is a direct correspon-
dence between a primary key, such as membership number, and RRN,

so we can find a person’s record by knowing just the name or
membership number. What kindsofdifficulties can you envision with
this simple correspondence between membership number and RRN?
What happens if we want to delete a name? What happens if we

change the informationin a record in a variable-length recordfile and

the new record islonger?

8. Assume that we have a variable-length recordfile with long records
(greater than 1000 bytes each, on the average). Assume that we are

looking for a record with a particular RRN. Describethe benefits of
using the contents of a byte count field to skip sequentially from

https://hemanthrajhemu.github.io

198 Chapter 5 ManagingFiles of Records

10.

ll.

12,

13.

14,

15,

16.

17,

18.

record to record to find the, one we want. Thisis called skip sequential
processing. Use your knowledgeof system buffering to describe why

this is useful onlyfor long records. If the records are sorted in order by

key and blocked, what information do you have to place at the start of

eachblock to permit even faster skip sequential processing?

Suppose you have a fixed-length record with fixed-lengthfields, and
the sum ofthe field lengths is 30 bytes. A record with a length of 30

bytes would hold them all. Ifwe intend to store the records on a
sectored disk with 512-byte sectors (see Chapter 3), we might decide

to pad the record out to 32 bytes so we can place an integral number

of records in a sector. Why would we wantto do this?

Whyis it importantto distinguish betweenfile access andfile organi-

zation?

Whatis an abstract data model? Why didthe early file processing

programs not deal with abstract data models? What are the advan-
tages of using abstract data models in applications? In what way does
the Unix conceptof standard input and standard output conform to

the notionof an abstract data model? (See “Physical Files and Logica!

Files in Unix” in Chapter 2.)

Whatis metadata?

In the FITS headerin Fig. 5.7, some metadata provides information
about the file’s structure, and someprovides information about the

scientific context in which the corresponding image was recorded.
Give three examples of each.

In the FITS ‘header in Fig. 5.7, there is enough information for a

program to determine howto read the entirefile. Assuming that the
size of the block containing the header must be a multiple of 2,880

bytes, how large is the file? What proportion ofthe file contains head-
er information?

In the discussion of field organization, we list the “keyword = value”
construct as one possible type of field organization. Howis this

notion appliedin tagged file structures? Howdoesa taggedfile struc-

ture support object-oriented file access?How do tagged file formats
support extensibility? -

List three factors that affect portability in files.

List three ways that portability can be achieved in files.

What is XDR? XDRis actually much moreextensive than what we
described in this chapter. If you have access to XDRdocumentation

https://hemanthrajhemu.github.io

Programming Exercises 199

19.

20.

21.

22.

23.

24,

25.

(see “Further Readings”at the end of this chapter), look up XDR and
list the ways that it supports portability.

Whatis the IEEE standard formatfor 32-bit, 64-bit, and 128-bitfloat-

ing point values? Does your computer implement floating point

values in the IEEE format?

PROGRAMMING EXERCISES

Implement methods such as findByLastName(char*),
findByFirstName (char*), and so on, that search through a
BufferFile<Person>fora record that has the appropriatefield
that matches the argument.

Write a ReadByRRN method for variable-length record files that

finds a record on the basis ofits position in the file. For example,if

requestedto find the 547" record in file, it would read through the
first 546 records and then printthe contents of the 547% record.

Implement skip sequential search (see Exercise 8) to avoid reading the
contents of unwantedrecords.

Writea driver for findByLastNamethat reads namesfrom a sepa-
rate transaction file that contains only the keys of the records to be

extracted. Write the selected records to a separate outputfile. First,
assumethat the records are in no particular order. Then assumethat
both the main file and the transaction file are sorted by key. In the
latter case, how can you make your program moreefficient?

Implement an update operation for class Buf ferFile that works
for fixed-length recordfile. Write a driver program that allows.a user
to select a record-by-record numberandenter new valuesforall of

the fields.

Make anyorall of the following alterations to the update function
from Exercise 23. ,

a. Let the user identify the record to be changed by name,rather than

RRN.
b. Let the user change individualfields without having to change an

entire record.

c. Let the user choose to view the entirefile.

Write a program that reads file and outputsthefile contents as file
dump. Thefile dump should have a format similar to the one used in

the examples in this chapter. The program should accept the name of

https://hemanthrajhemu.github.io

200 Chapter 5 ManagingFiles of Records

26.

the input file on the commandline. Output shouldbe to standard

output (terminal screen).

Develop a set of rules for translating the dates August 7, 1949, Aug.7,

1949, 8-7-49, 08-07-49, 8/7/49, and other, similar variations into a

common canonical form. Write a function that accepts a string

containing a date in one of these forms and returns the canonical
form, according to your rules. Be sure to documentthe limitations of
your rules and function. |

https://hemanthrajhemu.github.io

