

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

File Structures

An Object-Oriented

Approach with C++

Michael J. Folk

University ofIllinois

Bill Zoellick

CAP Ventures

Greg Riccardi

Florida State University

Ayy ADDISON-WESLEY

Addison-Wesley is an imprint ofAddison Wesley Longman,Inc..

Reading, Massachusetts * Harlow, EnglandMenlo Park, California

Berkeley, California * Don Mills, Ontario + Sydney

Bonn + Amsterdam « Tokyo * Mexico City

https://hemanthrajhemu.github.io

xvi Contents

5.5

5.6

Beyond Record Structures .172

5.5.1 Abstract Data Models for File Access 172

5.5.2 Headers and Self-Describing Files 173
5.5.3 Metadata 174

5.5.4Color Rasterlmages 176

5.5.5 Mixing Object Types in One File 179
5.5.6 Representation-IndependentFile Access 182
5.5.7 Extensibility 183
Portability and Standardization 184

5.6.1 Factors Affecting Portability -184

5.6.2 Achieving Portability 186

Summary 192 KeyTerms 194 Further Readings 196

Exercises 196 Programming Exercises 199

Chapter6 Organizing Files for Performance 201

6.1

6.2

6.3

6.4

Data Compression 203
6.1.1 Using a Different Notation 203
6.1.2 Suppressing Repeating Sequences 204

6.1.3 Assigning Variable-Length Codes 206

6.1.4 Irreversible Compression Techniques 207

6.1.5 Compression in Unix 207

Reclaiming Spacein Files 208
6.2.1 Record Deletion and Storage Compaction 209

6.2.2 Deleting Fixed-Length Recordsfor Reclaiming Space

Dynamically 210 °

6.2.3 Deleting Variable-Length Records 214

6.2.4 Storage Fragmentation 217

6.2.5 PlacementStrategies 220

Finding Things Quickly: An Introduction to Internal Sorting

and Binary Searching 222
6.3.1 Finding Things in Simple Field and Record Files 222

6.3.2 Search by Guessing: Binary Search 223
6.3.3 Binary Search versus Sequentia! Search 225

6.3.4 Sorting a Disk Filein Memory 226
6.3.5 The Limitations of Binary Searching and Internal Sorting 226

Keysorting 228

6.4.1 Description of the Method 229

6.4.2 Limitations of the Keysort Method 232

6.4.3 Another Solution: Why Bother to Write the File Back? 232

6.4.4 Pinned Records 234
Summary 234 KeyTerms 238 FurtherReadings 240 Exercises 241

Programming Exercises 243 Programming Project 245

https://hemanthrajhemu.github.io

Contents VIE

Chapter 7 Indexing 247

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8.

“7.9

What is anIndex? 248
A Simple Index for Entry-SequencedFiles 249

Using Template Classes in C++ for Object !/O 253
Object-Oriented Support for Indexed, Entry-SequencedFiles

of Data Objects 255 .
7.4.1 Operations Required to Maintain an Indexed File 256

7.4.2 Class TextIndexedFile 260
7.4.3 EnhancementstoClass TextIndexedFile 261

Indexes That Are Too Large to Holdin Memory 264

Indexing to Provide Access by Multiple Keys 265

Retrieval Using Combinations of Secondary Keys 270

Improving the SecondaryIndex Structure: Inverted Lists 272
7.8.1 A First Attempt at a Solution” 272

7.8.2 A Better Solution: Linking the List of References 274
Selective Indexes 278

7.10 Binding 279 .

Summary 280 KeyTerms 282 FurtherReadings 283 Exercises 284
Programming and Design Exercises 285 Programming Project 286

Chapter 8 Cosequential Processing and the Sorting

of Large Files 289

8.1

8.2

8.3

8.4

8.5

An Object-Oriented Modelfor Implementing Cosequential
Processes 291

8.1.1 Matching Names in Two Lists 292

8.1.2 Merging Two Lists 297

8.1.3 Summary of the Cosequential Processing Model 299

Application of the Model to a General Ledger Program 301
8.2.1 The Problem 301

8.2.2 Application of the Model to the Ledger Program 304

Extension of the Model to Include Multiway Merging 309
8.3.1 A K-way Merge Algorithm 309
8.3.2 A Selective Tree for Merging Large Numbersof Lists ' 310
A Second Look at Sortingin Memory 311
8.4.1 Overlapping Processing and !/O:Heapsort 312
8.4.2 Building the Heap while Reading the File 313
8.4.3 Sorting While Writing to the File 316

Merging as a Wayof Sorting Large Fileson Disk 318

8.5.1 How Much Time Does a Merge Sort Take? 320
8.5.2 Sorting a File That ls Ten Times Larger 324

https://hemanthrajhemu.github.io

Organizing Files
for Performance

CHAPTER

CHAPTER OBJECTIVES

Look at several approaches to data compression..

Lookat storage compactionas a simple way of reusing spacein file.

Develop a procedurefor deleting fixed-length records that allows

vacatedfile space to be reused dynamically.

Illustrate the use oflinked lists and stacks to manage an avail list.

Consider several approaches to the problem of deleting variable-

length records.

Introduce the concepts associated with the terms internal
fragmentation and external fragmentation.

Outline some placement strategies associated with the reuse of
spacein a variable-length recordfile.

Provide an introductionto the idea of a binary search.

Examinethelimitations of binary searching.

Develop a keysort procedureforsorting larger files; investigate the

costs associated with keysort.

introduce the conceptofa pinned record.

TN

https://hemanthrajhemu.github.io

202 Chapter 6 Organizing Files for Performance

CHAPTER OUTLINE =.)

6.1 Data Compression

6.1.1 Using a Different Notation

6.1.2 Suppressing Repeating Sequences

6.1.3 Assigning Variable-Length Codes
6.1.4 Irreversible Compression Techniques

6.1.5 Compression in Unix

6.2 Reclaiming Spacein Files

6.2.1 Record Deletion and Storage Compaction
6.2.2 Deleting Fixed-Length Records for Reclaiming Space

Dynamically

6.2.3 Deleting Variable-Length Records

6.2.4 Storage Fragmentation
6.2.5 Placement Strategies

6.3. Finding Things Quickly: An Introduction to Internal Sorting
and Binary Searching

6.3.1 Finding Things in Simple Field and RecordFiles
6.3.2 Search by Guessing: Binary Search
6.3.3 Binary Search versus Sequential Search

6.3.4 Sorting a Disk File in Memory

6.3.5 The Limitations of Binary Searching and Internal Sorting

6.4 Keysorting °
6.4.1 Description of the Method

6.4.2 Limitations of the Keysort Method
6.4.3 Another Solution: Why Bother to Write the File Back?

6.4.4 Pinned Records

Wehave already seen how importantit is for thefile system designer to

consider how file is to be accessed when deciding on howto createfields,

records, and otherfile structures. In this chapter we continueto focus on

file organization, but the motivationis different. We look at ways to orga-
nize or reorganizefiles in order to improve performance.

In the first section’ welook at howwe organize files to make them

smaller. Compression techniques let us makefiles smaller by encoding the
basic information in thefile.

Next we look at ways to: reclaim unused space in files to improve

performance. Compactionis a batch process that we can use to purge

holes of unused space from file that has undergone manydeletions and

updates. Then weinvestigate dynamic ways to maintain performance by
reclaiming space made available by deletions and updates of records

during the life ofa file.

https://hemanthrajhemu.github.io

6.1

Data Compression 203

In the third section we examine the problem of reorganizingfiles by
sorting themto support simple binary searching. Then, in an effortto find

a better sorting method, we begin a conceptualline of thought that will
continue throughoutthe rest of this text: we find a way to improvefile

performance by creating an external structure through which we can
access thefile.

Data Compression

In this section we look at some ways to makefiles smaller. There are many
reasons for making files smaller. Smallerfiles

mM Useless storage, resulting in cost savings;

m- Can be transmitted faster, decreasing access timeor, alternatively, allow-

ing the same access time with a lower and cheaper bandwidth; and

m Can be processed faster sequentially.

Data compression involves encoding the informationin file in such a

way thatit takes up less space. Many different techniques are available for

compressing data. Some are very general, and some are designed for

specific kinds of data, such as speech,pictures, text, or instrument data.
The variety of data compression techniquesis so large that we can only
touch on the topic here, with a few examples.

6.1.1 Using a Different Notation

Remember our Personfile from Chapter4? It had severalfixed-length

fields, including LastName,State,arid ZipCode.Fixed-length fields

such as these are good candidates for compression. For instance, the

State field in the Person file required 2 ASCII bytes, 16 bits. How
manybits are really needed forthis field? Since there are onlyfifty states,
we could represent all possible states with only 6 bits. Thus, we could
encodeall state names in a single 1-bytefield, resulting in a space savings
of 1 byte, or 50 percent, per occurrenceofthestatefield.

This type of compression technique, in which we decrease the number

of bits by finding a more compactnotation,’ is one of many compression

1. Note that the original two-letter notation we used for“state”is itself a more compact notation for

the full state name.

https://hemanthrajhemu.github.io

204 Chapter 6 Organizing Files for Performance

techniquesclassified as redundancy reduction: The 10 bits that we were able

to throw away were redundantin the sensethat having 16 bits instead, of 6

provided no extra information.

Whatare the costs of this compression scheme?:In this case, there
are many:

m_ By using a purebinary encoding, we have made thefile unreadable by
humans.

m Weincur somecost in encoding time whenever we add a newstate-
' namefield to ourfile and a similar cost for decoding when we needto

get a readable version of state name from thefile.

mw We must also now incorporate the encoding and/or decoding modules
in all software that will process our addressfile, increasing the com-

plexity of the software.

With so many costs, is this kind of compression worth it? We can

answerthis only in the context of a particular application.If the file is
already fairly small, if the file is often accessed by manydifferent pieces of
software, and if some of the software that will access the file cannot deal
with binary data (for example, an editor), then this form of compression

is a bad idea. On the other hand,if the file contains several million records

and is generally processed by one program, compressionis probably a very

good idea. Because the encoding and decoding algorithmsfor this kind of
compression are extremely simple, the savings in access timeis likely to
exceed any processing time required for encoding or decoding.

6.1.2 Suppressing Repeating Sequences

Imagine an 8-bit image of the sky that has been processed so only objects

above a certain brightness are identified and all other regions of the
image are set to some background color represented by the pixel value0.

(See Fig. 6.1.)

Sparse arrays of this sort are very good candidates for a kind of
compression called run-length encoding, which in this example works as
follows. First, we choose onespecial, unused byte value to indicate that a

run-length code follows. Then, the run-length encoding algorithm goes
likethis: |

m= Read through the pixels that make up the image, copying the pixel

values to the file in sequence, except where the samepixel value occurs

more than once in succession.

https://hemanthrajhemu.github.io

Data Compression 205

Figure 6.1 The empty space in

this astronomical imageis

represented by repeated
sequencesof the same value and

is thus a good candidatefor
compression. (This FITS image

showsa radio continuum
structure around the spiral galaxy

NGC 891 as observedwith the

Westerbork Synthesis radio

telescope in The Netherlands.)

m Where the samevalue occurs more than once in succession,substitute

the following 3 bytes, in order:

+ The special run-length codeindicator;

+ The pixel value that is repeated; and

: The numberoftimesthat the valueis repeated (up to 256 times).

For example, suppose we wish to compress an image using run-length
encoding, and wefind that we can omit the byte Oxff from the representa-
tion of the image. We choosethe byteOxff as our run-length code indica-
tor. How would we encodethe following sequence of hexadecimal byte

values?

22 23 24 24 24 24 24 24 24 25 26 26 26 26 26 26 25 24

Thefirst three pixels are to be copied in sequence. The runs of 24 and 26
are both run-length encoded. The remaining pixels are copied in sequence.

The resulting sequenceis

22 23 ££ 24 07 25 ££ 26 06 25 24

Run-length encoding is another example of redundancy reduction.It

can be applied to many kindsofdata, includingtext, instrument data, and

Sparse matrices. Like the compact notation approach, the run-length

encoding algorithm is a simple one whose associated costsrarely affect
performance appreciably.

https://hemanthrajhemu.github.io

206 Chapter 6 Organizing Files for Performance

Unlike compact notation, run-length encoding does not guarantee

any particular amountof space savings. A “busy” image with lotof vari-
ation will not benefit appreciably from run-length encoding. Indeed,

under some circumstances, the aforementioned algorithm could result in

a “compressed” imagethatis larger than the original image.

6.1.3 Assigning Variable-Length Codes

Suppose you have two different symbols to use in an encoding scheme:a
dot (-) and a dash (-). You have to assign combinations of dots and dashes

to letters of the alphabet. If you are veryclever, you might determine the

most frequently occurring letters of the alphabet (e and #) and use a single
dot for one and a single dash for the other. Otherletters of the alphabet

will be assigned two or more symbols, with the more frequently occurring

letters getting fewer symbols.
Sound familiar? You may recognize this schemeas the oldest and most

common of the variable-length codes, the Morse code. Variable-length

codes, in general, are based on the principle that some values occur more

frequently than others, so the codes for those values should take theleast

amountof space. Variable-length codes are another form of redundancy
reduction. .

A variation on the compact notation technique, the Morse code can be

implemented using a table lookup, where the table never changes. In

contrast, since many sets of data values do not exhibit a predictable

frequency distribution, more modernvariable-length coding techniques

dynamically build the tables that describe the encoding scheme. One of
the most successful of these is the Huffman code, which determines the

probabilities of each value occurring in the data set and then builds a bina-
ry tree in which the search path for each value represents the code for that
value. More frequently occurring values are given shorter-search paths in

the tree. This tree is then turned into a table, much like a Morse codetable,

that can be used to encode and decodethe data.
For example, suppose we have a data set containing only the seven

letters shown in Fig. 6.2, and each letter occurs with the probability indi-

cated, The third row in the figure shows the Huffman codes that would be

assigned to the letters. Based on Fig. 6.2, the string “abde” would be encod-

ed as “101000000001.”

In the example, the letter a occurs much more often than any of the
others,so it is assigned the 1-bit code 1. Notice that the minimum number
of bits needed to represent these seven letters is 3, yet in this case as many

as 4 bits are required. This is a necessary trade-off to ensure that the

https://hemanthrajhemu.github.io

Data Compression 207

Letter: | a b c a e £ g

Probability: 0.4 0.1 0.1 0.1 0.1 0.1 O.1

Code 1 010 011 0000 0001 0010 0011

Figure 6.2 Example showing the Huffman encodingfor a set of seven
letters, assuming certain probabilities (from Lynch, 1985).

distinct codes can be stored together, without delimiters between them,
and still be recognized. |

6.1.4 Irreversible Compression Techniques

The techniques we have discussed so far preserve all information in the
original data. In effect, they take advantage of the fact that the data,in its
original form, contains redundantinformation that can be removed and
then reinserted at a later time. Another type of compression,irreversible
compression, is based on the assumption that some information can be
sacrificed.?

_ An example of irreversible compression would be shrinking a raster
image from, say, 400-by-400 pixels to 100-by-100 pixels. The new image

contains 1 pixel for every 16 pixels in the original image, and there is no

way, in general, to determine what the original pixels were from’ the one

new pixel, .
Irreversible compression is less commonin datafiles than reversible

compression, but there are times when the information thatis lostis of

little or no value. For example, speech compression is often done by voice
coding, a techniquethat transmits a paramaterized description of speech,

which can be synthesized at the receiving end with varying amounts of

distortion.

6.1.5 Compression in Unix

Both Berkeley and System V Unix provide compression routines that are

heavily used and quite effective. System V has routines called pack and
unpack, which use Huffman codes on a byte-by-byte basis. Typically,
pack achieves 25 to 40 percent reduction on textfiles, but appreciablyless
on binaryfiles that have a more uniform distribution of byte values. When

2. Irreversible compression is sometimes called “entropy reduction” to emphasize that the average

information (entropy) ts reduced.

https://hemanthrajhemu.github.io

208

6.2

Chapter 6 Organizing Files for Performance

pack compresses file, it automatically appends a .z to the end ofthe

packedfile, signaling to any future user that the file has been compressed
- using the standard compression algorithm.

Berkeley Unix has routines called compress and uncompress,

which use an effective dynamic method called Lempel-Ziv (Welch, 1984).

Except for using different compression schemes, compress ,and.

uncompress behave almost the same as pack and unpack. Compress

appends a .Z to the endoffiles it hascompressed.
Because these routines are readily available on Unix systems and are

very effective general-purpose routines,it is wise to use them whenever

there are no compelling reasonsto use other techniques.

Reclaiming Spacein Files

Suppose a record in a variable-length recordfile is modified in such a way
that the new recordis longer than the original record. What do you do
with the extra data? You could appendit to the endofthe file and puta
pointer from the original record space to the extension of the record. Or

you could rewrite the whole record at the end of thefile (unless the file
needs to be sorted), leaving a hole at the original location ofthe record.
Each solution has a drawback: in the formercase,the job of processing the
record is more awkward and slower than it was originally; in the latter

case, the file contains wasted space.
In this section wetake a close look at the wayfile organization deteri-

orates as a file is modified. In general, modifications can take any one of

three forms: |

m= Record addition,

m Record updating, and

‘m= Record deletion.

If the only kind of changeto a file is record addition,there is no dete-

rioration of the kind we cover in this chapter. It is only when variable-

length records are updated, or when either fixed- or variable-length
records are deleted, that maintenance issues become complicatedand

interesting. Since record updating can alwaysbetreated as a record dele-

3, Many implementationsofSystem V Unix also support compress and uncompress as Berkeley
extensions.

https://hemanthrajhemu.github.io

Reclaiming Spacein Files 209

tion followed by a record addition, our focus is on the effects of record

deletion. When a record has been deleted, we wantto reuse the space.

6.2.1 Record Deletion and Storage Compaction

Storage compaction makesfiles smaller by looking for places in a file where

there is no data at all and recovering this space. Since empty spaces occur

in files when we delete records, we begin our discussion of compaction
with a look at record deletion.

Any record-deletion strategymust provide some wayforus to recog-

nize records as deleted. A simple and usually workable approachis to place

a special mark in each deleted record. For example,in thefile of Person
objects with delimitedfields developed in Chapter 4, we mightplace an
asterisk as the first field in a deleted record. Figures 6.3(a) and 6.3(b) show

a name and addressfile similar to the one in Chapter4 before andafter the

second record is marked as deleted. (The dots at the ends of records 0 and.

2 represent padding betweenthelastfield and the endof each record.)

Once weare able to recognize a record as deleted, the next question is
how to reuse the space from the record. Approaches to this problem that
rely on storage compaction do notreuse the space for a while. The records
are simply marked as deleted andleft in the file for a period of time.

Programs using the file must include logic that causes them to ignore
records that are marked as deleted. One benefit tothis approach is thatit
is usually possible to allow the user to undelete a record with verylittle

Ames |Mary{123 MapleiStillwater/OK!740751.......0. 00... 0c cea eeuue,

MorrisoniSebastiani9035 South HillcrestiForest Villagei0K!74820'

BrowniMarthai625 KimbarkiDes MoinesiIAISO3111...... vee eee ee a

AmesiMary!123 MapleiStillwateriOK!74075!

(a)

*}rrisoniSebastian!9035 South HillcrestiForest Village! 0K!74820!

BrowntMarthai625 Kimbark!Des Moines!IAi503111

(b)

AmesiMaryil23 Maple!Stillwater/OKi74075i........................

Brown!Marthai625 KimbarkiDes MoinestIAtsO31lli...................
(c) .

Figure 6.3 Storage requirements of samplefile using 64-byte fixed-length records.

(a) Before deleting the second record. (b) After deleting the second record.(c) After

compaction—the secondrecord is gone.

https://hemanthrajhemu.github.io

210 Chapter 6 Organizing Files for Performance

effort. This is particularly easyif you keep the deleted mark in a special
field rather than destroy someofthe original data, as in our example.

The reclamation of space from the deleted records happensall at once.
After deleted records have accumulated for sometime, a special program

is used to reconstructthe file with all the deleted records squeezed out as
shownin Fig. 6.3(c). If there is enoughspace, the simplest wayto do this
compaction is through file copy program that skips over the deleted

records.It is also possible, though more complicated and time-consuming,

to do the compactionin place. Either of these approaches can be used with
both fixed- and variable-length records.

The decision about howoften to run the storage compaction program
can be based on either the numberof deleted records or the calendar. In

accounting programs, for example, it often makes sense to run a
compaction procedure on certain files at the end of the fiscal year or at

some other point associated with closing the books.

6.2.2 Deleting Fixed-Length Recordsfor Reclaiming

Space Dynamically

Storage compaction is the simplest and most widely used ofthe storage

reclamation methods wediscuss. There are some applications, however,
that are too volatile and interactive for storage compactionto beuseful. In

these situations we wantto reuse the space from deleted records as soon as

possible. We begin our discussion of such dynamic storage reclamation
with a second look at fixed-length record deletion, since fixed-length
records make the reclamation problem much simpler.

In general, to provide a mechanism for record deletion with subse-

‘quent reutilization of the freed space, we needto be able to guarantee two
things:

Thatdeleted records are marked in somespecial way, and

m That we can find the space that deleted records once occupied so we
can reuse that space when we add records.

Wehave already identified a method of meetingthefirst requirement: we

mark records as deleted by putting a field containing an asterisk at the
beginningof deleted records:

If you are working with fixed-length records and are willing to search

sequentially through a file before adding a record, you can always provide
the second guaranteeifyou have provided the first.Space reutilization can
take the form of looking throughthefile, record by record, until a deleted

https://hemanthrajhemu.github.io

Reclaiming Spacein Files 211

recordis found.If the program reaches the endofthe file without finding
a deleted: record, the new record can be appendedat the end.

Unfortunately, this approach makes adding records an intolerably

slow process,if the programis an interactive one andthe user hastosit at

the terminal and wait as the record addition takes place. To make record
reuse happen more quickly, we need

m <A way to know immediatelyif there are empty slotsin thefile, and

H Away to jumpdirectly to one of thoseslots if theyexist.

Linked Lists

The use of a linkedlist for stringing together all of the available records can

meet both of these needs. A linkedlist is a data structure in which each
element or node contains somekindof reference to its successor in thelist.

(See Fig. 6.4.)
If you have a headreferenceto thefirst node in the list, you can move

through thelist by looking at each node and then at the node’s pointer
field, so you know where the next node is located. When you finally
encounter a pointer field with some special, predetermined end-of-list
value, you stop the traversalofthelist. In Fig. 6.4 we use a -1 in the point-
er field to mark the end of thelist.

Whena list is made up of deleted records that have become available

space within thefile, thelist is usually called an avail list. Wheninserting a
new record into a fixed-length record file, any one available recordis just

as good as any other. There is no reason to prefer one open slotover
anothersince all the slots are the samesize. It follows that there is no

reason to orderthe avail list in any particular way. (As wesee later, this
situation changes for variable-length records.)

Stacks

The simplest way to handlea list is as a stack. A stack is a list in which all
insertions and removals of nodes take place at one end of thelist. So, if we

\

Head

pointer .

(f

Figure 6.4 A linked list.

https://hemanthrajhemu.github.io

212 Chapter 6 Organizing Files for Performance

have an avail list managed as a stack that contains relative record numbers

(RRN) 5 and 2, and then add RRN 3, it looks like this before and after the

addition of the new node:

\. ‘

Head RRN -- “ae RRN oe ey

an 5 Aa. 2 -1l-:

7 7

\ \ __\
Head RRN . RRN “\] RRN
ae 3 5 J} 5 2 2

7 7 7

When anew nodeis addedto the top or front of a stack, wesay thatit
is pushed onto thestack. If the next thing that happensis a request for
some available space, the requestis filled by taking RRN 3 from theavail
list. This is called popping the stack. Thelist returns to astate in whichit

contains only records 5 and 2.

Linking and Stacking Deleted Records

Now we can meetthe twocriteria for rapid access to reusable space from

deleted records. We need ,

m A way to know immediately if there are empty slots in thefile, and

mw A way to jumpdirectly to one of thoseslotsif it exists.

Placing the deleted records on a stack meets bothcriteria. If the point-
er to the top of the stack contains the end-of-list value, then we knowthat
there are no emptyslots and that we have to add new records by append-
ing them to the endofthefile. If the pointer to the stack top contains a
valid node reference, then we know notonly that a reusableslotis avail-

able, but also exactly wheretofindit.

Where do wekeep thestack? Isit a separatelist, perhaps maintained in
a separate file, or is it somehow embedded within the data file? Once
again, we needto be carefulto distinguish between physicaland conceptu-

al structures. The deleted, available records are not moved anywhere when

they are pushed ontothestack. They stay right where we need them,locat-
ed in the file. The stacking and linking are done by arranging andrear-
ranging the links used to make one available recordslot point to the next.

Since we are working with fixed-length recordsin a disk file rather than

with memory addresses, the pointing is not done with pointer variables in
the formal sense but throughrelative record numbers (RRNs).

https://hemanthrajhemu.github.io

Reclaiming Spacein Files 213

Suppose we are working with a fixed-length record file that once

contained seven records (RRNs 0-6). Furthermore, supposethatrecords 3

and 5 have been deleted, in that order, and that deleted records are marked

by replacing thefirst field with an asterisk. We can then use the second

field of a deleted record to hold the link to the next record on theavail list.

Leaving out the details of the valid, in-use records, Fig. 6.5(a) shows how
the file might look.

Record is the first record on the availlist (top of the stack) asit is the
recordthat is most recently deleted. Following the linkedlist, we see that
record 5 points to record 3. Since the link field for record 3 contains -1,
whichis our end-of-list marker, we know that record3 is the last slot avail-

able for reuse.

Figure 6.5(b) shows the samefile after record 1 is also deleted. Note

that the contents of all the other records on the avail list remain

unchanged. Treating the list as a stack results in a minimal amountoflist
reorganization when we push and poprecords to and from thelist.

If we now add a new nameto thefile, it is placed in record 1, since

RRN is the first available record. The avail list- would return to the

List head (first available record) —> 5

0 1 2 3 4 5 6

Edwards. . Bates... Wills... +—1 Masters... "3 Chavez...

List head (first availablerecord) — 1

0. 1 2 3 4 5 6

Edwards... a5 Wills... *—] Masters... a3 Chavez...

List head (first available record) + —1

0 1 2 3 4 5 6

Edwards. . | istnewrec...) Wills... |3rdaewrec...| Masters. . .|2ndnewrec...| Chavez. .

(c)

Figure 6.5 Samplefile showinglinked lists of deleted records.(a) After deletion of

records 3 and 5,in that order. (b) After deletion of records 3, 5, and 1, in that order. (c) After

insertion of three new records.

https://hemanthrajhemu.github.io

214 Chapter 6 Organizing Files for Performance

configuration shownin Fig. 6.5(a). Since therearestilltwo recordslots on
the avail list, we could add two more namesto thefile without increasing

the size of the file. After that, however, the avail list would be empty as

shownin Fig. 6.5(c). If yet another nameis addedto thefile, the program
knowsthat the avail list is empty and that the name requires the addition

_of a new record at the end ofthefile.

Implementing Fixed-Length Record Deletion

Implementing mechanismsthat place deleted records on a linked availlist

and thattreat the avail list as a stack is relatively straightforward. We need
a suitable place to keep the RRN ofthe first available record on the avail

list. Since this is information that is specific to ‘the datafile, it can be

carried in a header recordatthestart of the file.
When wedelete a record, we must be able to mark the recordas delet-

ed and thenplace it onthe avail list. A simple way to do.this is to place an
* (or someotherspecial mark) at the beginningofthe record as a deletion

mark,followed by the RRN of the next record on the availlist.
Once we have a list of available records within a file, we can reuse the

space previously occupied by deleted records. For this we would write a

single function that returnseither (1) the RRN of a reusable recordslot or

(2) the RRN of thenext record to be appended if no reusable slots are
available.

6.2.3 Deleting Variable-Length Records

Now that we havea mechanism for handling an availlist of available space
once recordsare deleted, let’s apply this mechanism to the more complex

problem of reusing space from deleted variable-length records. We have

seen that to support record reuse through anavaillist, we need

m A wayto link the deleted records together into list thatis, a place to
puta linkfield);

m An algorithm for adding newly deleted records to the avail list; and

m An algorithm for finding and removing records from the avail list

when weare ready to use them.

An Avail List of Variable-Length Records

Whatkindoffile structure do we need to support an availlist of variable-
length records? Since we will want to delete whole records and therplace

https://hemanthrajhemu.github.io

Reclaiming Spacein Files 215

records on an avail list, we need a structure in which the recordis a clearly
defined -entity. The file structure of VariableLengthBuffer,in

which we define the length of each record by placing a byte countat the
beginningof each record,will serve us well in this regard.

We can handle the contents of a deleted variable-length record just as
we did with fixed-length records. Thatis, we can place a single asterisk in

the first field, followed by a binary link field pointing to the next deleted

record on the avail list. The avail list can be organized just as it was with

fixed-length records,but with onedifference: we cannotuse relative record

numbersfor links. Since we cannot compute the byte offset of variable-

length records from their RRNs, the links must contain the byte offsets

themselves.
To illustrate, suppose we begin with a variable-length record file

containing the three records for Ames, Morrison, and Brown introduced
earlier. Figure 6.6(a) shows whatthe file looks like (minus the header)

before any deletions, and Fig. 6.6(b) shows whatit lookslike after the dele-

tion of the second record. The periods in the deleted record signify
discarded characters.

Adding and RemovingRecords

Let’s address the questions of adding and removing records to and from
thelist together, since theyare clearly related. With fixed-length records we

HEAD. FIRST_AVAIL: -1l

40 Ames!Mary!123 MapleiStillwater!0K!74075'164 MorrisoniSebastian

‘9035 South HillcrestiForest VillageiQK!74820:45 BrowniMartha!62.

5 Kimbark!Des MoinesiIAi503111

(a)

HEAD. FIRST:_AVAIL: 43

40 Ames!Mary;123 Maple !Stillwater!0OKi 74075164le

45 BrowniMartha!62ee ee ee ee eeeeee ee ee

5 KimbarkiDes MoinesiIA 50311:

(b)

Figure 6.6 A samplefile for illustrating variable-length record deletion. {a) Original

sample file stored in variable-length format with byte count (header record not
included). (b) Sample file after deletion of the second record (periods show discarded

characters).

https://hemanthrajhemu.github.io

216 Chapter 6 OrganizingFiles for Performance

could access the avail list as a stack becduse one memberoftheavaillist is

jast as usable as any other. That is not true when. the record slots on the
avail list differ in size, as they do in a variable-length record file. We now
have an extra condition that must be met before we can reuse a record: the
record must be the right size. For the moment we define rightsize as “big
enough.”Later wefind thatit is sometimes useful to be moreparticular
about the meaningofrightsize.

It is possible, even likely,.that we need to search through the availlist

for a recordslot thatis the right size. We can’t just pop the stack and expect
the first available record to be big enough. Finding a properslot on the
avail list now meanstraversingthe list until a recordslot that is big enough
to hold the newrecordis found.

For example, supposethe avail list contains the deleted record slots
shownin Fig. 6.7(a), and a record that requires 55bytes is to be added.
Since the avail list is not empty, we traverse the records whose sizes are 47

(too small), 38 (too small), and 72 (big enough). Having founda slot big

enough to hold our record, we removeit from the availlist by creating a

new link that jumps over the record as shown in Fig. 6.7(b). If wehad

reached the end ofthe avail list before finding a recordthat was large

enough, we would have appendedthe new record atthe end of thefile.
Because this procedurefor finding a reusable record looks through the

entire avail list if necessary, we do not need a sophisticated method for
putting newly deleted records ontothelist. If a record of the rightsizeis

\ \ \ .

Size Size Size Size ‘
47 38 72 68 -1

of 7 ff

(a)

\

Size . Size Size

47 38 68 ~—1
7 ;

Removed record — sme '
(b)

Figure 6.7 Removal of a record from an avail list with, variable-length records.

(a) Before removal, (b) After removal.

https://hemanthrajhemu.github.io

Reclaiming Spacein Files 217

somewhereon thislist, our get-available-record procedure eventually finds
it. It follows that we can continue to push new members ontothe front of
the list, just as we do with fixed-length records.

Developmentof algorithms for adding and removingavaillist records
is left to you as part of the exercises found at the end of this chapter.

6.2.4 Storage Fragmentation

Let’s look again at the fixed-length record version of our three-recordfile
(Fig. 6.8). The dots at the ends of the records represent characters we use
as padding between thelast field and the end of the records. The padding
is wasted space;it is part of the cost ofusing fixed-length records. Wasted
space within a recordis called internal fragmentation.

Clearly, we want to minimize internal fragmentation. If we are work-

ing with fixed-length records, we attempt this by choosing a record length

that is as closeas possible to what we need for each record. But unless the

actual data is fixed in length, we have to put up with a certain amount of
internal frdgmentation in a fixed-length recordfile. |

Oneof the attractions of variable-length recordsis that they minimize

wasted space by doing away with internal fragmentation. The spaceset

aside for each recordis exactlyas longasit needsto be. Comparethe fixed-
Jength example with the one in Fig. 6.9, which uses the variable-length
record structure—abyte count followed by delimited data fields. The only

space (other than the delimiters) that is not used for holding data in each
record is the countfield. If we assumethat this field uses 2 bytes, this
amounts to only 6 bytes for the three-record file. The fixed-length record

file wastes 24 bytes in the very first record.

Ames!Mary!123 Maple!Stillwater!OK!740751...... Lecce e eee eenes
Morrison!Sebastiani9035 South HillcrestiForest Village!0K!74820|

BrowniMartha:625 KimbarkiDes MoinesiIAI50311I...................

Figure 6.8 Storage requirements of samplefile using 64-byte fixed-length records.

40 Ames!Mary!123 MapletStillwater!0Ki74075!64 Morrison!Sebastian

$9035 South HillcrestitForest Village:0Ki74820145 BrowniMartha!62
5 Kimbark!Des Moines!IA!503113

Figure 6.9 Storage requirements of samplefile using variable-length records with a
countfield.

https://hemanthrajhemu.github.io

218 Chapter 6 Organizing Files forPerformance .

But before we start congratulating ourselves for solving the problem of
wasted space due to internal fragmentation, we should consider what

happens in a variable-length record file after a record is deleted and

replaced with a shorterrecord.If the shorter record takes less space than

the original record, internal fragmentationresults. Figure 6.10 shows how
the problem could occur with our sample file when the secondrecord in

thefile is deleted and the following recordis added:

Ham|A1|28 Elm|Ada|OK|70332|

It appearsthat escaping internal fragmentationis notso easy. Theslot
vacated by the deleted record is 37 bytes larger than is needed for the new:

record, Since wetreat the extra 37 bytes as part of the new record,they are

not on theavail list andare therefore unusable. But instead of keeping the
64-byte record slot intact, suppose we break it into two parts: one part to

hold the new Ham record,and the other to be placed back on the availlist.
Since we would take only as much space as necessary for the Ham record,

there would be no internal fragmentation.

Figure 6.11 shows whatourfile looks like if we use this approach to
insert the record for Al Ham. Westeal the space for the Ham record from
the end of the 64-byte slot and leave thefirst 35 bytes of the slot on the

availlist. (The available space is 35 rather than 37 bytes because we need 2.
bytes to form a newsizefield for the Ham record.) The 35 bytesstill on the

avail list can be used to hold yet another record. Figure 6.12 shows the

effect of inserting the following 25-byte record:

LeelEd/Rt 2]Adal]OK|748201

HEAD. FIRST_AVAIL: 434

40 Ames !Mary!123 Maple'!Stillwater }0K{74075'\64 *{ -1l...

Leee ee ee 45 Brown |‘Martha | 62

5 “Kimbark ‘Des Moines; IA;+s0311}

{a)

HEAD. FIRST_AVAIL: —1

40 Ames {Mary!l23 Maple} Stillwater|'0K'74075 |64 Ham;|Al/28 Elm! Ada}

OK |} 70332'. Le Le ee es ,45 Brown!iMartha | 62

5 Kimbark! Des Moines!‘TA!50311!

(b) -

Figure 6.10 Illustration of fragmentation with variable-length records.(a) After deletion

of the second record (unused charactersin the deleted record are replaced by periods).

(b) After the subsequent addition of the record for Al Ham.

https://hemanthrajhemu.github.io

"Reclaiming Spacein Files 219

HEAD. FIRST_AVAIL: 43|

40 Ames ;|Mary(/123 Maple |Stillwater(|0K!74075'35 *' -1...,........,
Lew eee eae 26 Ham! Al(28 Elm}‘Ada!(OK |70332 '‘45 Brown ,|Martha'!6
25 Kimbark ',Des Moines} IA! 50311!

Figure 6.11 Combating internal fragmentation by putting the unused part of the
deleted slot back on the avail list.

As we would expect, the newrecordis carved out of the 35-byte record

that is on the avail list. The data portion of the new record requires 25

bytes, and we need 2 more bytes for anothersize field. This leaves 8 bytes

in the record still on the availlist.

Whatare the chances offinding a record that can make use ofthese 8

bytes? Our guess would be that the probability is close to zero. These 8
bytes are not usable, even though theyare not trapped inside any other

record. This is an example of external fragmentation. Thespaceis actually

on the avail list rather than being locked inside some other record butis
too fragmented to be reused.

There are some interesting ways to combatexternal fragmentation.
One way, which we discussed at the beginning of this chapter, is storage

compaction. We could simply regenerate the file when external fragmenta-

tion becomesintolerable. Two other approachesareas follows:

m If two record slots on the avail list are physically adjacent, combine
them to makea single, larger record slot. Thisis called coalescing the

holes in the storage space.

m Try to minimize fragmentation before it happens by adopting a place-

mentstrategy that the program can use asit selects a record slot from
the availlist.

HEAD, FIRST_AVAIL: 43|

40'Ames'Mary!123 Maple!Stillwater'0K'74075'8 *' -1.,.25 Lee!Ed'!
Rt 2!Ada'OK!74820'26 Ham!Al'28 Elm! Ada'0K‘!70332'45 Brown'!Martha‘6
25 .Kimbark! Des Moines!IA!50311!

Figure 6.12 Addition of the second record into the slot originally occupied by a single

deleted record.

https://hemanthrajhemu.github.io

220 Chapter 6 Organizing Files for Performance

Coalescing holes presents someinteresting problems. Theavaillistis
not kept in physical record order; if there are two deleted records that are
physically adjacent, there is no reason to presumethat they are linked adja-

cent to each other on the availlist. Exercise 15 at the.end ofthis chapter

provides a discussion of this problem along with a framework for devel-

oping a solution.
The developmentof better placementstrategies, however,is a different

matter. It is a topic that warrants a separate discussion, since the choice
amongalternative strategies is not as obvious as it might seem atfirst
glance.

6.2.5 PlacementStrategies

Earlier we discussed ways to add and removevariable-length records from

an avail list. We add records bytreating theavail list as a stack and putting
deleted records at the front. When we need to removea record slot from
the avail list (to add a recordto the file), we look through thelist, starting

at the beginning, until we either find a recordslot that is big enough or

reach the endofthelist. .
This is called a first-fit placement strategy. The least possible amount

of work is expended when weplace newly available space on thelist, and
we are notvery particilar about the closeness offit as we look for a record

slot to hold a new record. We acceptthefirst available recordslot that will
do the job, regardless of whetherthe slotis ten times bigger than whatis

needed or whetherit is a perfect fit.
We could, of cours:, develop a more orderly approach for placing

records on the avail list by keeping them in either ascending or descend-
ing sequenceby size. Rather than always putting the newly deleted records
at the front of thelist, these approaches involve moving throughthelist,
looking for the place to insert the record to maintain the desired
sequence.

If we order the availlist in ascending orderby size, whatis the effect on
the closenessoffit of the records that are retrieved from thelist? Since the
retrieval procedure searches sequentially through the avail list until it

encounters a record that is big enough to hold the newrecord,the first
record encountered is the smallest record that will do the job. The fit

betweenthe available slot and the new record’s needs would beas close as
we can makeit. Thisis called a best-fit placementstrategy,

A best-fit strategy is intuitively appealing. Thereis, of course, a price

to be paid for obtaining this fit. We end up havingto search throughat

https://hemanthrajhemu.github.io

Reclaiming Spacein Files 221

least a partofthe list—not only when wegetrecords from the list, but also

when weput newly deletedrecords onthelist. In a real-time environment,
the extra processing time could be significant.

A less obvious disadvantage of the best-fit strategy is related to the

idea of finding the best possible fit and ensuring that thefree arealeft over
after inserting a newrecord into a slot is as small as possible. Often this
remaining spaceis too small to be useful, resulting in external fragmenta-

tion. Furthermore,the slots that are least likely to be useful are the ones

that will be placed toward the beginning ofthelist, making first-fit search-
es longer as time goes on. .

These problems suggest an alternative strategy. Whatif we arrange the

avail list so it is in descending order by size? Then thelargest record slot on
the avail list would always be at the head of thelist. Since the procedure
that retrieves recordsstarts its search at the beginning ofthe avail list,it

always returns thelargest available record slotif it returns any slot atall.

This is knownas a worst-fit placementstrategy. The amountofspacein the
record slot, beyond whatis actually needed,is as large as possible.

A worst-fit strategy does not, at least initially, sound very appealing
But consider the following:

m The procedure for removing records can be simplified soit looks only
at thefirst elementoftheavail list. If the first recordslotis notlarge
enough to dothe job, noneof the others will be.

m By extracting the space we need from the Jargest available slot, we are

assured that the unused portion ofthe slot is as large as possible,
decreasing the likelihood of external fragmentation.

Whatcan you concludefrom all of this? It should beclear that no one
placementstrategy is superior underall circumstances. The best you can

do is formulate a series of general observations. and then,given a particu-
lar design situation,try to select the strategy that seems most appropriate.

Here are some suggestions. The judgmentwill have to be yours.

m Placementstrategies make sense only with regard to volatile, variable-

length recordfiles. With fixed-length records, placementis simply not

an issue.

gm Ifspace is lost due to internalfragmentation, the choice is between first

fit and best fit. A worst-fit strategy truly makes internal fragmentation
worse.

m Ifthe spaceis lost due to externalfragmentation, one should give care-
ful consideration to a worst-fit strategy.

https://hemanthrajhemu.github.io

222

6.3

Chapter 6 Organizing Files for Performance

Finding Things Quickly: An Introduction to
Internal Sorting andBinary Searching

This text begins with a discussion of the cost of accessing secondarystor-
age, You may remember that the magnitude of the difference between
accessing memory and seeking information ona fixed disk is such that,if
we magnify the time for a memory.access to twenty seconds, a similarly

magnified disk access would takefifty-eight days.
So far we have not had to pay muchattention to this cost. This section;

then, marks a kind of turning point. Once we move from fundamental
organizationalissues to the matter of searchinga file for a particular piece
of information, the ‘cost of a seek becomes a majorfactor in determining

our approach. And whatis true for searching is all the more truefor sort-

ing. If you have studied sorting algorithms, you know that even a good

sort involves making many comparisons. If each of these comparisons

involves a seek,the sortis agonizinglyslow. .

Our discussion of sorting and searching, then, goes beyond simply
getting the job done. We develop approaches that minimize the numberof
disk accesses and therefore minimize the amount of time expended. This
concertn with minimizing the number of seeks continues to be a major
focus throughouttherest ofthis text. This is just the beginning of a quest

for ways to order andfind things quickly.

6.3.1 FindingThings in Simple Field andRecord Files

All of the programs we have written up to this point, despite any other
strengths they offer, share a major failing: the only wayto retrieve or find
a record with any degree of rapidity is to look for it by relative record

number. If the file has fixed-length records, knowing the RRNlets us
compute the record’s byte offset and jumpto it using direct access.

But what if we do not know the byte offset or RRN of the record we

want? Howlikely is it that a question aboutthis file would take the form,
“Whatis the record stored in RRN 23?”Notverylikely, of course. We are

much morelikely to knowtheidentity of a record byits key, and the ques-
tion is more likely to take the form, “Whatis the record for Jane Kelly?”

Given the methodsof organization developed so far, access by key

implies a sequential search. What if there is no recordcontaining the

requested key? Then we would have to look through the entire file. Whatif
we suspect that there might be more than onerecord that containsthe key,

https://hemanthrajhemu.github.io

Finding Things Quickly: An Introduction to Internal Sorting and Binary Searching 223

and we want to find them all? Once again, we would be doomed to look-

ing at every record in the file. Clearly, we need to find a better wayto

handle keyed access. Fortunately, there are many better ways.

6.3.2 Search by Guessing: Binary Search

Suppose weare lookingfor a record for Jane Kelly in file of one thousand

fixed-length records, and supposethefile is sorted so the records appearin
ascending order by key. We start by comparing KELLY JANE(the canoni-

cal form of the search key) with the middle keyin the file, whichis the key
whose RRNis 500. The result of the comparison tells us which half of the

file contains Jane Kelly’s record. Next, we compare KELLY JANEwith the
middle key amongrecords in the selected halfofthefile to find out which
quarter of the file Jane Kelly’s record is in. This process is repeated until

either Jane Kelly’s record is found or we have narrowed the numberof

potential records to zero.

This kind of searchingis called binary searching. An algorithm for

binary searching on file of fixed-sized records is shown in Fig.6.13.
Binary searching takes at most ten comparisons—to find Jane Kelly’s

recordifit is in the file, or to determine thatit is notin thefile. Compare
this with a sequential search for the record. If there are one thousand
records, then it takes at most one thousand comparisonsto find a given

record (or establish that it is not present); on the average, five hundred

comparisons are needed,
Werefer to the code in Fig. 6.13 as an algorithm,not a function, even

thoughit is given in the form of a C++ function. This is becausethis is not

a full implementation of binary search. Details of the implementation of
the methodare not given. From the code, we can infer that there must be
a class FixedRecordFile that has methods NumRecs and

ReadByRRNand that those methods have certain specific meaning. In
particular, NumRecs must return the number of records in the

FixedRecordFile, and ReadByRRN must read the record at a

specific RRN and unpackit into a RecType object. .

It is reasonable to suppose thata full implementation of binary search

would be a template function with parameters for the type of the data
record and the type of the key. It might also be a methodofa fixed-record

file class. Changing these details will not affect the algorithm and might

not even require changes in the code. We do know, however, that in order
to perform binary search, we mustbe able to readthefile by relative record
number, we must have assignmentand key extraction methods on the data

record type, and we must haverelational operationson the key type.

https://hemanthrajhemu.github.io

224 Chapter 6 Organizing Files for Performance

int BinarySearch

(FixedRecordFile & file, RecType & obj, KeyType & key)

// binary search for key .

// if key found, obj contains corresponding record, 1 returned

// if key not found, 0 returned

(

int low = 0; int high = file.NumRecs()-1;

while (low <= high)

{

int guess = (high - low) / 2;

file.ReadByRRN (obj, guess);

1f (obj.Key() == key) return 1; // record found

if (obj.Key() < key) high = guess - 1;// search before guess

else low = guess + 1;// search after guess

}

return 0; // loop ended without finding key

}

Figure 6.13 A binary search algorithm.

Figure 6.14 gives the minimum definitions that must be present to

allow a successful compilation of BinarySearch.This includes a class
RecType with a Key method thatreturns the key value of an object and

class KeyType with equality and less-than operators. No furtherdetails

of any ofthese classes needbegiven.

class KeyType

{public:

int operator == (KeyType &); // equality operator

int operator < (KeyType &); // less than operator

};

class RecType {public:. KeyType Key{);};

class FixedRecordFile ‘

{public:

int NumRecs();
int ReadByRRN (RecType & record, int RRN);

1;

Figure 6.14 Classes and methodsthat must be implemented to support the

binary search algorithm.

https://hemanthrajhemu.github.io

Finding Things Quickly: An Introduction to Internal Sorting and Binary Searching 225

This style of algorithm presentation is the object-oriented replace-

ment for the pseudocode approach, which has been widely used to
describe algorithms. Pseudocodeis typically used to describe an algorithm
withoutincluding all of the details of implementation. In Fig. 6.13, we

have been able to presentthe algorithm withoutall of the details but in a

form that can be passed through a compilerto verify thatit is syntactical-

ly correct and conformsin its use of its related objects. The contrast
between object-oriented design and pseudocodeis that the object-orient-
ed approach uses a specific syntax and a specific interface. The object-

oriented approachis no harderto write but has significantly more.detail,

6.3.3 Binary Search versus Sequential Search

In general, a binary search of'a file with # records takes at most

Llog, n| + 1 comparisons

and on average approximately

Llog, nj + 1/2 comparisons.

A binary search is therefore said to be O(log,). In contrast, you may
recall that a sequential search of the samefile requires at most 1 compar-

isons, and on average ?(tk?) n, whichis to say that a sequential searchis
O(n).

The difference between a binary search and a sequential search
becomes even more dramatic as we increase the size ofthe file to be
searched. If we double the numberof recordsin the file, we double the
number of comparisons required for sequential search; when binary
search is used, doubling the file size adds only one more guess to our worst
case. This makes sense, since we know that each guess eliminateshalf of

the possible choices. So, if we tried to find Jane Kelly’s record in file of
two thousand records, it would take at most

1 + Log, 2000] = 11 comparisons

whereas a Sequential search would average

1/2 1 = 1000 comparisons

and could take up to two thousand comparisons.

Binary searching is clearly a more attractive wayto find things than
sequential searching. But, as you might expect, there is a price to be paid

before we can use binary searching: it works only when thelist of records

is ordered in termsof the key weare usingin the search. So, to make use of
binary searching, we haveto be able to sort list on the basis ofa key.

https://hemanthrajhemu.github.io

226 Chapter 6 Organizing Files for Performance

Sorting is a very importantpartof file processing. Next, we will look
at some simple approaches to sorting files in memory, at the same time

introducing some important new conceptsin file structure design. We take

a second look at sorting in Chapter 8, when we deal with some tough
problemsthat occur whenfiles are too large to sort in memory.

6.3.4 Sorting a Disk File in Memory

Consider the operation of anyinternal sorting algorithm with which you
are familiar. The algorithm requires multiple passes over thelist that is to

be sorted, comparing and reorganizing the elements. Someofthe items in
the list are moved a long distance fromtheir original positions in thelist.
if such an algorithm were applied directly to data stored on a disk,it is
clear that there would be a lot of jumping around, seeking, and rereading
of data. This would bea very slow operation—unthinkablyslow.

If the entire contents ofthe file can be held in memory, a veryattrac-

tive alternative is to read the entirefile from the disk into memory and
then do the sorting there, using an internal sort. We still have to-access the
data on the disk, but this way we can access it sequentially, sector after

sector, without having to incur the costs of a lot of seeking and of multiple.

passes over the disk.

This is one instance of a general class of solutions to the problem of

minimizing disk usage: force your disk access into a sequential mode,

performing the more complex, direct accesses in memory.
Unfortunately, it is often not possible to use this simple kind of solu-

tion, but when you can, you should take advantage ofit. In the case of

sorting, internal sorts are increasingly viableas the amount of memory

space grows. A goodillustration of an internal sort is the Unix sort util-
ity, which sorts files in memoryif it can find enoughspace. This utility is
described in Chapter8.

6.3.5 The Limitations of Binary Searching and

Internal Sorting

Let’s look at three problemsassociated with our “sort, then binary search”
approachto finding things.

Problem 1: Binary Searching Requires More Than One orTwo Accesses

In the average case, a binary search requires approximately log, nj + 1/2

comparisons. If each comparison requires a disk access, aseries of binary

https://hemanthrajhemu.github.io

Finding Things Quickly: An Introduction to Internal Sorting and Binary Searching 227

searches on a list of one thousand items requires, on the average, 9.5

accesses per request.If the list is expanded to one hundred thousanditems,

the average search length extends to 16.5 accesses. Althoughthis is a
tremendous improvementover the cost of a sequential search forthe key,
it is also true that 16 accesses, or even 9 or 10 accesses, is not a negligible
cost. The cost of this searchingis particularly noticeable and objectionable,
if we are doing a large enough numberofrepeated accesses bykey.

When weaccess recordsbyrelative record numberrather than by key,

we are able to retrieve a record with a single access. That is an order of

magnitude of improvement over the ten or more accesses that binary.
searching requires with even a moderately largefile. Ideally, we would like

to approach RRNretrieval performance while still maintaining the advan-
tages of access by key. In the following chapter, on the use of index struc-
tures, we begin to look at ways to move towardthisideal.

Problem2: Keeping a File Sorted Is Very Expensive

Ourability to use a binary search has a price attached to it: we must keep
the file in sorted order by key. Suppose we are working with a file to which

.we add recordsas often as we search for existing records. If we leavethefile

in unsorted order, conducting sequential searches for records, then on

average each search requires reading through half the file. Each record

addition, however,is very fast, since it involves nothing more than jump-
ing to the endofthefile and writing a record.

If, as an alternative, we keep the file in sorted order, we can cut down

substantially on the cost of searching, reducing it to a handful of accesses.

But we encounterdifficulty when we add a record, since we want to keep

all the records in sorted order. Inserting a new record intothefile requires,

on average, that we not only read through half the records, but that we also
shift the records to open up the space required for the insertion, We are

actually doing more work than if we simply do sequential searches on an
unsortedfile.

The costs of maintaining a file that can be accessed through binary
searching are not alwaysas large as in this example involving frequent

record addition. For example,it is often the case that searchingis required

much more frequently than record addition. In such a circumstance, the

benefits of faster retrieval can more thanoffset the costs of keeping the file
sorted. As another example, there are many applications in which record
additions can be accumulated in a transaction file and made in a batch
mode. By sorting the list of newrecords before adding them to the main

file, it is possible to merge them with the existing records. As we see in

https://hemanthrajhemu.github.io

228

6.4

Chapter 6 Organizing Files for Performance

Chapter 8, such merging is a sequential process, passing only once over

each record in the file. This can be an efficient, attractive approach to

maintainingthefile.
So,despite its problems, there are situations in which binary searching

appears to be a useful strategy. However, knowing the costs of binary
searching also lets us see better solutions to the problemoffinding things
bykey. Better solutions will have to meet at least one of the following
conditions:

m= They will not involve reordering of the recordsin the file when a new
record is added, and

m= Theywill be associated with data structures that allow for substantial-

ly more rapid,efficient reorderingofthefile.

In the chapters that follow we develop approaches thatfall into each of
these categories. Solutionsofthe first type can involvethe use of simple
indexes. They can also involve hashing. Solutions of the second type can
involve the use oftree structures, such as a B-tree, to keep thefile in order.

Problem 3: An Internal Sort Works Only on Small Files

Ourability to use binary searchingis limited by our abilityto sort thefile.

An internal sort worksonly if we can read the entire contents ofa file into
the computer’s electronic memory.If thefile is so large that we cannot do
that, we need a different kind ofsort.

In the following section we develop a variation on internal sorting

called a keysort. Like internal sorting, keysort is limited.in terms of how
large a file it can sort, butits limit is larger. More important, our work on

keysort begins to illuminate a new approach to the problem offinding
things thatwill allow us to avoid the sortingof recordsin a file.

Keysorting

Keysort, sometimesreferred to as tag sort, is based on the idea that when
we sort a file in memory the only things that we really need to sort are the
record keys; therefore, we do not need to read the whole file into memory

during the sorting process. Instead, we read the keys from the file into

memory, sort them, and then rearrange the recordsin thefile accordingto

the new ordering ofthe keys.

https://hemanthrajhemu.github.io

Keysorting 229

Since keysort never reads the complete set of records into memory,it

can sort largerfiles than a regularinternal sort, given the same amount of

memory.

6.4.1 Description of the Method

To keep things simple, we assume that-we are dealingwith a fixed-length
recordfile of the kind developed in Chapter 4, with a count of the number
of recordsstored in a headerrecord.

We present the algorithm in an object-oriented pseudocode.As in
Section 6.3.3, we need to identify the supporting object classes. Thefile

class (FixedRecordFile) must support methods NumRecs and

ReadByRRN.In orderto store the key RRN pairs from thefile, we need a

class KeyRRN that has two data members, KEY and RRN.Figure 6.15 gives
the minimal functionality required by these classes.

The algorithm begins by reading the key RRNpairs into an array of
KeyRRN objects, We call this array KEYNODES[]. Figure 6.16 illustrates
the relationship between the array KEYNODES [] andthe actualfile at the

class FixedRecordFile

(public:

int NumRecs();

int ReadByRRN (RecType & record, int RRN);

// additional methods required for keysort

int Create (char * fileName);

int Append (RecType & record);

};

class KeyRRN

// contains a pair (KEY, RRN)

{public:

KeyType KEY; int RRN;

KeyRRN() ;

KeyRRN (KeyType key, int rrn);

i

int Sort (KeyRRN [], int numKeys); // sort array by key

Figure 6.15 Minimal functionality required for classes used by the keysort algorithm.

https://hemanthrajhemu.github.io

230 Chapter 6 OrganizingFiles for Performance

KEYNODES array Records

KEY RRN

HARRISON SUSAN 1 Harrison | Susan | 387 Eastern...

KELLOG BILL 2 Kellog | Bill | 17 Maple...

HARRIS MARGARET 3 Harris | Margaret | 4343 West...

Bell | Robert | 8912 Hill...

BELL ROBERT k

In memory On secondary store

Figure 6.16 Conceptual view of KEYNODESarray to be used in memory by internal sort
routine and record arrayon secondarystore.

time the keysort procedure begins. The RRN field of each array element

contains the RRN ofthe record associated with thecorrespondingkey.

The actual sorting process simply sorts the KEYNODES[] array

according to the KEYfield. This produces an arrangementlike that shown

in Fig. 6.17. The elements of KEYNODES [] are nowsequenced in sucha
waythat the first element has the RRNofthe record that should be moved

to the first position in thefile, the second elementidentifies the record that

should be second,andso forth.
Once KEYNODES [] is sorted, we are ready to reorganizethefile

according to this new ordering byreading the records from the inputfile

and writing to a newfile in the order of the KEYNODES [}array.

Figure 6.18 gives an algorithm for keysort. This algorithm works much
the sameway that a normalinternal sort would work, but with two impor-

tant differences:

m Rather than read an entire record into.a memoryarray, we simply read

each record into a temporary buffer, extract the key, then discard it;

and

mw When weare writing the records outin sorted order, we have to read
them in a secondtime,since theyare notall stored in memory.

https://hemanthrajhemu.github.io

Keysorting 231

KEYNODES array

KEY RRN

Records

BELL ROBERT k Harrison | Susan | 387 Eastern...

 HARRIS MARGARET 3 ‘Kellog | Bill] 17 Maple...

HARRISON SUSAN 1 Harris ! Margaret | 4343 West...

KELLOG BILL 2 , Bell | Robert | 8912 Hill...

In RAM On secondary store

Figure 6.17 Conceptual view of KEYNODESarray andfile after sorting keys in memory.

int KeySort (FixedRecordFile & inFile, char * outFileName)

{

)

RecType obj;

KeyRRN * KEYNODES = new KeyRRN [inFile . NumRecs({)];

// read file and load Keys .

For (int i = 0; i < inFile . NumRecs{}; i++}

{

inFile . ReadByRRN (obj, 1);// read record i

KEYNODES[i] = KeyRRN(obj.Key(},1);//put key and RRN into Keys

}
Sort (KEYNODES, inFile . NumRecs());//-sort Keys

FixedRecordFile outFile;// file to hold records in key order

outFile . Create (outFileName);// create a new file

// write new file in key order
for {int 3 = 0; 3 < inFile . NumRecs(); j++)

{
inFile . ReadByRRN (obj, KEYNODES[j].RRN);//read in key order

outFile . Append (obj);// write in key order

}
return 1;

Figure 6.18 Algorithm for keysort

https://hemanthrajhemu.github.io

232 Chapter 6 Organizing Files for Performance

6.4.2 Limitations of the KeysortMethod

At first glance, keysorting appears to be an obvious improvement over
sorting performed entirely in memory; it might even appearto be a case of

getting something for nothing. We knowthatsorting is an expensive oper-
ation and that we wantto doit in memory. Keysorting allows us to achieve
this objective without having to hold the entire file in memoryat once.

But, while reading about the operation of writing the records out in

sorted order, even a casual reader probably senses a cloud onthis appar-

ently bright horizon. In keysort we need to read in the records a second
time before we can write out the newsortedfile. Doing something twiceis

never desirable. But the problem is worse thanthat.
‘Lookcarefully at the for loop that reads in the records before writing

them out to the newfile. You can see that we are notreading through the
input file sequentially. Instead, we are working in sorted order, moving

from the sorted KEYNODES[] to the RRNsof the records. Since we have

to seek to each record and readit in before writingit back out, creating the

sorted file requires as many random seeks into the inputfile as there are
records. As we have noted a numberof times,there is an enormousdiffer-

ence betweenthe timerequiredto readall the recordsin file sequential-
ly and the time required to read those samerecordsif we must seek to each
record separately. What is worse, we are performingall of these accesses in
alternation with write statementsto the outputfile. So, even the writing of

the output file, which would otherwise appear to be sequential, involves
seeking in most cases. The disk drive must move the head back and forth
between the twofiles as it reads and writes.

The getting-something-for-nothing aspect of keysort has suddenly

evaporated. Even though keysort does the hard work ofsorting in memo-
ry, it turns out that creating a sorted version of the file from the map
supplied by the KEYNODES[] array is not atall a trivial matter when the

only copies of the records are kept on secondarystore.

6.4.3, Another Solution: Why Bother to Write the File Back?

The idea behind keysort is an attractive one: why work with an entire
record whentheonlyparts of interest, as far as sorting and searchingare
concerned, are the fields used to form the key? There is a compelling parsi-
mony behind this idea, and it makes keysorting look promising. The

promise fades only when werun into the problem ofrearranging all the

records in thefile so they reflect the new, sortedorder.

https://hemanthrajhemu.github.io

Keysorting 233

It is interesting to ask whether we can avoid this problem by simply
not botheringwith the task that is giving us trouble. Whatif we just skip
the time-consuming business of writing out a sorted version of the file?
Whatif, instead, we simply write out a copy ofthe array of canonical key
nodes? If we do withoutwriting the records back in sorted order, writing

out the contents of our KEYNODES|[] array instead, we wili have written

a program that outputs an index to theoriginal file.-The relationship
between the two filesis illustrated in Fig. 6.19.

This is an instanceof one of our favorite categories of solutions to
computerscience problems: if somepart of a process begins tolooklike
a bottleneck, consider skipping it altogether. Ask if you'can do without
it. Instead of creating a new, sorted copy ofthe file to use for searching,
we have created a second kindoffile, an indexfile, that is to be used in
conjunction with the original file. If we are looking for a particular

record, we do our binary search on the index file and then use the RRN

stored in the indexfile record to find the corresponding record in the
originalfile.

There is much to say about the use of index files, enoughto fill sever-

al chapters. The next chapteris about the various ways wecan use a simple

index, which is the kind of index weillustrate here. In later chapters we

talk about different ways of organizing the index to provide moreflexible
access and easier maintenance.

Index file Original file

BELL ROBERT k P| Harrison | Susan | 387 Eastern. . .

HARRIS MARGARET 3 Kellogg | Bill; 17 Maple. . .

HARRISON SUSAN 1 Harris |.Margaret | 4343 West...

KELLOGG BILL - 2 pad Bell ' Robert ‘8912 Hill...

Figure 6.19 Relationship between the index file and the data file.

https://hemanthrajhemu.github.io

234 Chapter 6 Organizing Files for Performance

6.4.4 Pinned Records

In section 6.2 we discussed the problemof updating and maintainingfiles.
Muchofthat discussion revolved aroundthe problemsofdeleting records
and keeping track of the space vacated by deleted records so it can be

-reused. An availlist of deleted record slots is created by linking all of the

available slots together. This linking is done by writing a link field into
each deleted record that points to the next deleted record. This link field

gives very specific information aboutthe exact physical location of the
next available record.

Whena file contains such references to the physical locations of
records, we say that these records are pinned. You can gain an appreciation

for this particular choice of terminology if you consider theeffects of sort-
ing oneofthese files containing an availlist of deleted records. A pinned

record is one that cannot be moved. Other records in the samefile or in

some other file (such as an index file) contain references to the physical

location of the record.If the record is moved, these references no longer
lead to the record; they become dangling pointers, pointers leading to
incorrect, meaningless locations in the file.

Clearly, the use of pinned records in a file can make sorting more
difficult and sometimes impossible. But what if we want to support
rapid access by key whilestill reusing the space madeavailable by record

deletion? Onesolution is to use an indexfile to keep thé sorted order of
therecords while keeping the datafile in its original order. Once again,
the problem of finding things leads to the suggestion that we need to

take a close look at the use of indexes, which,in turn,leads us to the next
chapter..

SUMMARY

In this chapter we look at ways to organize or reorganize files to improve

performance in some way. |

Data compression methodsare used to makefiles smaller by re-encod-
ing data that goesinto file. Smallerfiles use less storage, take less time to
transmit, and can often be processed faster sequentially.

The notation used for representing information can often be made
more compact. For instance, if a 2-byte field in a record can take on only

fifty values, the field can be encodedusing 6 bits-instead of 16. Another

https://hemanthrajhemu.github.io

Summary 235

form of compression called run-length encoding encodes sequences of
repeating values rather than writingall of the valuesin thefile.

A third form of compression assigns variable-length codes to values
depending on howfrequentlythe values occur. Values that occuroften are

given shorter codes,so they take up less space. Huffman codes are an exam-
ple of variable-length codes.

Some compression techniques are irreversible in that they lose

information in the encoding process. The Unix utilities compress,
uncompress, pack, and unpack provide good compression in Unix.

A second wayto save spacein a file is to recover space in thefile after

it has undergone changes. A volatile file, one that undergoes many

changes, can deteriorate very rapidly unless measures are taken to adjust
the file organization to the changes. Oneresult of making changestofiles
is storage fragmentation.

Internal fragmentation occurs when there is wasted space within a

record. In a fixed-length recordfile, internal fragmentation can result

when variable-length recordsare stored in fixedslots. It can also occurin
a variable-length record file when one recordis replaced by another record
of a smaller size. External fragmentation occurs when holes of unused
space between recordsare created, normally because of record deletions.

There are a numberof ways to combatfragmentation. The simplestis
storage compaction, which squeezes out the unused space caused from
external fragmentation bysliding all of the undeleted records together.
Compaction is generally done in a batch mode.

Fragmentation can be dealt with dynamically by reclaiming deleted
space whenrecordsare added. The need to keep track of the space to be

reused makes this approach more complex than compaction.
We begin with the problem of deleting fixed-length records. Since

finding thefirst field of a fixed-length record is very easy, deleting a record
can be accomplished by placing a special mark in the first field.

Since all records in a fixed-length record file are the same size, the

reuse of deleted records need not be complicated. The solution we adopt
consists of collecting all the available record slots intd an avail list. The

avail list is created by stringing togetherall the deleted records to form a

linked list of deleted record spaces. |

In a fixed-length record file, any one record slotis just as usable as any

otherslot; they are interchangeable. Consequently, the simplest way to

maintain the linked avail list is to treat it as a stack. Newly available
‘records are addedto the avail list by pushing them onto the front of the

https://hemanthrajhemu.github.io

236 Chapter 6 Organizing Files for Performance

list; record slots are removed from the avail list by popping them from the
frontofthelist.

Next, we consider the matter of deleting variable-length records. We
still form linkedlist of available record slots, but with variable-length

records we needto be sure that a recordslotis the right size to hold the
new record. Our initial definition of right size is simply in termsof being
big enough. Consequently, we need a procedure that can search through

the avail list until it finds a record slot that is big enough to hold the new

record. Given such a function and a complementary function that places
newly deleted records on the avail list,we can implement a system that

deletes and reuses variable-length records.
Wethen consider the amountand nature of fragmentation that devel-

ops inside a file due to record deletion and reuse. Fragmentation can
happen internally if the spaceis lost becauseit is locked up inside a record.

We develop a procedure that breaks a single, large, variable-length record

slot into two or more smaller ones, using exactly as much spaceas is need-
ed for a new record andleaving the remainderontheavail list. We see that,
although this could decrease the amountof wasted space, eventually the
remaining fragments are too smail to be useful. When this happens,space

is lost to external fragmentation.

There are a numberof things that one can do to minimize external

fragmentation. These include (1) compacting the file in a batch mode
whenthelevel of fragmentation becomesexcessive; (2) coalescing adjacent
record slots on theavail list to make larger, more generally useful slots; and
(3) adopting a placementstrategy to select slots for reuse in a way that

minimizes fragmentation. Developmentofalgorithmsfor coalescing holes
is left as part of the exercises at the end of this chapter. Placementstrate-

gies need more careful discussion.
The placementstrategy used up to this point by the variable-length

record deletion and reuse proceduresis a first-fit strategy. This strategy:
is simple: If the record slot is big enough,use it. By keeping the availlist
in sorted order,it is easy to implement either of two other placement
strategies:

m@ Bestfit, in which a new record is placed in the smallestslot thatis still
big enoughto holdit. This is an attractive strategy for variable-length

record files in which the fragmentation is internal. It involves more
overhead than other placementstrategies.

m Worstfit, in which a new record is placedin the largest recordslot

available. The ideais to have the leftoverportion of the slot be as large
as possible.

https://hemanthrajhemu.github.io

Summary 237

There is no firm rule forselecting a placementstrategy; the best one can
do is use informed judgment based on a numberof guidelines.

In the third major section of this chapter, we look at ways to find

thingsquickly in a file through the use of a key. In preceding chaptersit

wasnot possible to access a record rapidly without knowingits physical
location or relative record number. Now we explore some of the problems

and opportunities associated with keyed direct access.

This chapter develops only one method offinding records by key—

binary searching.Binary searching requires O(log, n) comparisonsto find
a record in/afile with n records and henceis far superior to sequential

searching. Since binary searching works only on sortedfile, a sorting
procedure is an absolute necessity. The problem of sorting is complicated
by the fact that we are sorting files on secondary storage rather than

vectors in memory. We need to develop a sorting procedure that does not

require seeking back and forth overthefile.
Three disadvantages are associated with sorting and binary searching

as developed upto this point:

m Binary searching is an enormous improvementover sequential search-
ing, but it still usually requires more than one or two accesses per
record. The need for fewer disk accesses becomes especially acute in
applications where a large numberofrecordsare to be accessed bykey.

m= The requirement that the file be kept in sorted order can be expen-
sive. For active files to which records are addedfrequently, the cost of

keeping thefile in sorted order can outweigh the benefits of binary
searching.

m A memorysort can be used only on relatively small files. This limits

the size of the files that we could organize for binary searching,given

our sorting tools.

The third problem can besolved partially by developing more power-
ful sorting procedures, such as a keysort. This approach to sorting resem-
bles a memorysort in most respects, but does not use memoryto hold the

entirefile. Instead,it reads in only the keys from therecords,sorts the keys,

and then usesthesortedlist of keys to rearrange the records on secondary
storage so they are in sorted order.

The disadvantage to a keysort is that rearranging file of n records
requires 1 random seeks out to the original file, wHich can take much

more time than a sequential reading of the same numberofrecords. The

inquiry into keysorting is not wasted, however. Keysorting naturally leads
to the suggestion that we merely write the sorted list of keys off to

https://hemanthrajhemu.github.io

238 Chapter6 Organizing Files for Performance

secondary storage, setting aside the expensive matter of rearranging the

file. This list of keys, coupled with RRN tags pointing backto the original
records, is an example of an index. We lookat indexing, moreclosely in
Chapter7.

This chapter closes with a discussion of another, potentially hidden,
cost of sorting and searching. Pinned records are records that are refer-
enced elsewhere (in the samefile or in someotherfile) accordingto their

physical position in the file. Sorting and binary searching cannot be

applied to a file containing pinned records, since the sorting, by definition,

is likely to change the physical position of the record. Such a change caus-
es other references to this record to becomeinaccurate, creating the prob-

lem of dangling pointers.

KEY TERMS

Avail list. A list of the space,freed through record deletion,that is available
for holding new records. In the examples considered in this chapter,

this list of space took the form of a linkedlist of deleted records.

Bestfit. A placementstrategy for selecting the space on the availlist used

to hold a newrecord.Best-fit placementfinds the available record slot
that is closest in size to what is needed to hold the new record.

Binarysearch. A binary search algorithm locates a key in a sorted list by

repeatedly selecting the middle elementofthelist, dividing the list in
half, and forming a new,smaller list from the half that contains the

key. This process is continued until the selected elementis the key that

is sought.

Coalescence. If two deleted, available records are physically adjacent, they
' can be combinedto form single, larger available record space.This

process of combining smaller available spaces into a larger one is

known as coalescing holes. Coalescence is a way to counteract the prob-
lem of external fragmentation.

Compaction. A way of gettingrid ofall external fragmentation bysliding
all the records together so there is no space lost between them.

Data compression. Encoding information in file in such a way asto take

up less space.

External fragmentation. A form of fragmentation that occurs in file
whenthere is unused space outside or between individual records.

https://hemanthrajhemu.github.io

Key Terms: 239

First fit. A placementstrategy for selecting a space from the availlist. First-

fit placement selects the first available record slot large enough to hold

the new record.

Fragmentation. The unused space within file. The space can be locked
within individual records (internal fragmentation) or between individ-

ual records (external fragmentation),

Huffman code. Avariable-length code in which the lengths of the codes
are based on their probability of occurrence.

Internal fragmentation. A formof fragmentation that occurs when space
is wasted in a file because it is locked up, unused, inside of records.

Fixed-length record structures often result in internal fragmentation.

Irreversible compression. Compression in which informationis lost.

Keysort. A methodofsorting a file that does not require holding the
_entire file in memory. Only the keys are held in memory, along with

pointers that tie these keys to the records in thefile from which they

are extracted. The keys are sorted, and thesorted list of keys is used to
construct a newversion of thefile that has the records in sorted order.
The primary advantage of a keysort is that it requires less memory
than a memorysort. The disadvantageis that the process of construct-

ing a newfile requires a lot of seeking for records.

Linkedlist. A collection of nodes that have been organized into aspecific
sequence by meansof references placed in each nodethat point toa

single successor node. Thelogical orderof a linkedlist is often differ-

ent from the physical order of the nodes in the computer’s memory.

Pinned record. A record is pinned whenthere are other recordsorfile

structures that refer to it by its physical location.It is pinned in the

sense that we are notfreeto alter thephysical location of the record:

doing so destroys the validity of the physical references to the record.
These references becomeuseless dangling pointers.

Placement strategy. As used in this chapter, a placementstrategy is a
mechanism for selecting the space on the availlist that is to be used to

hold a new record addedtothefile.

Redundancy reduction. Any form of compression that does not lose
information. .

Run-length encoding. A compression method in which runsof repeated
codes are replaced by a count of the numberofrepetitions of the code,
followed by the codethatis repeated.

https://hemanthrajhemu.github.io

240 Chapter 6 Organizing Files for Performance ‘

Stack. A kind of list in which all additions and deletions take place at the

same end.

Variable-length encoding. Any encoding schemein whichthe codes are of
different lengths. More frequently occurring codes are given shorter
lengths than frequently occurring codes. Huffman encoding is an

example of variable-length encoding.

Worstfit. A placement strategy for selecting a space from the availlist.
Worst-fit placementselects the largest recordslot, regardless of how

small the new record is: Insofar as this leaves the largest possible
record slot for reuse, worst fit can sometimes help minimize external

fragmentation.

—__________FURTHERREADINGS

A thorough treatment of data compression techniques can be found in

Lynch (1985). The Lempel-Ziv method is described in Welch (1984).

Huffman encodingis covered in many data structures texts andalsoin

Knuth (1997).

Somewhatsurprising, the literature concerning storage fragmentation

and reuse often does not consider these issues from the standpoint of
secondary storage. Typically, storage fragmentation, placementstrategies,

coalescing of holes, and garbage collection are consideredin the context of
reusing space within electronic random access memory. As you readthis

literature with the idea of applying the concepts to secondary storage,it is
necessary to evaluate each strategy in light of the cost of accessing

secondary storage. Somestrategies that are attractive when usedin elec-
tronic memoryare too expensive on secondarystorage.

Discussions about space mvanagement in memoryare usually found

under the heading “Dynamic Storage Allocation.” Knuth (1997) provides
a good, though technical, overview of the fundamental concernsassociat-

ed with dynamic.storage allocation, including placementstrategies.
Standish (1989) provides a more complete overview ofthe entiresubject,

reviewing much of the importantliterature on the subject.
This chapter only touches the surface of issues relating to searching

and sorting files. A large part of the remainderof this text is devoted to
exploring the issues in moredetail, so one source for further readingis the

present text. But there ismuch more that has been written about even the

relatively simple issues raised in this chapter. Theclassic reference on sort-

https://hemanthrajhemu.github.io

Exercises 241

ing and searching is Knuth (1998). Knuth provides an excellent discussion

of the limitations of keysort methods. He also develops a very complete
discussion of binary searching, clearly bringing out the analogy between
binary searching and the use of binary trees.

EXERCISES

1, In our discussion of compression, we show how we can compress the

“state name”field from 16 bits to 6 bits, yet we say that this gives us a
space savings of 50 percent, rather than 62.5 percent, as we would
expect. Whyis this so? What other measures might wetake to achieve

the full 62.5 percentsavings?

2. Whatis redundancy reduction? Whyis run-length encoding an exam-
ple of redundancy reduction?

3, What is the maximum run length that can be handled in the run-
length encoding described in the text? If much longer runs were
common, how might you handle them?

4. Encode each of the following using run-length encoding. Discuss the

results, and indicate how you might improvethe algorithm.

a. 01 0101 01 01 01 01 O01 01 04 04 02 02 02 03 03 03 03 04 05 06 06 07

b. 07 07 02 02 03 03 05 05 06 06 05 05 04 04

5. From Fig. 6.2, determine the Huffman codefor the sequence “cdffe.”

6. Whatis the difference between internal and external fragmentation?
How can compactionaffect the amountofinternal fragmentation ina
file? What about external fragmentation?

7. In-place compaction purges deleted records from a file withoutcreat-
ing a separate new file. What are the advantages and disadvantages of
in-place compaction compared withto compaction in which a sepa-

rate compactedfile is created?

8. Whyis a best-fit placementstrategy a bad choice if thereis significant
loss of space due to external fragmentation?

9. Conceive of an inexpensive way to keep a continuous record of the
amount of fragmentationin file. This fragmentation measure could
be used to trigger the batch processes used to reduce fragmentation.

10. Suppose a file must remain sorted. Howdoes this affect the range of
placementstrategies available?

https://hemanthrajhemu.github.io

242 Chapter 6 Organizing Files for Performance.

ll.

12.

13.

14.

15.

16.

17.

Develop an algorithm in thestyle of Fig. 6.13 for performing in-place
compaction in a variable-length record file that containssize fields at

the start of each record. What operations must be added to class
RecordFileto support this compaction algorithm?

Consider the process of updating rather than deleting a variable-
length record. Outline a procedure for handling such updating,
accounting for the update possibly resulting in either a longer ‘or

shorter record.

In Section 6.3, we raised the question of where to keep the stack
containing thelist of available records. Should it be a separatelist,
perhaps maintained in a separatefile, or should it be embedded with-

in the datafile? We chose the latter organization for our implementa-
tion. What advantages anddisadvantages are there to the second

approach? Whatother kindsoffile structures can you think ofto
facilitate various kinds of record deletion?

In some files, each record hasa delete bit that is set to 1 to indicate

that the record is deleted. This bit can also be used to indicate that a
recordis inactive rather than deleted.Whatis required to reactivate

an inactive record? Could reactivation be done with the deletion
procedures we have used?

In this chapter weoutlined three general approaches to the problem

of minimizing storage fragmentation:(a) implementationof a place-
mentstrategy, (b) coalescing of holes, and (c) compaction. Assuming
an interactive programming environment, whichofthese strategies

would be used on thefly, as records are added and deleted? Which
strategies would be used as batch processes that could be run period-

ically?

Why do placement strategies make sense only with variable-length
record files?

Compare the average case performanceofbinary search with sequen-

tial search for records, assuming

a. That the records being sought are guaranteed tobe in the file,
b. That half of the time the records being soughtare notin the file,

and a
c. That half of the time the records being sought are notin the file

and that missing records mustbeinserted.

Make a table showing your performance comparisonsforfiles of

5000, 10 000, 20 000, 50 000, and 100 000 records.

https://hemanthrajhemu.github.io

Programming Exercises 243

18.

19,

20.

If the records in Exercise 17 are blocked with 30 records per block,
how.does this affect the performance of the binary and sequential
searches?

An internal sort works only withfiles small enoughto fit in memory.

Some computing systems provide users who have an almost unlimit-
ed amount of memory with a memory managementtechniquecalled
virtualmemory. Discuss theuse of internalsortingto sortlargefiles

on systems that use virtual memory. Be sure to consider the disk

activity that is required to support virtual memory.

Our discussion of keysorting covers the considerable expense associ-
ated with the process of actually creating the sorted outputfile, given
the sorted vector of pointers to the canonical key nodes. The expense
revolves around two primaryareasof difficulty:

a. Having to jump aroundin the inputfile, performing manyseeks to

retrieve the records in their new, sorted order; and

b.. Writing the outputfile at the same time weare reading the input
file—jumping back andforth betweenthefiles can involvé seeking.

Design an approachto this problem usingthat uses buffers to hold a
numberof records and,therefore mitigating these difficulties. If your
solution is to be viable, obviously the buffers must use less memory

than a sort taking place entirely within electronic memory.

Exercises 21-22 and 23-26 investigate the problem of implementing
record deletion and update.It is very appropriate to combine theminto
one or two design and implementation projects.

21.

22.

Add method Delete to class Buf ferFile to support deletion of
fixed-length records. Add a field to the beginning of each record to
mark whetherthe record is active or deleted. Modify the Read and
Append methodsto react to this field. In particular, Read should
either fail to read, if the current record is deleted, or read the next

active record. You may need to modify classes L[OBuffer and

FixedLengthRecord.

Extend the implementation of Exercise 21 to keep a list of deleted
recordsso that deleted records can be reused by the Append method.

Modify the Append methodto place a newrecord into a deleted

https://hemanthrajhemu.github.io

244 Chapter 6 Organizing Files for Performance

23.

24.

25.

26.

27.

record, if oneis available. You.may consider addinga field to thefile
headerto store the address of the head ofthe deleted list and using

space in each deleted record tostore the address of the next deleted
record.

RepeatExercise 2] for variable-length records.

Repeat Exercise 22 for variable-length records.

Add an Update method (or modify Write) to class BufferFile

to support the correct replacementof the record in the currentfile

position with a new record. Your implementation ofthese methods
must properly handle the case in which where the size of the new
record is different from that of the record it replaces. In the case

where the newsize is smaller, you may choose to make the necessary
changesto allow the new record to occupythe space ofthe old record,

even though notall bytes are used. Note thatin this case, the record

size in thefile, and the buffer size may bedifferent.

Improve the variable-length record deletion procedure from Exercise
24 so that it checks to see if the newly deleted record is contiguous
with any other deleted records. If. there is contiguity, coalesce the

records to make single, larger available record slot. Some things to
consider as you address this problem are as follows:

a. Theavaillist does not keep records arranged in physical order; the
next record on the avail list is not necessarily the next deleted
record in the physicalfile.Is it possible to merge these two views of

the availlist, the physical order and the logical order, into a single

list? If you do this, what placementstrategy will you use?

b. Physical adjacency can include records that precede as well as

follow the newlydeleted record. How will you look for a deleted
record that precedes the newly deleted record?

c. Maintaining two viewsofthelist of deleted records implies that as

you discover physically adjacent records you have to rearrange
links to update the nonphysical avail list. What additional compli-
cations would we encounter if we were combining the coalescing

of holes with a best-fit or worst-fit strategy?

Implement the BinarySearch function of Fig. 6.13 for class
Person using the canonical form of the combination oflast

name and first name as the key. Write a driver program to test the
function. Assume that the files are created with using class

RecordFile<Person> using a fixed-length buffer.

https://hemanthrajhemu.github.io

ProgrammingProject 245

28,

29.

30.

Modify the BinarySearch function so that if the key is not in the

file, it returns the relative record numberthat the key would occupy
were it in the file. The function should also continue to indicate
whether the key was found or not.

Write a driver that uses the new BinarySearchfunction devel-

oped in Exercise 28. If the sought-after keyis in the file, the program
should display the record contents. If the key is not found, the

program should display a list of the keys that surroundthe position
that the key would have occupied. You shouldbe able to move back-
ward or forward throughthislist at will. Given this modification, you

do not have to rememberan entire key to retrieve it. If, for example,

you knowthat you are looking for someone named Smith,but cannot
rememberthe person’sfirst name, this new program lets you jump to
the area whereall the Smith records are stored. You can thenscroll

back and forth through the keys until you recognize the rightfirst
name.

Write an internal sort that can sort a variable-length recordfile creat-
ed with class BufferFile.

PROGRAMMING PROJECT

This is the fourth part of the programming project. We add methodsto
delete records from files and update objects in files. This depends on the
solution to Exercises 21-25. This part of the programmingprojectis

optional. Further projects do not depend onthis part.

31.

32.

Use the Delete and Update operations described in Exercises
21-25 to produce files of student records that support delete and
update.

Use the Delete and Update operations described in Exercises
21-25 to producefiles of student records that support delete and
update.

The next part of the programmingproject is in Chapter7.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

Indexing
a

CHAPTER

+, *

CHAPTER OBJECTIVES

Introduce concepts of indexing that have broad applications in the
design offile systems.

Introduce the use of a simple linear index to provide rapid access to

records in an entry-sequenced,variable-length recordfile.

Investigate the implications of the use of indexesforfile

maintenance.

Introduce the template features of C++.

Discuss the object-oriented approach to indexed sequential files.

Describe the use of indexes to provide access to records by more
than onekey.

Introduce the idea of an invertedlist, illustrating Boolean operations

on lists.

Discuss the issue of when to bind an index key to an address in the
datafile.

Introduce and investigate the implications of self-indexingfiles.

247https://hemanthrajhemu.github.io

248

7.1

Chapter 7 Indexing

CHAPTER OUTLINE

7.1 WhatIs an Index?
7.2 A Simple Index for Entry-SequencedFiles
7.3 Using Template Classes in C++ for Object I/O
7.4 Object-Oriented Support for Indexed, Entry-SequencedFiles

of Data Objects

7.4.1 Operations Required to Maintain an IndexedFile

7.4.2 Class TextindexedFile
7.4.3 Enhancements to Class TextIndexedFile

7.5 Indexes That Are Too Large to Hold in Memory
7.6 Indexing to Provide Access by Multiple Keys

7.7 Retrieval Using Combinations of Secondary Keys
7.8 Improving the Secondary Index Structure: Inverted Lists

7.8.1 A First Attempt at a Solution
7.8.2 A Better Solution: Linking the List of References

7.9 Selective Indexes . |
7.10Binding

What Is an Index?

The last few pages of many books contain an index. Such an index is a
table containinga list of topics (keys) and numbers of pages where the

topics can be found (referencefields).
All indexes are based on the same basic concept—keys andreference

fields. The types of indexes we examinein this chapterare called simple
indexes because they are represented using simple arrays of structures that
contain the keys and referencefields. In later chapters we lookat indexing
schemes that use more complex data structures, especially trees. In this
chapter, however, we want to emphasize that indexes can be very simple

andstill provide powerfultools forfile processing.
The index to a book provides a way to find a topic quickly. If you have

ever had to use a book that doesn’t have a good index, you already know.

that an index is a desirable alternative to-scanning. throughthe book.
sequentially to find a-topic. In general, indexing is another way to handle
the problem we explored in Chapter 6: an index is a way to find things.

Consider what would happenif wetried to apply the previous chap-
ter’s methods, sorting and binary searching, to the problem of finding
things in a book. Rearrangingall the wards in the book so they werein

https://hemanthrajhemu.github.io

7.2

A Simple Index for Entry-Sequenced Files 249

alphabetical order certainly would make finding anyparticularterm easi-
er but would obviously have disastrous effects on the meaning ofthe book.

In a sense, the terms in the book are pinned records. This is an absurd
example,butit clearly underscores the power and importance of the index
as a conceptualtool. Since it works by indirection, an index lets you impose

order on file without rearranging thefile. This not only keeps us from
disturbing pinned records, but also makes matters such as record addition
much less expensiye than they are with a sortedfile.

Take, asanother example, the problem offinding booksin library.

We wantto be ableto locate books by a specific author,title, or subject

area. One way of achievingthis is to have three copies of each book and
three separate library buildings. All of the books in one building would be
sorted by author’s name, anotherbuilding would contain books arranged

by title, and the third would have them ordered by subject. Again,this is an

absurd example,but one that underscores another important advantage of

indexing. Instead of using multiple arrangements, a library uses a card
catalog. The card catalog is actually a set of three indexes, each using a

different key field, and all of them using the same catalog numberas a

reference field. Another use of indexing, then, 1s to provide multiple access
paths toa file.

We also find that indexing gives us keyed access to variable-length

record files. Let’s begin our discussion. of indexing by exploring this prob-
lem of access to variable-length records and the simple solution that
indexing provides.

Onefinal note: the example data objects usedin the followingsections

are musical recordings. This may cause some confusion as we use the term
record to refer to an objectin file, and recordingto refer to a data object.

Wewill see how to get information about recordings by finding recordsin
files. We’ve tried hard to makea distinction between these two terms: The
distinction is between thefile systern view of theelements that make up
files (records), and the user’s or application’s view of the objects that are
being manipulated (recordings).

A Simple Index for Entry-Sequenced Files

Suppose we own an extensive collection of musical recordings, and we

wantto keep track ofthe collection throughthe use of computerfiles. For

each recording, we keep the information shownin Fig. 7.1, Appendix G
includes files recordng.h and recordng.cpp that define class

https://hemanthrajhemu.github.io

250 Chapter 7 Indexing \

Identification number

Title

Composeror composers

Artistor artists

Label (publisher)

Figure 7.1 Contentsof a data

record,

Recording..Program makerec.cpp in Appendix G uses classes.

DélimFieldBuffer and BufferFile to create the file of
Recordingobjects displayed in Fig. 7.2. Thefirst column ofthe table

contains the record addresses associated with each recordin thefile.

_ Suppose we formeda primary keyfor these recordings consisting of
the initials for the company label combined with the recording’s ID

number. This will make a good primarykeyas it should provide a unique
key for each entry in thefile. Wecall this key the Label ID. The canonical
form for the Label ID consists of the uppercase form of the Labelfield
followed immediately by the ASCIIrepresentation of the ID number. For

example,

LON2312

Record ID

address Label number Title Composer(s) Artist(s)

17 LON 2312 _RomeoandJuliet Prokofiev Maazel

62 RCA 2626 - Quartet in Beethoven Julliard

; C Sharp Minor

117 WAR 23699 Touchstone Corea Corea

152 ‘ANG © 3795 SymphonyNo.9 Beethoven Grulini

196 COL 38358 Nebraska Springsteen Springsteen

24) DG ‘18807 SymphonyNo.9 Beethoven Karajan

285 MER 75016 Coq d’OrSuite Rimsky-Korsakov Leinsdorf

338 COL 31809 SymphonyNo.9 Dvorak "Bernstein

382 DG 139201 Violin Concerto Beethoven Ferras

427 FF 245 Good News Sweet Honey Sweet Honey

in the Rock - in the Rock

Figure 7.2 Contentsof sample recording file.

https://hemanthrajhemu.github.io

A Simple Index for Entry-SequencedFiles 251

Howcould we organize thefile to provide rapid keyed access to indi-
vidual records? Could we sort the file and then use binary searching?

Unfortunately, binary searching depends on being able to jump to the

middle record in the file. This is not possible in a variable-length record

file because direct access by relative record numberis not possible; thereis
no way to know wherethe middle recordis in any group ofrecords.

Analternative to sorting is to constructanindexforthefile. Figure 7.3

illustrates such an index. On the rightis the data file containing informa-
tion about our collection of recordings, with one variable-length data

record per recording. Only four fields are shown (Label, ID number,Title,

and Composer), butit is easy to imagine the other information filling out

each record.
Ontheleft is the index, each entry of which contains a key corre-

spondingto a certain Label ID in the data file. Each keyis associated with
a referencefield giving the address ofthefirst byte of the corresponding
data record. ANG3795, for example, correspondsto the reference field

containing thenumber 152, meaningthat the record containingfull infor-
mation on the recording with Label ID ANG3795 can be foundstarting at
byte number 152 in the recordfile.

Index Recordingfile

Reference Address

Key field of record Actual data record

ANG3795 1520 | 17 LON 123121 Romeo andJuliet | ProkofievI...

COL31809 338 62 RCA! 2626! Quartet in C Sharp Minor | Beethoven|...

COL38358 196 117 WAR | 23699 | Touchstone | Corea|...

DG139201 382 152. ANGI 3795 | Symphony No. 9 | Beethoven|...

DG18807 24} 196 COL! 38358 | Nebraska | Springsteen|...

-| FF245 427 241 DG118807 | Symphony No. 9 | Beethoven | ..

LON2312 17 285 MER! 750161 Coq d’OrSuite i Rimsky-Korsakov| ...

MER75016 285 338 | COL! 31809| Symphony No. 9| Dvorak |...

RCA2626 62 382 DG1 1392011 Violin Concerto | Beethoven|...

WAR23699 W7 | 427 FFI 2451 Good News |Sweet Honeyin the Rock I... |

Figure 7.3 Index of the sample recordingfile.

https://hemanthrajhemu.github.io

252 Chapter 7 Indexing

The structure of the index objectis very simple,It is a list of pairs of

fields: a keyfield and a byte-offset field. There is one entry in the index for

each recordin the datafile. Class Text IndexofFig. 7.4 encapsulates the
index data and index operations. The full implementation of class

Text Index is given in files textind.h and textind.cpp of

Appendix G. An index is implemented with arrays to hold the keys and

record references. Each object is declared with a maximum numberof
entries and can be used for unique keys (no duplicates) and for nonunique
keys (duplicates allowed), The methods Insert and Search do most of
the work of indexing. The protected method Find locates the element key
and returns its index. If the key is not in the index, Find returns -1. This
method is used by Insert, Remove, and Search.

A C++ feature used in this class is the destructor, method
~TextIndex. This method is automatically called whenever a
Text Index objectis deleted, either because of the return from a function
that includes the declaration of a Text Index object or because of explic-
it deletion of an object created dynamically with new. The role of the
destructoris to clean up the object, especially when it has dynamically creat-

ed data members.In the case of class Text Index, the protected members
Keys and RecAddrsare created dynamically by the constructor and
should be deleted by the destructor to avoid an obvious memoryleak:

Text Index: :~TextIndex (}{delete Keys; delete RecAddrs; }

class TextIndex

{public:
TextIndex (int maxKeys
int Insert (const char

int Remove (const char

100, int unique = i);

key, int. recAddr); // add to index
key); // remove key from index+

+
I

int Search (const char * key) const;

// search for key, return recaddr

void Print (ostream &) const;

protected:

int MaxKeys; // maximum number of entries
int NumKeys; // actual number of entries

char * * Keys; // array of key values

int,* RecAddrs; // array of record references
int Find (const char * key) const;
int Init (int maxKeys, int unique);
int Unique; // if true, each key must be unique in the index

};

Figure 7.4 ‘Class Textindex.

https://hemanthrajhemu.github.io

Using TemplateClasses in C++ for Object 1/0 253

Note also that the index is sorted, whereas the data file is not.

Consequently, although Label ID ANG3795ts thefirst entry in the index,

it is not necessarily the first entry in the data file. In fact, the datafile is

entry sequenced, which meansthatthe records occurin the order theyare

enteredinto the file. As we will see, the use of an entry-sequencedfile can

make record addition and file maintenance much simpler than the case
with a data file that is kept sorted by somekey.

Using the index to provide access to the data file by Label ID is a

simple matter. The codeto use our classes to retrieve a single record by key
from a recordingfile is shown in the function RetrieveRecording:

int RetrieveRecording (Recording & recording, char * key,
TextIndex & RecordingIndex, BufferFile.& RecordingFile)

// read and unpack the recording, return TRUE if succeeds

{ int result;

result = RecordingFile . Read (RecordingIndex.Search (key));

if (result == -1) return FALSE;
result = recording.Unpacx (RecordingPile.GetBuffer());

return ‘result;

With an open file and an index to the file in memory,

RetrieveRecording puts together the index search,file read, and

buffer unpack operationsinto a single function.
Keeping the index in memoryas the program runsalso lets us find

records by key more quickly with an indexedfile than with a sorted one
since the binary searching can be performedentirely in memory. Once the
byte offset for the data record is found,a single seek is all that is required

to retrieve the record. The use of a sorted data file, on the other hand,
requires a seek for each step of the binary search.

7.3 Using Template Classes in C++ for Object I/O

A good object-oriented design for a file of objects should provide opera-
tions to read and write data objects without having to go through theinter-

mediate step of packing and unpacking buffers. In Chapter 4, we supported
I/O for data with the buffer classes and class Buf ferFile. In order to

provide I/O for objects, we added Pack and Unpack methodsto our
Person object class. This approach gives us the required functionality but:

https://hemanthrajhemu.github.io

254 Chapter 7 Indexing

stops short of providing a read operation whose argumentsarea file and a
data object. We want a class RecordFile that makes the following code

possible:

Person p; RecordFile pFile; pFile . Read (p);

Recording r; RecoraFile rFile; rFile . Read (r);

The major difficulty with defining class RecordFile is makingit
possible to supportfiles for different record types without having to modi-
fy the class. Is it possible that class RecordFile can support read and
unpack for a Person and a Recordingwithout change? Certainly the
objects are different; they have different unpacking methods. Virtual func-
tion calls do not help because Person and Recording do not have a

common basetype. It seems that class RecordFile needsto be para-
meterized so different versions of the class can be constructed for different
types of data objects.

It if the C++ template feature that supports parameterized function

and class definitions, and RecordFile is a template class. As shown in

Fig. 7.5, class RecordFile includes the parameter RecType, whichis
used as the argument typefor the read and write methodsoftheclass.

Class RecordFile is derived from Buf ferFile, which provides most

ofthe functionality. The constructor for RecordFile is given inline and’
simply calls the Buf ferFileconstructor.

The definitions of pFile and rFile just given are not consistent

with use of a template class. The actual declarations andcalls are:

RecordFile <Person> pFile; pFile . Read (p);

RecordFile <Recording> rFile; rFile . Read (p);

}

template <class RecType>

class RecordFile: public BufferFile

{public:

int Read (RecType & record, int recaddr = -1); .
int Write (const RecType & record, int recaddr = -1); i

hy

if

//

if

int Append (const RecType & record);

RecordFile (I0Buffer & buffer): BufferFile (buffer) {}

The template parameter RecType must have the following methods

int Pack (IOBuffer &); pack record into buffer

int Unpack (IOBuffer &); unpack record from buffer-

Figure 7.5 Template Class RecordFile.

https://hemanthrajhemu.github.io

7.4

: Object-Oriented Supportfor Indexed, Entry-SequencedFiles of Data Objects 255

Object rFile is of type RecordFile<Recording>, which ts an

instance ofclass RecordFile.The callto rFile. Read looks the same

as the call to pFile. Read, and the two methods share the same source

code, but the implementations of the classes are somewhat different. In

particular, the Pack and Unpack methods of class Recording are

used for methods of object rFile, but Person methodsare used for
pFile.

The implementation of method Read of class RecordFile is
given in Fig. 7.6; the implementation of al] the methodsarein file

recfile.h in Appendix G. The method makes use of the Read
method of BufferFile and the Unpack methodof the parame-
ter RecType. A newversion of RecordFile: : Read is created

by the C++ compiler for each instance of RecordFile. The call
rFile.Read(r) calls Recording::Unpack, and the call

pFile.Read(p) calls Person: :Unpack.,

‘Class RecordFile accomplishes the goal of providing object-

oriented I/O for data. Adding I/O to an existingclass (class Recording,.
for example) requires three steps: .

_ Add methods Pack and Unpackto class Recording.

2. Create a buffer objéct to use in the I/O:

DelimFieldBuffer Buffer;

3. Declare an object of type RecordFile<Recording>:

RecordFile<Recording> rFile (Buffer);

Now we can directly open a file and read and write objects ofclass
Recording:

Recording rl, x2;

rFile . Open ("myfile");

rFile . Read (rl);

rFile . Write (r2);

Object-Oriented Supportfor Indexed,
Entry-SequencedFiles of Data Objects

Continuing with our object-oriented approachto I/O, wewill add indexed
access to the sequential access provided by class RecordFile. A new

class, IndexedFile, extends RecordFile with Update and

https://hemanthrajhemu.github.io

256 Chapter 7 Indexing

template <class RecType> !

int RecordFile<RecType>::Read (RecType & record, int recaddr)

{

int writeAddr, result;

writeAddr = BufferFile::Read (recaddr) ;

if ({!writeAddr) return -1;

result = record . Unpack (Buffer); //RecType::Unpack

1£ (!result) return -1;

return writeAddr;

}

Figure 7.6 Implementation of RecordFile:Read.

Append methodsthat maintain a primary key index of the data file anda

Read methodthat supports access to object bykey.
So far, we have classes Text Index, which supports maintenance and

search by primarykey, and RecordFile,which supports create, open,
and close for files as well as read and’ write for data objects. We have

already seen how tocreate a primary key index for a data file as a memory
object. There are still two issues to address:

m How to make persistent index ofa file. That is, how to store the index
in a file when it is not in memory.

m How to guarantee that the index is an accurate reflection of the

contents ofthe datafile.

7.4.1 Operations Required to Maintain an Indexed File

The support and maintenance of an entry-sequenced file coupled with a
simple index requires the operations to handle a numberofdifferent

tasks. Besides the Ret rieveRecordingfunction described previous-
ly, other operations usedto find things by meansofthe index include the
following:

mM Create the original empty index and datafiles,

m= Loadthe index file into memorybeforeusingit,

m Rewrite the indexfile from memoryafter usingit,

m= Add data recordsto the datafile,

a Delete records from the datafile,

https://hemanthrajhemu.github.io

Object-Oriented Supportfor Indexed, Entry-SequencedFiles of Data Objects 257

m Update recordsin the datafile, and

m Update the index to reflect changes in the datafile.

A great benefit of our object-oriented approachis thateverything we need

to implement these operationsis already available in the methods of our

classes. We just need to glue them together. We begin by identifying the

methods required for each of these operations. We continueto use class

Recordingas our example dataclass.

Creating the Files

Twofiles must be created: a data file to hold the data objects and an index

file to hold the primary key index. Both the index file and the datafile are

created as emptyfiles, with header records and nothing else. This can be
accomplished quite easily using the Create method implemented in
class BufferFile. The data file is represented by an object ofclass
RecordFile<Recording>. The index file is a BufferFile of

fixed-size records, as described below. As an example of the manipulation
of index files, program makeind.cpp of Appendix G creates an index
file from a file of recordings.

|
Loading the Index into Memory

Both loading (reading) andstoring (writing) objects is supported in the
TOBuf fer classes. With these buffers, we can makefiles of index objects.
For this example, we are storing the full index in a single object, so our

index file needs only one record. As our use of indexes developsin therest
of the book, we will make extensive use of multiple record indexfiles. .

We need to choose a particular buffer class to use for our index

file. We define class TextIndexBuffer as a derived class of
FixedFieldBufferto support reading andwriting of index objects.

Text IndexBuffer includes pack and unpack methods for index
objects. This style is an alternative!to adding these methodsto the data
class, which in this case is Text IndexBuf fer. Thefull implementation
.of class TextIndexBuffer is in files tindbuff.h and

tindbuff.cpp in Appendix G.

Rewriting the Index File from Memory

As part of the Close operation on an IndexedFile,the index in

memory needs to be written to the index file, This is accomplished using
the Rewind and Writeoperations of class BufferFile.

https://hemanthrajhemu.github.io

258 Chapter 7 Indexing

It is important to consider what happensif this rewriting of the index
does not take place orif it takes place incompletely. Programs do not
always run to completion. A program designer needs to guard against
powerfailures, the operator turning the machineoff at the wrong time,

and other such disasters. One of the dangers associated with reading an

index into memoryand then writing it out when the programis overIs
that the copy of the index ondisk will be out of date and incorrect if the

programis interrupted,It is imperative that a program containatleast the

following two safeguardsto protect against this kindoferror:

m There should be a mechanism that permits the program to know”

whenthe index is out of date. One possibility involves setting a status

flag as soon as the copy of the index in memoryis changed. This status
flag could be written into the headerrecordofthe indexfile on disk as
soon as the index is read into memoryand subsequently cleared when

the index is rewritten. All programscould checkthestatus flag before
using an index.If the flag is foundto beset, the program would know

that the index is out of date,

m Ifa program detects that an indexis out of date, the program. must

have access to a procedurethat reconstructs the index from the data

file. This should happen automatically and take place before any

attemptis madeto use the index. | |

Record Addition

Adding a new record to the data file requires that we also add
an entry to the index. Adding to the data file itself uses
RecordFile<Recording>: : Write. The record key and the result-

ing record reference are then inserted into the index record using

TextIndex.Insert.

Since the index is kept in sorted order bykey, insertion of the new

index entry probably requires some rearrangementofthe index.In a way,
the situation is similar to the one weface as we add recordsto a sorted

data file. We have to shift or slideall the entries with keys that comein

orderafter the key of the record weare inserting. The shifting opens up a
space for the new entry. The big difference between the work we have to
do on the index entries and 'the work required for a sorted datafile is that

the index is contained wholly in memory. All of the index rearrangement
can be done without any file access. The implementation of

Text Index: : Insertis givenin file text ind. cpp of Appendix G.

https://hemanthrajhemu.github.io

Object-Oriented Supportfor Indexed, Entry-SequencedFiles of Data Objects 259

Record Deletion

In Chapter 6 we described a numberof approaches to deleting records in

variable-length recordfiles that allow for the reuse of the space occupied
by these records. These approaches are completely viable for ourdatafile
because, unlike a sorted datafile, the recordsin this file need not be moved

around to maintain an ordering onthefile. This is one ofthe great advan-
tages of an indexed file organization: we have rapid access to individual

records by key without disturbing pinned records. In fact, the indexing

itself pinsall the records. The implementation of data record deletionis

not includedin this text but has been left as exercises.
Of course, when we delete a record from the data file, we

must also delete the corresponding entry from our index, using

Text Index: : Delete. Since the index is in memory during program
execution, deleting the index entry and shifting the other entries to close
up the space may not be an overly expensive operation. Alternatively, we

could simply mark the index entry as deleted, just as we might mark the
corresponding data record. Again, see textind. cppfor the implemen-
tation of Text Index: : Delete.

Record Updating

Record updatingfalls into two categories:

= The update changes the value of the key field. This kind of update can
bring about a reordering of the index file as well as the data file.
Conceptually, the easiest way to think of this kind of changeis as a
deletion followed by an insertion. This delete/insert approach can be
implemented whilestill providing the program user with the view that

he or she is merely changing a record.

m The update does not affect the key field. This second kind. of update
does not require rearrangementofthe index file but may well involve

reordering of the data file. If the recordsize is unchanged or decreased
by the update, the record can be written directly into its old space. But

if the record size is increased by the update, a newslot for the record

will have to be found.In the latter case the starting address of the
rewritten record must replace the old address in the corresponding

RecAddrs element. Again,the delete/insert approach to maintaining
the index can be used.It is also possible to implement an operation
simply to change the REecAddrs member.

https://hemanthrajhemu.github.io

260 Chapter 7 Indexing

7.4.2 Class TextindexedFile -

Class Text IndexedF ile is defined in Fig, 7.7 andin file indfile.h
in Appendix G.It supports files of data objects with primary keys that are

strings. As expected, there are methods: Create, Open, Close, Read

(sequential and indexed), Append, and Update.In order to ensure the

correlation between the index andthe datafile, the members that repre-

sent the index inmemory(Index), the index file (IndexFile), and the

data file (DataFile) are protected members. The only access to these
membersforthe useris through the methods. TextIndexedFileisa
template class so that data objects of arbitrary classes can be used.

template <class RecType>

class TextIndexedFile

{public:

int Read (RecType & record); // read next record

int Read (char * key, RecType & record); // read by key

int Append (const RecType & record) ;

int Update (char * oldKey, const RecType & record);

int Create (char * name, int mode=ios::in]ios::out);

int Open (char * name, int modesios::inlios::out);
int Close ({);

TextIndexedFile (IOBuffer & buffer,

int keySize, int maxKeys = 100);

~TextIndexedFile (); // close and delete.

protected:

};

TextIndex Index;

BufferFile IndexFile;

TextIndexBuffer IndexBuffer;

RecordFile<RecType> DataFile;

char * FileName; // base file name for file

int SetFileName (char * fileName,

char *& dataFileName, char *& indexFileName) ;

// The template parameter RecType must have the following method

if char * Key()

Figure 7.7 Class TextindexedFile

https://hemanthrajhemu.github.io

Object-Oriented Suppartfor Indexed, Entry-SequencedFiles of Data Objects - 261

|
As an example, consider Text IndexedFile: :Append:

template <class RecType>

int TextIndexedFile<RecType>::Append (const RecType &

record)

{

char * key = record.Key();

int ref = Index.Search(key) ;

if (ref != -1) // key already in file

return -1;

ref = DataFile . Append (record);

int result = Index . Insert (key, ref) ;

return ref;

}

The Key methodis used to extract the key value from the record. A search

of the index is used to determine if the keyis alreadyin the file. If not, the

record is appendedto the data file, and the resulting addressis inserted
into the index along with the key.

7.4.3 Enhancements to Class TextindexedFile

Other Types ofKeys

Even though class Text IndexedFileis parameterized to support a

variety of data object classes, it restricts the key type to string (char *),

It is not hard to produce a template class SimpleIndex with a parame-

ter for the key type. Often, changinga class to a template class requires
adding a template parameter and then simply replacing a class name with
the parameter name—in this case, replacing char * by keytype.

However, the peculiar way that strings are implemented in C and C++
makes this impossible. Any array in C and C++ is represented by a point-
er, and equality and assignmentoperatorsare defined accordingly. Since a
string)is an array, string assignmentis merely pointer assignment. If you
review the methodsofclassText Index, you will see that strcmp is
used to test for key equality, and st rcpyis used for key assignment. In
order to produce a template index class, the dependencies on char *
must be removed. Thetemplate class Simpl eIndexis includedinfiles
simpind.hand simpind.tc in Appendix G.It is used as the basis

for the advanced indexing strategies of Chapter9.

In C++, assignment and other operators can be overloaded only for
class objects, not for predefined types like int and char *. In order to

https://hemanthrajhemu.github.io

262 Chapter 7 Indexing

use a template index class for string keys, a class Stringis needed.Files
strclass.handstrclass.cpp ofAppendix G havethe definition
and implementation ofthis class, which wasfirst mentioned in Chapter1.

Includedin this class are a copy constructor, a constructor with a char *

parameter, overloaded assignment and comparison operators, and a
conversion operator to char * (operator char*). Thefollowing

code shows how Stringobjects and C strings become interchangeable:

String strObj(10); char * strArray[11}]; // strings of <=10 chars

strObj = strArray; // uses String::String(char *)

strArray = strObj; // uses String::operator char * (};

The first assignmentis implemented by constructing a temporary

String object using the char * constructor and then doing String

assignment. In this way the constructoracts like a conversion operatorto
class String. The second assignment uses the conversion operator from

class String to convert the String object to a simple C string.

Data Object Class Hierarchies

50 far, we have required that every object stored ina RecordFile must
be of the sametype. Can the I/O classes support objects that are of a vari-
ety of types but all from the same type hierarchy? If the type hierarchy

supports virtual pack methods, the Append and Update will correctly

add records to indexedfiles. Thatis, if BaseClass supports Pack,

Unpack, and Key, the class Text IndexedFile<BaseClass> will

correctly output objects derived from. BaseClass,each withits appro-

priate Pack method.
What about Read? The problem hereis that in’a virtual function call,.

it is the type of the calling object that determines which methodtocall.
For example, in this code it is the type of the object referenced by Obj

(*Ob7) that determines which Pack and Unpackarecalled:

BaseClass * Obj = new Subclass1;

Obj->Pack(Buffer); Obj->Unpack(Buffer); // virtual function calls

In the case of the Pack,this is correct. Information from *Obj, of type

Subclassl1, is transferred to Buffer. However, in the case of

Unpack, it is a transfer of information from Buffer to *Obj. If

Buffer has been filled from an. object of class Subclass2 or

BaseC1lass,the unpacking cannotbe donecorrectly. In essence, it isthe

source of information (contents ofthe buffer) that determines the type of

https://hemanthrajhemu.github.io

Object-Oriented Support forIndexed, Entry-SequencedFiles of Data Objects 263

the object in the Unpack, not the memory object. The virtual function
call does not workin this case. An object from file can be read onlyinto

a memory object of the correct type.

A reliable solution to the read problem—thatis, one that does not

attempt to read a record into an objectof the wrong type—is noteasy to
implement in C++. It is not difficult to add a type identifier to each data
record. We can add record headers in much the samefashion asfile head-
ers. However, the read operation must be able to determinereliably the

type of the target object. There is no support in C++ for guaranteeing

accurate type identification of memory objects.

Multirecord Index Files

Class Text IndexedFile requires that the entire index fit in a single
record. The maximum numberofrecordsin thefile is fixed when thefile

is created. This is obviously an oversimplification of the index structure

and a restriction onits utility. Is it worth the effort to extend the class so
that this restriction is eliminated?

It would be easy to modify class Text IndexedFileto allow the
index to be an array of Text Index objects. We could add protected

methods Insert, Delete, and Search to manipulate the arrays of

index objects. Noneof this is much trouble. However, as we will see in the

following section and in Chapter 9, a sorted arrayof index objects, each

with keys less than the next, does not provide a verysatisfactory index for
large files. For files that are restricted to a small numberof records, class

Text IndexedFile will work quite well asit is. |

\

Optimization of Operations

The most obvious optimization is to use binary search in the Find
method, which is used by Search, Insert, and Remove.Thisis very
reasonable andis left as an exercise.

Another source of some improvementis to avoid writing the index
record backto the index file when it has notbeen changed. The standard

wayto do this is to add flag to the index object to signal when it has been

changed.This flag is set to false when therecordis initially loaded into
memory and set to true whenever the index record is modified,that is, by

the Insert.and Remove methods. The Close method can check this

flag and write the record only when necessary. This optimization gains
importance when manipulating multirecord indexfiles,

https://hemanthrajhemu.github.io

264

7.5

Chapter 7 Indexing

Indexes That Are Too Large to Hold in Memory

The methods we have been discussing—-and, unfortunately, many of the
advantages associated with them—are tied to the assumption that the
index is small enoughto be loaded into memoryinits entirety. If the index

is too large for this approachto be practical, then index access and main-
tenance must be done on secondary storage. With simple indexes of the
kind we have been discussing, accessing the index on a diskhas the follow-
ing disadvantages:

m Binary searching of the index requires several seeks instead of taking
place at memory speeds. Binary searching of an index on secondary
storage is not substantially faster than the binary searchingof a sorted
file.

m Index rearrangement due to record addition or deletion requires shift-

ing or sorting records on secondary storage. Thisis literally millions of
times more expensive than performing these same operations in

memory. .

Although these problems are no worse than those associated with any

file that is sorted by key, they are severe enough to warrantthe considera-
tion of alternatives. Any time a simple indexis too large to hold in memo-

ry, you should consider using |

m A hashed organization if access speed is a top priority; or

mA tree-structured, or multilevel, index, such as a B-tree, if you need the

flexibility of both key..'1 access and ordered, sequential access.

These alternative file organizations are discussed at length in the chap-
ters that follow. But, before writing off the use of simple indexes on

secondary storage altogether, we should note that they provide some
important advantages over the use ofa data file sorted by key even if the
index cannot be held in memory:

m A simple index makesit possible to use a binary search to obtain keyed

access to a record ina variable-length recordfile. The index provides°

the service of associating a fixed-length and therefore binary-search-
able record with each variable-length data record.

m If the index entries are substantially smaller than thedata file records,

sorting and maintaining the index can be less expensive than sorting

and maintaining the data file. There is simply less information to
move aroundin the indexfile.

https://hemanthrajhemu.github.io

7.6

Indexing to Provide Access to Multiple Keys 265

m= If there are pinned recordsin the datafile, the use of an indexlets us

rearrange the keys without moving the data records.

There is another advantage associated with the use of simple indexes,

one that we have notyet discussed.Byitself, it can be reason enoughto use
simple indexes even if they do notfit into memory. Rememberthe analo-
gy betweenan index and library card catalog? The cardcatalog provides

multiple views or arrangements ofthe library’s collection, even though
there is only one set of books arranged in a single order. Similarly, we can
use multiple indexes to provide multiple views of a datafile.

Indexing to Provide Access by Multiple Keys

One question that might reasonablyarise at thispointis: All this indexing
businessis pretty interesting, but who would ever wantto find a recording
using a key such as DG18807? WhatI wantis a recording of Beethoven's
Symphony No.9.

Let’s return to our analogy of our index as a library card catalog.

Suppose we think of our primary key, the Label ID, as a kind of catalog

number. Like the catalog numberassigned to a book, we have taken care to
make our Label [ID unique. Nowin a libraryit is very unusual to begin by

looking for a book with a particular catalog number (for example, “Iam
looking for a book with a catalog number QA331T5 1959.”), Instead, one

generally begins by looking for a book on a particular subject, with a
particulartitle, or by a particular author (for example, “I am looking for a

book on functions,” or “I am looking for The Theory of Functions by
Titchmarsh.”). Given the subject, author, or title, one looks in the card
catalogto find the primary key, the catalog number,

Similarly, we could build a catalog for our record collection consisting
of entries for album title, composer, andartist. These fields are secondary
keyfields. Just as the library catalog relates an author entry (secondary key)

to a card catalog number(primarykey), so can webuild anindexfile that

relates Composerto Label ID, asillustrated in Fig.7.8.

Along with the similarities, there is an important difference between

this kind of secondary key index and the card catalog in a library.-In a
library, once you have the catalog numberyou can usually go directly to

the stacks to find the book since the booksare arranged in order by cata-

log number. In other words, the books are sorted by primary key. The
actual data records in ourfile, on the other hand, are entry sequenced.

https://hemanthrajhemu.github.io

266 Chapter 7 Indexing

 Composer index

Secondary key Primary key figure 7.8 .
econdarykey index

BEETHOVEN ANG3795 organized by composer.

BEETHOVEN DG139201

BEETHOVEN DG18807

BEETHOVEN a RCA2626

COREA WAR23699

DVORAK COL31809

PROKOFIEV ' LON2312

RIMSKY-KORSAKOV MER75016

SPRINGSTEEN COL38358

SWEET HONEY IN THE R FF245
Consequently, after consulting the composer indexto find the Label ID,
you must consult one additional index, our primary key index, to find the

actual byte offset of the record that hasthis particular Labél ID. Figure 7.9
showspart of the class definition for a secondary key index and a read

function that searches a secondarykey index for the primarykey.It then.

uses the primary key to read an IndexedFile.
Clearly it is possible to relate secondary key references (for example,

Beethoven) directly to a byte offset (241) rather than to a primary key
(DG18807). However, there are excellent reasons for postponing this bind-
ing of a secondarykeyto a specific address for as long as possible. These
reasons becomeclear as we discuss the way that fundamentalfile opera-

tions such as record deletion and updating are affected by the use of

secondary indexes. |

Record Addition

When a secondary index is present, adding a record to the file means
adding anentry to the secondary index. Thecostof doingthis is very simi-

https://hemanthrajhemu.github.io

Indexing to Provide Accessto Multiple’ - 267

class SecondaryiIndex

// An index in which the record reference is a string

{public:

int Insert (char * secondaryKey, char * primaryKey);

char * Search (char * secondaryKey); // return primary key

h;

template <class RecType>

int SearchOnSecondary (char * composer, SecondaryIndex index,

IndexedFile<RecType> dataFile, RecType & rec)

char * Key = index.Search (composer) ;

// use primary key index to read file

return dataFile . Read (Key, rec);

Figure 7.9 SearchOnSecondary: an algorithm to retrieve a single record from a recording
file through a secondary key index.

lar to the cost of adding an entry to the primary index:either records must

be shifted, or a vector of pointers to structures needs to be rearranged. As
with primary indexes, the cost of doing this decreases greatly if the
secondary index can be read into memoryand changedthere.

Notethat the keyfield in the secondary indexfile is stored in canoni-
cal form (all of the composers’ namesare capitalized), since this is the
form we want to use when weare consulting the secondary index.If we
wantto print out the name in normal, mixed upper- and lowercase form,

we can pick up that form from the original datafile. Also note that the

secondary keys are held to a fixed length, which means that sometimes
theyare truncated. The definitionof the canonical form should take this
length restriction into accountif searching the index is to work properly.

One important difference between a secondary index and a primary

index is that a secondary index can contain duplicate keys. In the sample

index illustrated in Fig. 7.10, there are four records with the key
BEETHOVEN. Duplicate keys are, of course, grouped together. Within

this group, they should be ordered accordingto the valuesof the reference

fields. In this example, that means placing them in order by Label ID. The
reasonsfor this secondlevel of ordering becomecleara little later, as we

discuss retrieval based on combinations of two or more secondarykeys.

https://hemanthrajhemu.github.io

268 Chapter 7 Indexing

Title index

Figure 7.10

Secondary hey Primary hey Secondary key index

COQ D’OR SUITE MER75016 organized by recording

GOOD NEWS FF245

NEBRASKA COL38358

QUARTET IN C SHARP M RCA2626

ROMEO AND JULIET LON2312

SYMPHONY NO.9 ANG3795

SYMPHONY NO.9 — COL31809

SYMPHONY NO.9 DG18807

TOUCHSTONE WAR23699

VIOLIN CONCERTO DG139201_

Record Deletion

Deleting a record usually implies removingall references to that record in
the file system. So removing a record from the data file would mean
removing not only the corresponding entry in the primary index butalso

all of the entries in the secondary indexesthat refer to this primary index
entry. The problem with this is that secondary indexes,like the primary

index, are maintained in sorted order by key. Consequently, deleting an
entry would involve rearranging the remaining entries to close up the

space left open by deletion.
This delete-all-references approach would indeed be advisable if the

secondary index referenced the data file directly. If we did not delete the
secondary key references and if the secondary keys were associated with
actual byte offsets in the data file, it could be difficult to tell when these
references were no longer valid. This is another instance of the pinned-
record problem. The reference fields associated withthe secondary keys

would be pointingto byte offsets that could, after deletion and subsequent

space reusein the datafile, be associated with different data records.

https://hemanthrajhemu.github.io

Indexing to Provide Access to Multiple Keys 269

But we have carefully avoided referencing actual addresses in the

secondarykey index. After we search to find the secondary key, we do
anothersearch, this time on primary key. Since the primary index does
reflect changes dueto record deletion, a search for the primary key of a

record that has been deleted will fail, returning a record-not-found condi-

tion. In a sense, the updated primary key index acts as a kind offinal
check, protecting us from trying to retrieve records that no longerexist.

Consequently, one option that is open to us when we delete a record
from the datafile is to modify and rearrange only the primary keyindex. We
‘could safely leave intact the references to the deleted record that exist in the

secondary key indexes. Searches starting from a secondary key index that

lead to a deleted record are caught when we consult theprimarykey index.

If there are a numberofsecondary key indexes,the savings thatresults.

from not having to rearrangeall of these indexes whena recordis deleted

can be substantial. This is especially important when the secondary key
indexes are kept on secondarystorage.It is also important with an inter-

active system in which the useris waiting at a terminal for the deletion
operation to complete. ST

Thereis, of course, a cost associated with this shortcut: deleted records
take up space in the secondaryindexfiles. In file system that undergoes

few deletions, this is not usually a problem. In a somewhat morevolatile
file structure, it is possible to address the problem by periodically remov-
ing from the secondary index files all entries that contain references that

are no longer in the primary index. If file system is so volatile that even
periodic purging is not adequate,it is probably time to consider another
index structure, such as a.B-tree, that allowsfor deletion without having to

rearrange a lot of records.

Record Updating

In our discussion of record deletion, we find that the primary key index

serves as a kind of protective buffer, insulating the secondary indexes

from changes in the data file. This insulation extends to record updating
as well. If our secondary indexes contain references directly to byte

offsets in the datafile, then updates to the datafile that result in chang-

ing a record’s physical location in the file also require updating the
secondaryindexes.But, since we are confining such detailed information
to the primary index,data file updates affect the secondary index only

when they changeeither the primary or the secondarykey. There are

three possible situations:

https://hemanthrajhemu.github.io

270

7.7

Chapter 7 Indexing

m Update changes the secondary key: if the secondary key is changed, we
may have to rearrange the secondary key indexsoit stays in sorted

order. This can be relatively expensive operation.

Bm Update changes the primary key: this kind of change has a large impact

onthe primary key index but often requires that we update only the

affected referencefield (Label ID in our example)in all the secondary
indexes. This involves searching the secondary indexes (on the

unchanged secondary keys) and rewriting the affected fixed-length
field. It does not require reordering of the secondary indexes unless
the corresponding secondary key occurs more than oncein the index:

If a secondary key does occur more than once, there may be some

local reordering, since records having the same secondary key are
ordered bythe reference field (primary key).

m= =©Update confined to otherfields: all updates that do notaffecteither the

primary or secondarykeyfields do notaffect the secondary key index,
even if the update is substantial. Note that if there are several

secondary key indexes associated with afile, updates to records often
affect only a subset of the secondary indexes.

Retrieval Using Combinations of Secondary Keys ,

One of the most important applications of secondary keys involves using
two or more of them in combinationto retrieve special subsets of records
from the datafile. To provide an example of howthis can be done, wewill

extract another secondarykey index from ourfile of recordings. This one

uses the recording’stitle as the key,asillustrated in Fig. 7.10. Now wecan
- respond to requests such as

w Find the recording with Label ID COL38358 (primary key access);

m Findall the recordings of Beethoven’s work (secondary keyicompos-

er); and

m Find all the recordingstitled “Violin Concerto” (secondary keyiititle).

Whatis more interesting, however, is that we can also respondto a

request that combines retrieval on the composerindex with retrieval on the

title index, such as: Find all recordings of Beethoven’s Symphony No.9.

Without the use of secondary indexes, this kind of request requires a
sequential search throughtheentirefile. Given a file containing thousands,

https://hemanthrajhemu.github.io

Retrieval Using Combinations of Secondary Keys 271

or even hundreds, of records,this is a very expensive process. But, with the
aid of secondaryindexes, respondingto this request is simple and quick.

We begin by recognizing that this request can be rephrased as a
Boolean and operation,specifying the intersection of two subsets ofthe

data file:

Find all data records with:

composer = 'BEETHOVEN' and title = ‘SYMPHONY NO. 9!

We begin our response to this request by searching the composer

index for the list of Label IDs that identify recordings with Beethoven as
the composer. This yields the following list of Label IDs:

ANG3795
DG139201

DG18807

RCA2626

Next we search the title index for the Label IDs associated with records
that have SYMPHONY NO.9 asthetitle key:

ANG3795

COL31809

DG18807

Now we perform the Boolean and, which is a match operation,

combining the lists so only the members that appear in Doth lists are

placed in the outputlist.

Composers Titles Matched list

ANG3795 —————ANG3795 —————— ANG3785

DG139201 COL31809. DG18807

nc18807-——pe1g8071.

RCA2626

Wegive careful attention to algorithms for performingthis kind of
match operation in Chapter 8. Note that this kind of matching is much
easier if the lists that are being combinedare in sorted order. Thatis the

reason that, when we have more than oneentry for a given secondarykey,
the recordsare ordered by the primary keyreferencefields.

Finally, once we have the list of primary keys occurringin bothlists,
we can proceedto the primary key index to look up the addresses of the

data file records. Then we canretrieve the records:

ANG | 3795 | Symphony No. 9 | Beethoven | Guilini
DG | 18807 | Symphony No. 9 | Beethoven | Karajan

https://hemanthrajhemu.github.io

272

7.8

Chapter 7 Indexing

This is the kind of operation that makes computer-indexed file
systems useful in a way that far exceeds the capabilities of manual
systems. We have only one copy of each data file record, and yet, working
through the secondary indexes, we have multiple views of these records:

we can look at them in orderbytitle, by composer, or by any otherfield

that interests us. Using the computer’s ability to combine sortedlists
rapidly, we can even combine different views, retrieving intersections

(Beethoven and Symphony No. 9) or unions (Beethoven or Prokofiev or

Symphony No. 9) of these views. And since our data file is entry
sequenced, we can doall of this without having to sort datafile records

and can confine our sorting to the smaller index recordsthat can often be
held in memory.

Now that we have a general idea of the design and uses of secondary

indexes, we can look at ways to improve these indexes so they takeless
space and requireless sorting.

Improving the Secondary Index Structure:
Inverted Lists

The secondary index structures that we have developedso far result in two

distinct difficulties:

m= Wehave to rearrange the index file every time a new record is added
to the file, even if the new record is for an existing secondary key.

For example, if we add another recording of Beethoven’s Symphony

No. 9 to ourcollection, both the composer andtitle indexes would
have to be rearranged, even though both indexes already contain
entries for secondary keys (but not the Label IDs) that are being
added.

m If there are duplicate secondary keys, the secondary keyfield is
repeated for each entry. This wastes space because it makesthefiles

larger than necessary. Larger index files are less likely to fit in

memory.

7.8.1 A First Attemptat a Solution

One simple responseto these difficulties is to change the secondary index

structure so it associates an array of references with each secondary key.

https://hemanthrajhemu.github.io

Improving the Secandary Index Structure: Inverted Lists 273

Forexample, we mightuse a record structure that allows us to associate up
to four LabelID reference fields with a single secondarykey, as in

BEETHOVEN ANG3795 DG139201 DG18807 RCA2626

Figure 7.11 provides a schematic example of how such an index would

lookif used with our sample datafile. |
The major contribution of this revised index structureisits help in

solving ourfirst difficulty: the need to rearrange the secondaryindexfile

every time a new record is addedto the data file. Lookingat Fig. 7.11, we
can see that the addition of another recording of a work by Prokofiev does
not require the addition of another record to the index. For example,if we
add the recording

ANG 36193 Piano Concertos 3 and 5 Prokofiev Francois

we need to modify only the corresponding secondary index record by
inserting a second Label ID:

PROKOFIEV ANG36193 LON2312

Since we are not adding anotherrecord to the secondary index,there is no

need to rearrange any records.All that is requiredis a rearrangementof
the fields in the existing record for Prokofiev.

Although this new structure helps avoid the need to rearrange the
secondary index file so often, it does have some problems. For onething,
it provides space for only four Label IDsto be associated with a given key.
In the very likely case that more than four LabelIDswill go with somekey,
we need a mechanism for keeping track of the extra Label IDs.

A second problem has to do with space usage. Although the structure
does help avoidthe waste of space due to the repetition of identical keys,
this space savings comesat a potentially high cost. By extendingthe fixed

length of each of the secondary index records to hold more reference

fields, we might easily lose more space to internal fragmentation than we
gained by not repeating identical keys.

Since we don’t want to waste any more space than we haveto, we
need to ask whether we can improve on this record structure. Ideally,

what we would like to do is develop a new design,a revision ofourrevi-
sion, that

https://hemanthrajhemu.github.io

274 Chapter 7 Indexing

‘Revised composer index

Secondary key . Set ofprimary key references

BEETHOVEN ANG3795 DG139201 _DG18807 RCA2626

COREA WAR23699

DVORAK COL31809

PROKOFIEV ~——-LON2312

RIMSKY-KORSAKOV = MER75016

SPRINGSTEEN COL38358

SWEET HONEY INTHER FF245

Figure 7.11 Secondary key index containing space for multiple references for each
secondary key.

m Retains the attractive feature of not requiring reorganization of the
secondary indexes for every new entry to the datafile;

m Allows more than four Label IDsto be associated with each secondary
_ key; and .

m Eliminates the waste of space due to internal fragmentation.

7.8.2 A Better Solution: Linking the List of References

Files such as our secondaryindexes, in which a secondarykeyleadsto a set
- of one or more primary keys, are called invertedlists. The sense in which

thelist is inverted should beclear if you consider that we are working our
way backward from a secondarykeyto the primarykey to the recorditself.

The second wordin the term “invertedlist” also tells us something
important: weare, in fact, dealing with a list of primary key references.
Our revised secondary index, which collects a number of Label IDs for
each secondarykey,reflectsthis list aspect of the data more directly than
ourinitial secondary index. Another wayof conceiving ofthislist aspect of
our inverted Jist is illustrated in Fig. 7.12.

As Fig. 7.12 shows, an ideal situation would be to have each secondary

key point to a different list of primary key references. Each oftheselists

https://hemanthrajhemu.github.io

Improving the Secondary Index Structure: Inverted Lists 275

Lists of primary

key referencesSecondary key index _

 ANGS795

BEETHOVEN

DG139201

COREA

DG18807

DVORAK

RCA2626

PROKOFIEV

WAR23699

 COL31808

LON2312

>

Figure 7.12 Conceptual view of the primary key referencefields as a series of lists.

could grow to bejust as long as it needsto be. If we add the new Prokofiev
record,the list of Prokofiev references becomes

 PROKOFIEV —>| ANG36193

LON2312
Similarly, adding two new Beethoven recordings addsjust two addi-

tional elements to thelist of references associated with the Beethoven key.
Unlike our record structure which allocates enough space for four Label
IDs for each secondarykey, thelists could contain hundredsofreferences,

if needed, while still requiring only one instance of a secondary key. On the

other hand, if a list requires only one element, then no space is lost to
internal fragmentation.Most important, we need to rearrange onlythefile
of secondary keys if a new composeris addedto the file.

https://hemanthrajhemu.github.io

276 Chapter 7 Indexing

How can weset up an unbounded numberofdifferentlists, each of
varying length, without creating a large number of small files? The
simplest way is through the use of linked lists. We could redefine our
secondary index so it consists of records with two fields—a secondary key
field and a field containing the relative record numberofthefirst corre-
sponding primary key reference (Label ID)in the invertedlist. The actual
primary key references associated with each secondary key would be
stored in a separate, entry-sequencedfile.

Given the sample data we have been working with, this new design
would result in a secondary keyfile for composers andan associated Label
ID file that are organized asillustrated in Fig. 7.13. Followingthelinks for
the list of references associated with Beethoven helps us see how the Label
ID List file is organized. We begin,of course,. by searching the secondary
key index of composers for Beethoven. The record that wefind points us
to relative record number (RRN)3 in the LabelID Listfile. Since this is a
fixed-length file, it is easy to jump to RRN 3 andreadin its Label ID

Improved revision of the composer index

Secondary Index file ‘ Label ID List file

0 BEETHOVEN 3 o Lonesiz -1

1 COREA 2{ 1 RCA2626 ~1

2 DVORAK 7 2 WAR23699 -1

3 PROKOFIEV 10 3 ANG3795 8

4 RIMSKY-KORSAKOV R 4 co13ssss - 1

5 SPRINGSTEEN 4 5 DG18807 1

6 SWEET HONEY IN THE R 9 6 MER75016 -1

7 COL31809 1

8 DG139201 5

9 FF245 -1

Figure 7.13 Secondary key index referencing linked 10 ANG36193 0
lists of primary key references. |

https://hemanthrajhemu.github.io

Improving the Secondary index Structure: Inverted Lists 2/7

(ANG3795). Associated with this Label ID is a link to a record with RRN

8. We read in the Label ID for that record, addingit to ourlist (ANG379

DG139201). We continue followinglinks and collecting Label IDs until the
list lookslike this: |

ANG3795 DG139201 DG18807 RCA2 626

The link field in the last record read from thd Label ID List file

containsa value of -1. As in ourearlier programs,this indicates end-of-list,
so we know that we now haveall the Label ID references for Beethoven
records. .

To illustrate how record addition affects the Secondary Index and
LabelID Listfiles, we add the Prokofiev recording mentionedearlier:

ANG 36193 Piano Concertos 3 and 5 Prokofiev Francois

You can see (Fig. 7.13) that the Label ID for this new recordingis the

last one in the Label ID Listfile, since this file is entry sequenced. Before
this record is added, there is only one Prokofiev recording. It has a Label
ID of LON2312. Since we want to keep the Label ID Lists in order by
ASCII character values, the new recording is inserted in the list for
Prokofiev so it logically precedes the LON2312 recording.

Associating the Secondary Indexfile with a new file containinglinked

lists of references provides some advantages over any of the structures
considered up to this point: .

m The only time we need to rearrange the Secondary Indexfile is when a

new composer’s name is added or an existing composer's nameis
changed (for example, it was misspelled on input). Deleting or adding

recordings for a composer whois already in the index involves chang-
ing only the Label ID List file. Deleting all the recordings for a
composer could be handled by modifying the Label ID List file while
leaving the entry in the Secondary Indexfile in place, using a value of

-1 in its reference field to indicate that the list of entries for this
composeris empty.

m In the event that we need to rearrange the Secondary Index file, the

task is quicker now since there are fewer records and each recordis

smaller.

m Because thereis less needfor sorting,it follows that thereis less of a
penalty associated with keeping the Secondary Index files off on
‘secondary storage, leaving more room in memory for other data

structures.

https://hemanthrajhemu.github.io

278

7.9

Chapter 7 Indexing

M The LabelID Listfile is entry sequenced. That meansthat it never
needsto besorted.

w= Since the Label ID List file is a fixed-length recordfile, it would be very
easy to implement a mechanism for reusing the space from deleted

records, as described in Chapter6.

There is also at least one potentially significant disadvantageto this

kind offile organization: the Label IDs associated with a given composer

are no longer guaranteed to be grouped together physically. The technical
term for such “togetherness”is locality. With a linked, entry-sequenced
structure such: asthis,it is less likely that there will be locality associated

with the logical groupings of referencefields for a given secondary key.
Note, for example, that ourlist of Label IDs for Prokofiev consists of the

very last and the veryfirst recordsin thefile. This lack of locality means
that picking up the references for a composer with a longlist of references

could involve a large amountof seeking back and forth on the disk. Note
that this kind of seeking would not be required for ouroriginal Secondary

Index file structure.

One obvious antidote to this seeking problem is to keep the Label ID
List file in memory. This could be expensive and impractical, given many

secondary indexes, except for the interesting possibility of using the same
Label ID Listfile to hold the lists for a number of Secondary Indexfiles.

Evenif the file of reference lists were too large to hold in memory,it might

be possible to obtain a performance improvementby holding onlya part

of the file in memoryat a time, paging sectionsofthefile in and out of
memoryas they are needed.

Several exercises at the end of the chapter explore these possibilities

more thoroughly. These are very important problems, as the notion of
‘dividing the index into pages is fundamental to the design of B-trees and
other methods for handling large indexes on secondarystorage.

Selective Indexes

Anotherinteresting feature of secondary indexesis that they can be used
to divide a file into parts and providea selective view. For example,it is

possible to build a selective index that contains only the titles ofclassical

recordings in the record collection. If we have additional information

about the recordings in thedata file, suchas the date the recording was

released, we could build selective indexes such as “recordingsreleased prior

https://hemanthrajhemu.github.io

7.10

Binding 279

to 1970” and “recordings since 1970.” Such selective index information
-could be combined into Boolean andoperations to respondto requests
such as “List all the recordings of Beethoven’s Ninth Symphonyreleased
since 1970.” Selective indexes are sometimes useful when the contents of a

file fall naturally andlogically into several broad categories.

Binding

A recurrent and very important question that emergesin the design of file

systems that use indexesis: At what pointts the key bound to the physical
address of its associated record?

In the file system we are designing in the courseof this chapter, the

binding of our primary keys to an address takes place at the time the files
are constructed. The secondary keys, on the other hand, are bound to an
address at the time that they are used.

Binding at the time ofthefile construction results in faster access.
Once you have foundthe right index record, you have in hand thebyte

offset of the data record you are seeking. If we elected to bind our

secondarykeys to their‘associated recordsat the timeoffile construction
so when wefind the DVORAKrecord in the composer index we would

know immediately that the data record begins at byte 338 in the datafile,
secondarykeyretrieval wouldbe simpler andfaster. The improvementin
performanceis particularly noticeable if both the primary and secondary

indexfiles are used on secondary storage rather than in memory. Given the
arrangement we designed, we would have to perform a binary search of

the composer index and then a binary search of the primary key index
before being able to jump to the data.record. Binding early, at file

construction time, eliminates the need to search on the primarykey.
The disadvantage of bindingdirectly in the file, of bindingtightly, is

that reorganizations of the data file must result in modificationsto all
boundindexfiles. This reorganization cost can be very expensive, particu-

larly with simple index files in which modification would often mean

shifting records. By postponing binding until execution time, when the
recordsare being used, weare able to develop a secondary key system that

involves a minima! amountof reorganization when records are added or

deleted.

_ Another importantadvantage to postponing binding until a recordis
retrieved is that this approachis safer. As we see in the system that weset

https://hemanthrajhemu.github.io

280 Chapter 7 Indexing

up, associating the secondary keyswith reference fields consisting of

primary keysallows the primary key indexto act as a kind offinal check of

whethera record is really in the file. The secondary indexes can afford to
be wrong. This situation is very different if the secondary index keys
contain addresses. We would then be jumpingdirectly from the secondary
key into the datafile; the address would need toberight.

This brings up related safety aspect: it is always more desirable to
make important changes in one place rather than in manyplaces. With a

bind-at-retrieval-time scheme such as we developed, we need to remem-
ber to make a changein only oneplace, the primary key index, if we move
a data record. With a more tightly bound system, we have to make many

changes successfully to keep the system internally consistent, braving
powerfailures, user interruptions, andsoon.

Whendesigning a newfile system,it is better to deal with this question
of binding intentionally and early in the design process ratherthanletting

the binding just happen. In general, tight, in-the-data binding is most
attractive when

m The datafile is static or nearly so, requiringlittle or no adding, delet-

ing, or updating ofrecords; and |

mM Rapid performance during actual retrieval is a high priority.

For example, tight binding is desirable forfile organization on a mass-
produced, read-only optical disk. The addresses will never change because

no new records can ever be added; consequently, there is no reason notto

obtain the extra performance associated with tight binding.
For file applications in which record addition,deletion, and updating

do occur, however, bindingat retrieval time is usually the more desirable
option. Postponing bindingas long as possible usually makes these opera-
tions simpler andsafer. If the file structures are carefully designed, and,in

particular, if the indexes use more sophisticated organizations such as B-
trees, retrieval performance is usually quite acceptable, even given the

additional work required by a bind-at-retrieval system.

SUMMARY

We began this chapter with the assertion that indexing as a way of struc-

turing a file is an alternative to sorting because records can be found by
key. Unlike sorting, indexing permits us to perform binary searchesfor keys
in variable-length record files. If the index can be held in memory,record

https://hemanthrajhemu.github.io

Summary 281

addition, deletion, and retrieval can be done much more quickly with an
indexed, entry-sequencedfile than with a sortedfile.

Template classes in C++ provide support for sharingclass definitions
and code among a numberof unrelated classes. Template classes are used
in this chapter for class RecordFile,which supports I/O of data records

without explicit packing and unpacking of buffers, and for general

purposeindexrecordsinclass SimpleIndex.
Support for sequential and indexed accessto a datafile is provided by

the template class Text indexedFile.It extends the capabilities of
class RecordFileby adding indexed read, update, and append opera-

tions. Each modification of the data file is accompanied by the proper
changes to the index. Each Text IndexedFile object is represented by
an index record object in memoryandtwofiles, a data file and an index

file. The Text IndexedFile: : Close method writes the contents of
the index record object into the indexfile and closes bothfiles.

Indexes can do much more than merely improve on access time: they.

can provide us with new capabilities that are inconceivable with access
methods based on sorted data records. The most exciting new capability
involves the use of multiple secondary indexes. Just as a library card cata-

log allows us to regard a collection of books in authororder,title order, or
subject order, so index files allowus to maintain different views of the

recordsin a datafile. We find that not only can we use secondary indexes
to obtain different views ofthe file but we can also.combinethe associated
lists of prirnary key references and thereby combineparticular views.

In this chapter we address the problem of how to rid our secondary

indexes of twoliabilities:

m= The needto repeat duplicate secondary keys, and

m The need to rearrange the secondary indexes every time arecord is

added to the datafile.

A first solution to. these problemsinvolves associating a fixed-size
vector of reference fields with each secondary key. This solution results in
an overly large amountof internal fragmentation but illustrates the attrac-

tiveness of handling the reference fields associated with a particular
secondarykey as a group,orlist.

Our next iteration of solutions to our secondary index problemsis
more successful and much moreinteresting. We can treat the primary key

references as an entry-sequenced file, forming the necessary lists through

the useoflinkfields associated with each primary record entry. This allows
us to create a secondary indexfile that, in the case of the composerindex,
needs rearrangement only when we add new composersto thedatafile.

https://hemanthrajhemu.github.io

282 Chapter 7 Indexing

The entry-sequencedfile of linked referencelists never requires sorting.
Wecall this kind of secondaryindex structure an inverted list.

Thereare also, of course, disadvantages associated with our new solu-

tion. The most serious disadvantage is that our file demonstratesless local-

ity: lists of associated recordsare less likely to be physically adjacent. A
‘good antidote to this problem is to hold thefile of linked lists in memory.
We note that this is made moreplausible becausea single file of primary

references canlinkthelists for a number of secondary indexes.
As indicated by the length and breadth of our consideration of

secondary indexing, multiple keys, and inverted lists, these topics are
among the mostinteresting aspects of indexed accessto files. The concepts

of secondary indexes and invertedlists become even more powerfullater,

as we develop indexstructures that are themselves more powerful than the

simple indexes we considerhere. But, even so, we already see that for small

files consisting of no more than a few thousand records, approachesto
inverted lists that rely merely on simple indexes can provide a user with a
great deal of capability and flexibility.

KEY TERMS

Binding. Binding takes place when a keyis associated with a particular

physical record in the data file. In general, binding can take place
-either during the preparation of the data file and indexes or during
program execution.In the formercase,called tight binding, the index-

es contain explicit references to the associated physica] data record.In

the latter case, the connection between a key and particular physical

record is postponed until the record is retrieved in the course of
program execution.

- Entry-sequencedfile. A file in which the records occurin the orderthat
they are entered into the file.

Index. An indexis a tool for finding recordsin file. It consists of a key
field on which the index is searched anda reference field that tells

where to find the data file record associated with a particular key.

Invertedlist. The term invertedlist refers to indexes in which a key may be
associated with a list of reference fields pointing to documents that

contain the key. The secondary indexes developed toward the end of

this chapter are examplesofinvertedlists.

Keyfield. The key field is the portion of an index fecordthat contains the
canonical form ofthe key that is being sought.

https://hemanthrajhemu.github.io

Further Readings 283

Locality. Locality exists in a file when records that will be accessed in a
given temporal sequence are found in physical proximity to each other
on the disk. Increasedlocality usually results in better performance, as

records that are in the same physical area can often be broughtinto

memory with a single read request to the disk.

Referencefield. The referencefield is the portion of an index record that

contains information about whereto find the data record containing

the information listed in the associated keyfield of the index.

Selective index. A selective index contains keys for only a portion ofthe

records in the datafile. Such an index provides the user with a view of-
a specific subset of the file’s records.

Simple index. All the index structures discussed in this chapter are simple
indexes insofar as they are all built around the idea of an ordered,
linear sequence of index records. All these simple indexes share a
common weakness: adding records to the index is expensive. As wesee
later, tree-structured indexes providean alternate, moreefficient solu-

tion to this problem.

Template class. A C++ class that is parameterized, typically with class (or

type) parameters. Templates allow a single class definition to be used
to construct a family of different classes, each with different argu-
ments for the parameters.

FURTHER READINGS

We have much moreto say about indexingin later chapters, where we take
up the subjects of tree-structuredindexes and indexed sequentialfile orga-

nizations. The topics developed in the current chapter, particularly those
relating to secondary indexes andinvertedfiles, are also covered by many
other file and data structure texts. The few texts that welist here are of

interest because they either develop certain topics in moredetail or present

the material from a different viewpoint.

Wiederhold (1983) provides a survey of manyofthe index structures

we discuss, along with a numberof others. His treatment is more mathe-

matical than that provided in our text. Tremblay and Sorenson (1984)

provide a comparison ofinvertedlist structures with an alternative orga-

nization called multilist files. M. E. S. Loomis (1989) provides a similar

discussion, along with some examples oriented toward COBOLusers.
Kroenke (1998) discuss invertedlists in the context of their application in

information retrieval systems.

https://hemanthrajhemu.github.io

284 Chapter 7 Indexing

EXERCISES
Until now, it was not possible to perform a binary search ona vari-
able-length record file. Why does indexing make binary search possi-
ble? With a fixed-length record file it is possible to perform a binary
search. Does this mean that indexing need not be used with fixed-
length record files?

. Whyis Title not used as a primary key in the Recordingfile
described in this chapter? If it were used as a secondary key, what
problems would have to be considered in deciding on a canonical

form fortitles?

. Whatis the purpose ofkeeping an out-of-date-statusflag in the head-

er record ofan index? In a multiprogramming environment,this flag

might be foundto be set by one program because anotherprogram is
in the process of reorganizing the index. How should the first

program respondtothissituation?

Consult a reference book on C++ to determine how template classes
like RecordFile are implemented. How does the compiler process
the method bodies of a template class? How does the compiler

process template instantiations?

5. Explain how the use of an index pins the data recordsin file.

6. When record in data file is updated, corresponding primary and

secondary key indexes may or maynot haveto be altered, depending
on whetherthefile has fixed- or variable-length records, and depend-
ing on the type of change madeto the data record. Makea list of the
different updating situations that can occur, and explain how each

affects the indexes.

. Discuss the problem that occurs when you addthe following record-

ing to the recordingsfile, assuming that the composer index shownin

Fig. 7.11 is used. How mightyousolve the problem without substan-

tially changing the secondary key index structure?

LON 1259 Fidelio Beethoven Maazel

. How are the structures in Fig. 7.13 changed by the addition of the
recording

LON 1259 Fidelio Beethoven Maazel

. Suppose you have the datafile described in this chapter, butit’s great-

ly expanded, with a primary key index and secondary key indexes

https://hemanthrajhemu.github.io

Programmingand Design Exercises 285

10.

ll.

' 12.

organized by composer, artist, andtitle. Suppose that an invertedlist

structureis used to organize the secondary key indexes. Give step-by-

step descriptions of how a program might answer the following
queries: .

a. List all recordings of Bach or Beethoven, and

b. List all recordings by Perleman of pieces by Mozart orJoplin.

Using the program makerec . cpp, createa file of recordings. Make
a file dumpofthefile andfind the size and contents of the header as

well asand the starting address andthesize for each record.

Use the program makeind.cpp to create an index file for the
recording file created by program makerec.cpp. Using file

dump,find the size and contents of theheader, the address and size of

the record, and the contents of the record. |

‘The method and timing ofbinding affect two importantattributes of

a file system—speed andflexibility. Discuss the relevance of these.

attributes, and the effect of binding time on them,for a hospital

patient datainformation system designed to provide information

about current patients bypatient name,patient ID,location, medica-

tion, doctoror doctors, andillness.

AND

13. Add method(s) to class Text Index to supportiterating through
the index in key order. One possible strategy is to define two methods:

int FirstRecAddr (); // return reference for the smallest key

int NextRecAddr (); // return reference for the next key

14.

15.

Implementation of these methods can be supported by adding

membersto theclass.

Write a program to print the records of a Recordingfile in key
order, One way to implementthis programis to readall the records of
the file and create an index record in memory and then iterate

through the index in key order and read and print the records. Test

the program onthefile produced by makerec. cpp.

Write a program to print the records of a file of type

RecordFile<Recording>in key order. Test the program on the

file produced by makeind. cpp.

https://hemanthrajhemu.github.io

286 Chapter 7 Indexing

16.

17,

18.

19,

20,

21.

22,

Modify the method Text Index: : Searchto perform a binary

search on the keyarray.

Implement the Remove methodsof class Text IndexedFile.

Extend class Text IndexedFile to support the creation of an
indexed file from a simpledatafile. That is, add a methodthatinitial-
izes a Text IndexedFile object by opening and reading theexist-

ing data file and creating an index from the recordsin thefile.

As a major programming project, create a class hierarchy based on

Recordingthat has different information for different types of
recordings. Develop a class to support input and output of records of
these types. The class should be consistent with the style described in

the part of Section 7.4.3 about data object class hierarchies. The
Unpack methods mustbesensitive to the type of object that is being
initialized by the call.

Define and implement a class SecondaryIndex to support

secondary indexes, as described in Section 7.6. Use this class to create

a class RecordingFilethat uses RecordFileasits base class to

managethe primaryindex and the datafile and has secondary index-

es for the Composer andArtistfields.

Whensearching secondary indexes that contain multiple records for

some of the keys, we do not want to find just any record for a given
secondary key; we wantto find thefirst record containingthat key.

Findingthefirst record allowsus to read ahead, sequentially, extract-
ing all of the records for the given key. Write a variation of a search
method that.returns therelative record numberofthe first record

containingthe given key.

Identify and eliminate memoryleaks in the code of Appendix F.

PROGRAMMING PROJECT

This is the fifth part of the programmingproject. We add indexesto the
data files created by the third part of the project in Chapter4.

23. Use class IndexedFile(or Text IndexedFile) to create an
index ofa file of student objects, using student identifier as key. Write

a driver program to create an indexfile from the studentrecordfile

created by the program ofpart three of the programmingproject in
Chapter4.

https://hemanthrajhemu.github.io

ProgrammingProject 287

24.

26.

27.

Use class IndéxedFile (or Text IndexedFile) to create an

index ofa file of course registration objects, using student identifier

as key, Note that the student identifier is not unique in course regis-
tration files. Write a driver program to create an indexfile from the

course registration recordfile created by the program ofpart three of
the programmingproject in Chapter4.

Write a program that opens an indexedstudentfile and an indexed

course registration file and retrieves information on demand. Prompt
a user for a student identifier and printall objects that matchit.

Develop a class that supports indexed access to course registration

files by student identifier and by course identifier (secondary key).
See Exercise 20 for an implementation of secondary indexes. Extend
the program of Exercise 25 to allow retrieval of information about
specific courses.

Extend the above projects to support update and deletion of student

records and course registration records.

The next part of the programmingprojectis in Chapter 8,

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

