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CHAPTER

Organizing Files
for Performance

CHAPTER OBJECTIVES

*» Look at several approaches to data compression..

J/
.0

+,

Look at storage compaction as a simple way of reusing space in a file.

Develop a procedure for deleting fixed-length records that allows
vacated file space to be reused dynamically.

R/
0’0

%+ lllustrate the use of linked lists and stacks to manage an avail list.

¢ Consider several approaches to the problem of deleting variable-
length records.

%+ Introduce the concepts associated with the terms internal
fragmentation and external fragmentation.

%+ Outline some placement strategies associated with the reuse of
space in a variable-length record file.

++ Provide an introduction to the idea of a binary search.
++ Examine the limitations of binary searching.

++ Develop a keysort procedure for sorting larger files; investigate the
costs associated with keysort.

% Introduce the concept of a pinned record.

N1
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CHAPTER OUTLINE ="

6.1 Data Compression
6.1.1 Using a Different Notation
6.1.2 Suppressing R_epéating Sequences
6.1.3 Assigning Variable-Length Codes
6.1.4 Irreversible Compression Techniques
6.1.5 Compression in Unix
6.2 Reclaiming Space in Files ‘
6.2.1 Record Deletion and Storage Compaction
6.2.2 Deleting Fixed-Length Records for Reclaiming Space
Dynamically
6.2.3 Deleting Variable-Length Records
6.2.4 Storage Fragmentation
6.2.5 Placement Strategies
6.3 Finding Things Quickly: An Introduction to Infernal Sorting
and Binary Searching
6.3.1 Finding Things in Simple Field and Record Files
6.3.2 Search by Guessing: Binary Search
6.3.3 Binary Search versus Sequential Search
6.3.4 Sorting a Disk File in Memory
6.3.5 The Limitations of Binary Searching and Internal Sorting
6.4 Keysorting
6.4.1 Description of the Method
6.4.2 Limitations of the Keysort Method _
6.4.3 Another Solution: Why Bother to Write the File Back?
6.4.4 Pinned Records

We have already seen how important it is for the file system designer to
consider how a file is to be accessed when deciding on how to create fields,
records, and other file structures. In this chapter we continue to focus on
file organization, but the motivation is different. We look at ways to orga-
nize or reorganize files in order to improve performance.

In the first section we look at how we organize files to make them
smaller. Compression techniques let us make files smaller by encoding the
basic information in the file.

Next we look at ways to-reclaim unused space in files to improve
performance. Compaction is a batch process that we can use to purge
holes of unused space from a file that has undergone many deletions and
updates. Then we investigate dynamic ways to maintain performance by
reclaiming space made available by deletions and updates of records
during the life of a file.
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Data Compression 203

In the third section we examine the problem of reorganizing files by
sorting them to support simple binary searching. Then, in an effort to find
a better sorting method, we begin a conceptual line of thought that will
continue throughout the rest of this text: we find a way to improve file
performance by creating an external structure through which we can

access the file.

6.1 Data Compression

In this section we look at some ways to make files smaller. There are many
reasons for making files smaller. Smaller files

M Use less storage, resulting in cost savings;

B Can be transmitted faster, decreasing access time or, alternatively, allow-
ing the same access time with a lower and cheaper bandwidth; and

B Can be processed faster sequentially.

Data compression involves encoding the information in a file in such a
way that it takes up less space. Many different techniques are available for
! compressing data. Some are very general, and some are designed for
specific kinds of data, such as speech, pictures, text, or instrument data.
The variety of data compression techniques is so large that we can only
touch on the topic here, with a few examples.

6.1.1 Using a Different Notation

Remember our Person file from Chapter 47 It had several fixed-length
fields, including LastName, State, arid ZipCode. Fixed-length fields
such as these are good candidates for compression. For instance, the
’ State field in the Person file required 2 ASCII bytes, 16 bits. How
many bits are really needed for this field? Since there are only fifty states,
we could represent all possible states with only 6 bits. Thus, we could
encode all state names in a single 1-byte field, resulting in a space savings
of 1 byte, or 50 percent, per occurrence of the state field.
This type of compression technique, in which we decrease the number
of bits by finding a more compact notation,! is one of many compression

1. Note that the original two-letter notation we used for "state” is itself a more compact notation for

the full state name.
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204 Chapter 6 Organizing Files for Performance

techniques classified as redundancy reduction. The 10 bits that we were able
to throw away were redundant in the sense that having 16 bits instead, of 6
provided no extra information.

What are the costs of this compression scheme? In this case, there
are many:

B By using a pure binary encoding, we have made the file unreadable by
humans.
® We incur some cost in encoding time whenever we add a new state-
~ name field to our file and a similar cost for decoding when we need to
get a readable version of state name from the file.

B We must also now incorporate the encoding and/or decoding modules
in all software that will process our address file, increasing the com-
plexity of the software.

With so many costs, is this kind of compression worth it? We can
answer this only in the context of a particular application. If the file is
already fairly small, if the file is often accessed by many different pieces of
software, and if some of the software that will access the file cannot deal
with binary data (for example, an editor), then this form of compression
is a bad idea. On the other hand, if the file contains several million records
and is generally processed by one program, compression is probably a very
good idea. Because the encoding and decoding algorithms for this kind of
compression are extremely simple, the savings in access time is likely to
exceed any processing time required for encoding or decoding.

6.1.2 Suppressing Repeating Sequences

Imagine an 8-bit image of the sky that has been processed so only objects
above a certain brightness are identified and all other regions of the
image are set to some background color represented by the pixel value 0.
(See Fig. 6.1.)

- Sparse arrays of this sort are very good candidates for a kind of
compression called run-length encoding, which in this example works as
follows. First, we choose one special, unused byte value to indicate that a
run-length code follows. Then, the run-length encoding algorithm goes
like this: '

B Read through the pixels that make up the image, copying the pixel
values to the file in sequence, except where the same pixel value occurs
more than once in succession.
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Data Compression 205

Figure 6.1 The empty spacein
this astronomical image is
represented by repeated
sequences of the same value and
is thus a good candidate for
compression. (This FITS image
shows a radioc continuum
structure around the spiral galaxy
NGC 891 as observed with the
Westerbork Synthesis radio
telescope in The Netherlands.)

B Where the same value occurs more than once in succession, substitute
the following 3 bytes, in order:

* The special run-length code indicator;
+ The pixel value that is repeated; and
» The number of times that the value is repeated (up to 256 times).

For example, suppose we wish to compress an image using run-length
encoding, and we find that we can omit the byte Oxff from the representa-
tion of the image. We choose the byte 0xff as our run-length code indica-
tor. How would we encode the following sequence of hexadecimal byte
values?

22 23 24 24 24 24 24 24 24 25 26 26 26 26 26 26 25 24

The first three pixels are to be copied in sequence. The runs of 24 and 26
are both run-length encoded. The remaining pixels are copied in sequence.
The resulting sequence is

22 23 £f 24 07 25 f£f 26 06 25 24

Run-length encoding is another example of redundancy reduction. It
can be applied to many kinds of data, including text, instrument data, and
sparse matrices. Like the compact notation approach, the run-length
encoding algorithm is a simple one whose associated costs rarely affect

performance appreciably.
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206 Chapter 6 Organizing Files for Performance

Unlike compact notation, run-length encoding does not guarantee
any particular amount of space savings. A “busy” image with a lot of vari-
ation will not benefit appreciably from run-length encoding. Indeed,
under some circumstances, the aforementioned algorithm could result in
a “compressed” image that is larger than the original image.

6.1.3 Assigning Variable-Length Codes

Suppose you have two different symbols to use in an encoding scheme: a
dot (+) and a dash (-). You have to assign combinations of dots and dashes
to letters of the alphabet. If you are very clever, you might determine the
most frequently occurring letters of the alphabet (eand 1) and use a single
dot for one and a single dash for the other. Other letters of the alphabet
will be assigned two or more symbols, with the more frequently occurring
letters getting fewer symbols..

Sound familiar? You may recognize this scheme as the oldest and most
common of the variable-length codes, the Morse code. Variable-length
codes, in general, are based on the principle that some values occur more
frequently than others, so the codes for those values should take the least
amount of space. Variable-length codes are another form of redundancy
reduction. ‘

A variation on the compact notation technique, the Morse code can be
implemented using a table lookup, where the table never changes. In
contrast, since many sets of data values do not exhibit a predictable
frequency distribution, more modern variable-length coding techniques
dynamically build the tables that describe the encoding scheme. One of
the most successful of these is the Huffman code, which determines the
probabilities of each value occurring in the data set and then builds a bina-
ry tree in which the search path for each value represents the code for that
value. More frequently occurring values are given shorter search paths in
the tree. This tree is then turned into a table, much like a Morse code table,
that can be used to encode and decode the data.

For example, suppose we have a data set containing only the seven
letters shown in Fig. 6.2, and each letter occurs with the probability indi-
cated. The third row in the figure shows the Huffman codes that would be
assigned to the letters. Based on Fig. 6.2, the string “abde” would be encod-
ed as “101000000001.”

In the example, the letter a occurs much more often than any of the
others, so it is assigned the 1-bit code 1. Notice that the minimum number
of bits needed to represent these seven letters is 3, yet in this case as many
as 4 bits are required. This is a necessary trade-off to ensure that the
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Letter: . a b c d e f g
Probability: 0.4 0.1 0.1 0.1 0.1 0.1 0.1
Code 1 010 011 0000 0001 0010 0011

Figure 6.2 Example showing the Huffman encoding for a set of seven
letters, assuming certain probabilities (from Lynch, 1985).

distinct codes can be stored together, without delimiters between them,
and still be recognized.

6.1.4 Irreversible Compression Techniques

The techniques we have discussed so far preserve all information in the
original data. In effect, they take advantage of the fact that the data, in its
original form, contains redundant information that can be removed and
then reinserted at a later time. Another type of compression, irreversible
compression, is based on the assumption that some information can be
sacrificed.2 '

. An example of irreversible compression would be shrinking a raster
image from, say, 400-by-400 pixels to 100-by-100 pixels. The new image
contains 1 pixel for every 16 pixels in the original image, and there is no
way, in general, to determine what the original pixels were from'the one
new pixel., '

Irreversible compression is less common in data files than reversible
compressian, but there are times when the information that is lost is of
little or no value. For example, speech compression is often done by voice
coding, a technique that transmits a paramaterized description of speech,
which can be synthesized at the receiving end with varying amounts of
distortion.

6.1.5 Compression in Unix

Both Berkeley and System V Unix provide compression routines that are
heavily used and quite effective. System V has routines called pack and
unpack, which use Huffman codes on a byte-by-byte basis. Typically,
pack achieves 25 to 40 percent reduction on text files, but appreciably less
on binary files that have a more uniform distribution of byte values. When

2. Irreversible compression is sometimes called “entropy reduction” to emphasize that the average

information (entropy) is reduced.
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208 Chapter 6 Organizing Files for Performance

pack compresses a file, it automatically appends a .z to the end of the
packed file, signaling to any future user that the file has been compressed
- using the standard compression algorithm.

Berkeley Unix has routines called compress and uncompress,
which use an effective dynamic method called Lempel-Ziv (Welch, 1984).
Except for using different compression schemes, compress , and
uricompress behave almost the same as pack and unpack.3 Compress
appends a .Z to the end of files it has compressed.

Because these routines are readily available on Unix systems and are
very effective general-purpose routines, it is wise to use them whenever
there are no compelling reasons to use other techniques.

6.2 Reclaiming Space in Files

Suppose a record in a variable-length record file is modified in such a way
that the new record is longer than the original record. What do you do
with the extra data? You could append it to the end of the file and put a
pointer from the original record space to the extension of the record. Or
you could rewrite the whole record at the end of the file (unless the file
needs to be sorted), leaving a hole at the original location of the record.
Each solution has a drawback: in the former case, the job of processing the
record is more awkward and slower than it was originally; in the latter
case, the file contains wasted space. _

In this section we take a close look at the way file organization deteri-
orates as a file is modified. In general, modifications can take any one of
three forms: ' |

B Record addition,
B Record updating, and
‘B Record deletion.

If the only kind of change to a file is record addition, there is no dete-
rioration of the kind we cover in this chapter. It is only when variable-
length records are updated, or when either fixed- or variable-length
records are deleted, that maintenance issues become complicated and’
interesting. Since record updating can always be treated as a record dele-

3. Many implementations of System V Unix also support compress and uncompress as Berkeley
extensions.
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Reclaiming Space in Files 209

tion followed by d record addition, our focus is on the effects of record
deletion. When a record has been deleted, we want to reuse the space.

6.2.1 Record Deletion and Storage Compaction

Storage compaction makes files smaller by looking for places in a file where
there is no data at all and recovering this space. Since empty spaces occur
in files when we delete records, we begin our discussion of compaction
with a look at record deletion.

Any record-deletion strategy must provide some way for us to recog-
nize records as deleted. A simple and usually workable approach is to place
a special mark in each deleted record. For example, in the file of Person
objects with delimited fields developed in Chapter 4, we might place an
asterisk as the first field in a deleted record. Figures 6.3(a) and 6.3(b) show
a name and address file similar to the one in Chapter 4 before and after the
second record is marked as deleted. (The dots at the ends of records 0 and
2 represent padding between the last field and the end of each record.)

Once we are able to recognize a record as deleted, the next question is
how to reuse the space from the record. Approaches to this problem that
rely on storage compaction do not reuse the space for a while. The records
are simply marked as deleted and left in the file for a period of time.
Programs using the file must include logic that causes them to ignore
records that are marked as deleted. One benefit to this approach is that it
is usually possible to allow the user to undelete a record with very little

Ames {Mary 123 Maple!StillwateriQKIiT740754¢. .. .. ... . . . . . . . ...

MorrisoniSebastiani9035 South HillcrestiForest VillageiOK!74820!

Brown!Martha!625 KimbarkiDes Moines!IA!503114/:....., [
(a)

Ames IMary {123 Maple:StillwateriOKi740751 ... ... . ... ... .. ... ...
*irrisoniSebastiani9035 South HillcrestiForest Village!OK!74820!
BrowniMarthai625 KimbarkiDes Moines!IAI50311!

(b)

AmesiMaryi123 MapleiStillwateriOKi74075) . ... ... . ... ... ... .....
BrowniMarthai625 KimbarkiDes Moines!IAISO311i...................

(c) .

Figure 6.3 Storage requirements of sample file using 64-byte fixed-length records.
(a) Before deleting the second record. (b) After deleting the second record.(c) After
compaction—the second record is gone.
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210 Chapter 6 Organizing Files for Performance

effort. This is particularly easy if you keep the deleted mark in a special
field rather than destroy some of the original data, as in our example.

The reclamation of space fiom the deleted records happens all at once.
After deleted records have accumulated for some time, a special program
is used to reconstruct the file with all the deleted records squeezed out as
shown in Fig. 6.3(c). If there is enough space, the simplest way to do this
compaction is through a file copy program that skips over the deleted
records. It is also possible, though more complicated and time-consuming,
to do the compaction in place. Either of these approaches can be used with
both fixed- and variable-length records.

The decision about how often to run the storage compaction program
can be based on either the number of deleted records or the calendar. In
accounting programs, for example, it often makes sense to run a
compaction procedure on certain files at the end of the fiscal year or at
some other point associated with closing the books.

6.2.2 Deleting Fixed-Length Records for Reclaiming
Space Dynamically

Storage compaction is the simplest and most widely used of the storage
reclamation methods we discuss. There are some applications, however,
that are too volatile and interactive for storage compaction to be useful. In
these situations we want to reuse the space from deleted records as soon as
possible. We begin our discussion of such dynamic storage reclamation
with a second look at fixed-length record deletion, since fixed-length
records make the reclamation problem much simpler.

In general, to provide a mechanism for record deletion with subse-
‘quent reutilization of the freed space, we need to be able to guarantee two
things: '

B That deleted records are marked in some special way, and

B That we can find the space that deleted records once occupied so we
can reuse that space when we add records.

We have already identified a method of meeting the first requirement: we
mark records as deleted by putting a field containing an asterisk at the
beginning of deleted records.

If you are working with fixed-length records and are willing to search
sequentially through a file before adding a record, you can always provide
the second guarantee if you have provided the first. Space reutilization can
take the form of looking through the file, record by record, until a deleted
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record is found. If the program reaches the end of the file without finding
a deleted record, the new record can be appended at the end.
Unfortunately, this approach makes adding records an intolerably
slow process, if the program is an interactive one and the user has to sit at
the terminal and wait as the record addition takes place. To make record

reuse happen more quickly, we need

® A way to know immediately if there are empty slots in the file, and
E A way to jump directly to one of those slots if they exist.

Linked Lists

The use of a linked list for stringing together all of the available records can
meet both of these needs. A linked list is a data structure in which each
element or node contains some kind of reference to its successor in the list.
(See Fig. 6.4.)

If you have a head reference to the first node in the list, you can move
through the list by looking at each node and then at the node’s pointer
field, so you know where the next node is located. When you finally
encounter a pointer field with some special, predetermined end-of-list
value, you stop the traversal of the list. In Fig. 6.4 we use a -1 in the point-
er field to mark the end of the list.

When a list is made up of deleted records that have become available
space within the file, the list is usually called an avail list. When inserting a
new record into a fixed-length record file, any one available record is just
as good as any other. There is no reason to prefer one open slot over
another since all the slots are the same size. It follows that there is no
reason to order the avail list in any particular way. (As we see later, this
situation changes for variable-length records.)

Stacks

The simplest way to handle a list is as a stack. A stack is a list in which all
insertions and removals of nodes take place at one end of the list. So, if we

\
Head
pointer .

/

Figure 6.4 A linked list.
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212 Chapter 6 Organizing Files for Performance

have an avail list managed as a stack that contains relative record numbers
(RRN) 5 and 2, and then add RRN 3, it looks like this before and after the
addition of the new node:

A A
Head RRN | -7 RRN
pointer 5 |20 2 -1

/ 4

A A\ —\
Head RRN - RRN RRN
pointer 3 5 5 2 ™ 2

3) = 4
7/ 7 7

When a new node is added to the top or front of a stack, we say that it
is pushed onto the stack. If the next thing that happens is a request for
some available space, the request is filled by taking RRN 3 from the avail
list. This is called popping the stack. The list returns to a state in which it
contains only records 5 and 2.

Linking and Stacking Deleted Records

Now we can meet the two criteria for rapid access to reusable space from
deleted records. We need ' c

B A way to know immediately if there are empty slots in the file, and
M A way to jump directly to one of those slots if it exists.

Placing the deleted records on a stack meets both criteria. If the point-
er to the top of the stack contains the end-of-list value, then we know that
there are no empty slots and that we have to add new records by append-
ing them to the end of the file. If the pointer to the stack top contains a
valid node reference, then we kriow not only that a reusable slot is avail-
able, but also exactly where to find it.

Where do we keep the stack? Is it a separate list, perhaps maintained in
a separate file, or is it somehow embedded within the data file? Once
again, we need to be careful to distinguish between physical and conceptu-
al structures. The deleted, available records are not moved anywhere when
they are pushed onto the stack. They stay right where we need them, locat-

ed in the file. The stacking and linking are done by arranging and rear-
ranging the links used to make one available record slot point to the next.

Since we are working with fixed-length records in a disk file rather than
with memory addresses, the pointing is not done with pointer variables in
the formal sense but through relative record numbers (RRNs).
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Reclaiming Space in Files 213

Suppose we are working with a fixed-length record file that once
contained seven records (RRNs 0-6). Furthermore, suppose that records 3
and 5 have been deleted, in that order, and that deleted records are marked
by replacing the first field with an asterisk. We can then use the second
field of a deleted record to hold the link to the next record on the avail list.
Leaving out the details of the valid, in-use records, Fig. 6.5(a) shows how
the file might look. ,

Record 5 is the first record on the avail list (top of the stack) as it is the
record that is most recently deleted. Following the linked list, we see that
record 5 points to record 3. Since the link field for record 3 contains -1,
which is our end-of-list marker, we know that record 3 is the last slot avail-
able for reuse.

Figure 6.5(b) shows the same file after record 1 is also deleted. Note
that the contents of all the other records on the avail list remain
unchanged. Treating the list as a stack results in a minimal amount of list
reorganization when we push and pop records to and from the list.

If we now add a new name to the file, it is placed in record 1, since
RRN 1 is the first available record. The avail list- would return to the

List head (first available record) — 5

0 1 2 3 4 5 6

Edwards . . .| Bates. .. Wills. . . -1 Masters . . . x3 Chavez .

List head (first available record) — 1

0 1 2 3 4 5 6

Edwards . . . *5 Wills . . . *—1 Masters . . . *3 Chavez . . .

List head (first available record) — —1

0 1 2 3 4 5 6

Edwards . . .| Istnewrec...| Wills. .. |3rdnewrec...| Masters. . . |2nd newrec...| Chavez. . .

()’

Figure 6.5 Sample file showing linked lists of deleted records. (a) After deletion of
records 3 and 5,in that order. (b) After deletion of records 3, 5,and 1,in that order. (c) After
insertion of three new records.
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configuration shown in Fig. 6.5(a). Since there are still two record slots on

the avail list, we could add two more names to the file without increasing

the size of the file. After that, however, the avail list would be empty as

shown in Fig. 6.5(c). If yet another name is added to the file, the program

knows that the avail list is empty and that the name requires the addition
-of a new record at the end of the file.

Implementing Fixed-Length Record Deletion

Implementing mechanisms that place deleted records on a linked avail list
and that treat the avail list as a stack is relatively straightforward. We need
a suitable place to keep the RRN of the first available record on the avail
list. Since this is information that is specific to the data file, it can be
carried in a header record at the start of the file.

When we delete a record, we must be able to mark the record as delet-
ed and then place it on the avail list. A simple way to dothis is to place an
* (or some other special mark) at the beginning of the record as a deletion
mark, followed by the RRN of the next record on the avail list.

Once we have a list of available records within a file, we can reuse the
space previously occupied by deleted records. For this we would write a
single function that returns either (1) the RRN of a reusable record slot or
(2) the RRN of the next record to be appended if no reusable slots are
available.

6.2.3 Deleting Variable-Length Records

Now that we have-a mechanism for handling an avail list of available space
once records are deleted, let’s apply this mechanism to the more complex
problem of reusing space from deleted variable-length records. We have
seen that to support record reuse through an avail list, we need

B A way to link the deleted records together into a list (that is; a place to
puta link field);

M An algorithm for adding newly deleted records to the avail list; and

B An algorithm for finding and removing records from the avail list
when we are ready to use them.

An Avail List of Variable-Length Records

What kind of file structure do we need to support an avail list of variable-
length records? Since we will want to delete whole records and then place
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records on an avail list, we need a structure in which the record is a clearly
defined entity. The file structure of VariableLengthBuffer, in
which we define the length of each record by placing a byte count at the
beginning of each record, will serve us well in this regard.

We can handle the contents of a deleted variable-length record just as
we did with fixed-length records. That is, we can place a single asterisk in
the first field, followed by a binary link field pointing to the next deleted
record on the avail list. The avail list can be organized just as it was with
fixed-length records, but with one difference: we cannot use relative record
numbers for links. Since we cannot compute the byte offset of variable-
length records from their RRNs, the links must contain the byte offsets
themselves.

To illustrate, suppose we begin with a variable-length record file
containing the three records for Ames, Morrison, and Brown introduced
earlier. Figure 6.6(a) shows what the file looks like (minus the header)
before any deletions, and Fig. 6.6(b) shows what it looks like after the dele-
tion of the second record. The periods in the deleted record signify
discarded characters.

Adding and Removing Records

Let’s address the questions of adding and removing records to and from
the list together, since they are clearly related. With fixed-length records we

HEAD.FIRST_AVAIL: -1

40 Ames|Mary!123 MapleiStillwateri0K!74075i64 Morrison!Sebastian
18035 South HillcrestiForest Villagei0Ki174820145 BrowniMartha!62
5 Kimbark!Des Moines!IA{503111

(a)

HEAD. FIRST_ AVAIL: 43

40 Ames|!Mary!123 Maple{StillwéterlOKl74075=64 *Lo=1... . .
.............................................. 45 Brown!Marthai62

5 KimbarkiDes M‘oines!IA 50311:
(b)

Figure 6.6 A sample file for illustrating variable-length record deletion. (a) Original
sample file stored in variable-length format with byte count (header record not
included). (b) Sample file after deletion of the second record (periods show discarded
characters).
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could access the avail list as a stack becduse one member of the avail list is
just as usable as any other. That is not true when the record slots on the
avail list differ in size, as they do in a variable-length record file. We now
have an extra condition that must be met before we can reuse a record: the
record must be the right size. For the moment we define right size as “big
enough.” Later we find that it is sometimes useful to be more particular
about the meaning of right size.

It is possible, even likely, that we need to search through the avail list
for a record slot that is the right size. We can’t just pop the stack and expect
the first available record to be big enough. Finding a proper slot on the
avail list now means traversing the list until a record slot that is big enough
to hold the new record is found.

For example, suppose the avail list contains the deleted record slots
shown in Fig. 6.7(a), and a record that requires 55 bytes is to be added.
Since the avail list is not empty, we traverse the records whose sizes are 47
(too small), 38 (too small), and 72 {big enough). Having found a slot big
enough to hold our record, we remove it from the avail list by creating a
new link that jumps over the record as shown in Fig. 6.7(b). If we had
reached the end of the avail list before finding a record that was large
enough, we would have appended the new record at the end of the file.

Because this procedure for finding a reusable record looks through the
entire avail list if necessary, we do not need a sophisticated method for
putting newly deleted records onto the list. If a record of the right size is

A\ \ -\ :
Size Size Size Size )
47 38 72 68 -1

4 7/ 4
(a)

AY
Size . Size Size
47 38 68 -1

7 .

Removed recc;rd —> S;’; '

(b)

Figure 6.7 Removal of a record from an avail list with \)ariable-length records.
(a) Before removal. (b) After removal.
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somewhere on this list, our get-available-record procedure eventually finds
it. It follows that we can continue to push new members onto the front of
the list, just as we do with fixed-length records.

Development of algorithms for adding and removing avail list records
is left to you as part of the exercises found at the end of this chapter.

6.2.4 Storage Fragmentation

Let’s look again at the fixed-length record version of our three-record file
(Fig. 6.8). The dots at the ends of the records represent characters we use
as padding between the last field and the end of the records. The padding
is wasted space; it is part of the cost of using fixed-length records. Wasted
space within a record is called internal fragmentation.

Clearly, we want to minimize internal fragmentation. If we are work-
ing with fixed-length records, we attempt this by choosing a record length
that is as close as possible to what we need for each record. But unless the
actual data is fixed in length, we have to put up with a certain amount of
internal fragmentation in a fixed-length record file. |

One of the attractions of variable-length records is that they minimize
wasted space by doing away with internal fragmentation. The space set
aside for each record is exactly as long as it needs to be. Compare the fixed-
length example with the one in Fig. 6.9, which uses the variable-length
record structure—a byte count followed by delimited data fields. The only
space (other than the delimiters) that is not used for holding data in each
record is the count field. If we assume that this field uses 2 bytes, this
amounts to only 6 bytes for the three-record file. The fixed-length record
file wastes 24 bytes in the very first record.

Ames!Mary!123 Maple!Stillwater!0Ki74075!...... e
MorrisoniSebastian!9035 South Hillcrest!Forest Village!0K!74820!
BrowniMartha!625 KimbarkiDes MoinesiIAIS50311:...................

Figure 6.8 Storage requirements of sample file using 64-byte fixed-length records.

40 Ames!Mary!123 MapleiStillwateriOKi74075164 Morrison!Sebastian
19035 South HillcrestiForest VillagelOK!74820(45 BrowniMartha!62
5 Kimbark!Des Moinesi!IA!50311!

Figure 6.9 Storage requirements of sample file using variable-length records with a
count field.
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But before we start congratulating ourselves for solving the problem of
wasted space due to internal fragmentation, we should consider what
happens in a variable-length record file after a record is deleted and
replaced with a shorter record. If the shorter record takes less space than
the original record, internal fragmentation results. Figure 6.10 shows how
the problem could occur with our sample file when the second record in
the file is deleted and the following record is added:

Ham|Al{28 Elm|Ada|OK|70332]

It appears that escaping internal fragmentation is not so easy. The slot
vacated by the deleted record is 37 bytes larger than is needed for the new-
record. Since we treat the extra 37 bytes as part of the new record, they are
not on the avalil list and are therefore unusable. But instead of keeping the
64-byte record slot intact, suppose we break it into two parts: one part to
hold the new Ham record, and the other to be placed back on the avail list.
Since we would take only as much space as necessary for the Ham record,
there would be no internal fragmentation.

Figure 6.11 shows what our file looks like if we use this approach to
insert the record for Al Ham. We steal the space for the Ham record from
the end of the 64-byte slot and leave the first 35 bytes of the slot on the
avail list. (The available space is 35 rather than 37 bytes because we need 2.
bytes to form a new size field for the Ham record.) The 35 bytes still on the
avail list can be used to hold yet another record. Figure 6.12 shows the
effect of inserting the following 25-byte record:

Leel|EAIRt 2|AdalOK|74820]

HEAD.FIRST_AVAIL: 43 l

40 Ames !Mary! 123 Maple!Stillwater 0K 74075 64 *, -1...
45 Brown | Martha 62

5 Kimbark 'Des Moines!IA}; 503il X
(a)

HEAD.FIRST AVAIL: -1

40 Ames {Mary!1l23 Maple, Stlllwater ‘0K 74075 |64 Ham,Al 28 Elm Ada,
0K ;70332 . - e .45 Brown Martha 62
5 Kimbark! Des Molnes IA 50311‘ '

(b)-

Figure 6.10 illustration of fragmentation with variable-length records. (a) After deletion
of the second record (unused characters in the deleted record are replaced by periods).
(b) After the subsequent addition of the record for Al Ham.
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HEAD.FIRST_AVAIL: 43 1

40 Ames Mary, 123 Maple,Stillwater [OK|74075,35 *' 1. ... .. . . . .. .
................. 26 Ham, Al 28 Elm; Ada (0K ! 70332 45 Brown ,Martha!6
25 Klmbark ,Des Moines| IA 50311'

Figure 6.11 Combating internal fragmentation by putting the unused part of the
deleted slot back on the avail list.

As we would expect, the new record is carved out of the 35-byte record
that is on the avail list. The data portion of the new record requires 25
bytes, and we need 2 more bytes for another size field. This leaves 8 bytes
in the record still on the avail list. .

What are the chances of finding a record that can make use of these 8
bytes? Our guess would be that the probability is close to zero. These 8
bytes are not usable, even though they are not trapped inside any other
record. This is an example of external fragmentation. The space is actually
on the avail list rather than being locked inside some other record but is

too fragmented to be reused.
" There are some interesting ways to combat external fragmentation.

One way, which we discussed at the beginning of this chapter, is storage
compaction. We could simply regenerate the file when external fragmenta-
tion becomes intolerable. Two other approaches are as follows:

B If two record slots on the avail list are physically adjacent, combine
them to make a single, larger record slot. This is called coalescing the
holes in the storage space.

B Tryto minimize fragmentation before it happens by adopting a place-
ment strategy that the program can use as it selects a record slot from

the avail list.

HEAD, FIRST_AVAIL: 43 l

40 | Ames ! Mary ! 123 Maple!Stillwater !0K'!74075'8 *, =1...25 Lee |Ed!
Rt 2)Ada 0K 74820 ,26 Ham,Al 28 Elm,Ada,0K ;7033245 Brown 'Martha'6
25 Kimbark | Des Moines ' IA,50311)

Figure 6.12 Addition of the second record into the slot originally occupied by a single
deleted record.
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Coalescing holes presents some interesting problems. The avail list is
not kept in physical record order; if there are two deleted records that are
physically adjacent, there is no reason to presume that they are linked adja-
cent to each other on the avail list. Exercise 15 at the end of this chapter
provides a discussion of this problem along with a framework for devel-
oping a solution.

The development of better placement strategies, however, is a different
matter. It is a topic that warrants a separate discussion, since the choice
among alternative strategies is not as obvious as it might seem at first
glance.

6.2.5 Placement Strategies

Earlier we discussed ways to add and remove variable-length records from
an avail list. We add records by treating the avail list as a stack and putting
deleted records at the front. When we need to remove a record slot from
the avail list (to add a record to the file), we look through the list, starting
at the beginning, until we either find a record slot that is big enough or
reach the end of the list. ,

This is called a first-fit placement strategy. The least possible amount
of work is expended when we place newly available space on the list, and
we are not very particular about the closeness of fit as we look for a record
slot to hold a new record. We accept the first available record slot that will
do the job, regardless of whether the slot is ten times bigger than what is
needed or whether it is a perfect fit.

We could, of cours:, develop a more orderly approach for placing
records on the avail list by keeping them in either ascending or descend-
ing sequence by size. Rather than always putting the newly deleted records
at the front of the list, these approaches involve moving through the list,
looking for the place to insert the record to maintain the desired
sequence.

If we order the avail list in ascending order by size, what is the effect on
the closeness of fit of the records that are retrieved from the list? Since the
retrieval procedure searches sequentially through the avail list until it
encounters a record that is big enough to hold the new record, the first
record encountered is the smallest record that will do the job. The fit
between the available slot and the new record’s needs would be as close as
we can make it. This is called a best-fit placement strategy.

A best-fit strategy is intuitively appealing. There is, of course, a price
to be paid for obtaining this fit. We end up having to search through at
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least a part of the list—not only when we get records from the list, but also
when we put newly deleted records on the list. In a real-time environment,
the extra processing time could be significant.

A less obvious disadvantage of the best-fit strategy is related to the
idea of finding the best possible fit and ensuring that the free area left over
after inserting a new record into a slot is as small as possible. Often this
remaining space is too small to be useful, resulting in external fragmenta-
tion. Furthermore, the slots that are least likely to be useful are the ones
that will be placed toward the beginning of the list, making first-fit search-
es longer as time goes on. '

These problems suggest an alternative strategy. What if we arrange the
avail list so it is in descending order by size? Then the largest record slot on
the avail list would always be at the head of the list. Since the procedure
that retrieves records starts its search at the beginning of the avail list, it
always returns the largest available record slot if it returns any slot at all.
This is known as a worst-fit placement strategy. The amount of space in the
record slot, beyond what is actually needed, is as large as possible.

A worst-fit strategy does not, at least mltlally, sound very appealing
But consider the following:

M The procedure for removing records can be simplified so it looks only
at the first element of the avaLl list. If the first record slot is not large
enough to do the job, none of the others will be.

m By extracting the space we need from the largest available slot, we are
assured that the unused portion of the slot is as large as possible,
decreasing the likelihood of external fragmentation.

What can you conclude from all of this? It should be clear that no one
placement strategy is superior under all circumstances. The best you can
do is formulate a series of general observations. and then, given a particu-
lar design situation, try to select the strategy that seems most appropriate.
Here are some suggestions. The judgment will have to be yours.

m Placement strategies make sense only with regard to volatile, variable-
length record files. With fixed-length records, placement is simply not
an issue.

@ If space islost due to internal fragmentation, the choice is between first
fit and best fit. A worst-fit strategy truly makes internal fragmentation
worse.

m  If the space is lost due to external fragmentation, one should give care-
ful consideration to a worst-fit strategy.
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6.3 Finding Things Quickly: An Introduction to
Internal Sorting and Binary Searching

‘This text begins with a discussion of the cost of accessing secondary stor-
age. You may remember that the magnitude of the difference between
accessing memory and seeking information on a fixed disk is such that, if
we magnify the time for a memory access to twenty seconds, a similarly
magnified disk access would take fifty-eight days.

So far we have not had to pay much attention to this cost. This section;
then, marks a kind of turning point. Once we move from fundamental
organizational issues to the matter of searching a file for a particular piece
of information, the cost of a seek becomes a major factor in determining
our approach. And what is true for searching is all the more true for sort-
ing. If you have studied sorting algorithms, you know that even a good
sort involves making many comparisons. If each of these comparisons
involves a seek, the sort is agonizingly slow.

Our discussion of sorting and searching, then, goes beyond Smely
getting the job done. We develop approaches that minimize the number of
disk accesses and therefore minimize the amount of time expended. This
concefn with minimizing the number of seeks continues to be a major
focus throughout the rest of this text. This is just the beginning of a quest
for ways to order and find things quickly.

6.3.1 Finding Things in Simple Field and Record Files

All of the programs we have written up to this point, despite any other
strengths they offer, share a major failing: the only way to retrieve or find
a record with any degree of rapidity is to look for it by relative record
number. If the file has fixed-length records, knowing the RRN lets us
compute the record’s byte offset and jump to it using direct access.

But what if we do not know the byte offset or RRN of the record we
want? How likely is it that a question about this file would take the form,
“What is the record stored in RRN 23?” Not very likely, of course. We are
much more likely to know the identity of a record by its key, and the ques-
tion is more likely to take the form, “What is the record for Jane Kelly?”

Given the methods of organization developed so far, access by key
implies a sequential search. What if there is no record: containing the
requested key? Then we would have to look through the entire file. What if
we suspect that there might be more than one record that contains the key,
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and we want to find them all? Once again, we would be doomed to look-
ing at every record in the file. Clearly, we need to find a better way to
handle keyed access. Fortunately, there are many better ways.

6.3.2 Search by Guessing: Binary Search

Suppose we are looking for a record for Jane Kelly in a file of one thousand
fixed-length records, and suppose the file is sorted so the records appear in
ascending order by key. We start by comparing KELLY JANE (the canoni-
cal form of the search key) with the middle key in the file, which is the key
whose RRN is 500. The result of the comparison tells us which half of the
file contains Jane Kelly’s record. Next, we compare KELLY JANE with the
middle key among records in the selected half of the file to find out which
quarter of the file Jane Kelly’s record is in. This process is repeated until
either Jane Kelly’s record is found or we have narrowed the number of
potential records to zero.

This kind of searching is called binary searching. An algorithm for
binary searching on a file of fixed-sized records is shown in Fig. 6.13.
Binary searching takes at most ten comparisons—to find Jane Kelly’s
record if it is in the file, or to determine that it is not in the file. Compare
this with a sequential search for the record. If there are one thousand
records, then-it takes at most one thousand comparisons to find a given
record (or establish that it is not present); on the average, five hundred
comparisons are needed.

We refer to the code in Fig. 6.13 as an algorithm, not a function, even
though it is given in the form of a C++ function. This is because this is not
a full implementation of binary search. Details of the implementation of
the method are not given. From the code, we can infer that there must be
a class FixedRecordFile that has methods NumRecs and
ReadByRRN and that those methods have certain specific meaning. In
particular, NumRecs must return the number of records in the
FixedRecordFile, and ReadByRRN must read the record at a
specific RRN and unpack it into a RecType object. '

It is reasonable to suppose that a full implementation of binary search
would be a template function with parameters for the type of the data
record and the type of the key. It might also be a method of a fixed-record
file class. Changing these details will not affect the algorithm and might
not even require changes in the code. We do know, however, that in order
to perform binary search, we must be able to read the file by relative record
number, we must have assignment and key extraction methods on the data
record type, and we must haveé relational operations on the key type.
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int BinarySearch
(FixedRecordFile & file, RecType & obj, KeyType & key)
// binary search for key :
// if key found, obj contains corresponding record, 1 returned
// 1f key not found, 0 returned
i
int low = 0; int high = file.NumRecs()-1;
while (low <= high) '
{
int guess = (high - low) / 2;
file.ReadByRRN (obj, guess);
if (obj.Key() == key) return 1; // record found
if (obj.Key() < key) high = guess - 1;// search before guess
else low = guess + 1;// search after guess
}
return (; // loop ended without finding key
}

Figure 6.13 A binary search algorithm.

Figure 6.14 gives the minimum definitions that must be present to
allow a successful compilation of BinarySearch. This includes a class
RecType with a Key method that returns the key value of an object and
class KeyType with equality and less-than operat_ors; No further details
of any of these classes need be given.

class KeyType
{public:
int operator == (KeyType &); // equality operator
int operator < (KeyType &); // less than operator
};

class RecType {public: KeyType Key();};

class FixedRecordFile .
{public: ‘

int NumRecs () ;

int ReadByRRN (RecType & record, int RRN);
}:

Figure 6.14 Classes and methods that must be implemented to support the
binary search algorithm.
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This style of algorithm presentation is the object-oriented replace-
ment for the pseudocode approach, which has been widely used to
describe algorithms. Pseudocode is typically used to describe an algorithm
without including all of the details of implementation. In Fig. 6.13, we
have been able to present the algorithm without all of the details but in a
form that can be passed through a compiler to verify that it is syntactical-
ly correct and conforms in its use of its related objects. The contrast
between object-oriented design and pseudocode is that the object-orient-
ed approach uses a specific syntax and a specific interface. The object-
oriented approach is no harder to write but has significantly more detail.

6.3.3 Binary Search versus Sequential Search

In general, a binary search ofa file with n records takes at most
l_log2 nl+1 comparisons
and on average approximately
Llog, nl+ 1/2 comparisons.

A binary search is therefore said to be O(log, n). In contrast, you may
recall that a sequential search of the same file requires at most n compar-
isons, and on average ?(tk?) n, which is to say that a sequential search is
O(n).

The difference between a binary search and a sequential search
becomes even more dramatic as we increase the size of the file to be
searched. If we double the number of records in the file, we double the
number of comparisons required for sequential search; when binary
search is used, doubling the file size adds only one more guess to our worst
case. This makes sense, since we know that each guess eliminates half of
the possible choices. So, if we tried to find Jane Kelly’s record in a file of
two thousand records, it would take at most

1 +Llog, 2000] = 11 comparisons
whereas a sequential search would average
1/2 n=1000 comparisons

and could take up to two thousand comparisons.

Binary searching is clearly a more attractive way to find things than
sequential searching. But, as you might expect, there is a price to be paid
before we can use binary searching: it works only when the list of records
is ordered in terms of the key we are using in the search. So, to make use of
binary searching, we have to be able to sort a list on the basis of a key.
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Sorting is a very important part of file processing. Next, we will look
at some simple approaches to sorting files in memory, at the same time
introducing some important new concepts in file structure design. We take
a second look at sorting in Chapter 8, when we deal with some tough
problems that occur when files are too large to sort in memory.

6.3.4 Sorting a Disk File in Memory

Consider the operation of any internal sorting algorithm with which you
are familiar. The algorithm requires multiple passes over the list that is to
be sorted, comparing and reorganizing the elements. Some of the items in
the list are moved a long distance from their original positions in the list.
If such an algorithm were applied directly to data stored on a disk, it is
clear that there would be a lot of jumping around, seeking, and rereading
of data. This would be a very slow operation—unthinkably slow.

If the entire contents of the file can be held in memory, a very attrac-
tive alternative is to read the entire file from the disk into memory and
then do the sorting there, using an internal sort. We still have to.access the
data on the disk, but this way we can access it sequentially, sector after
sector, without having to incur the costs of a lot of seeking and of multiple
passes over the disk.

This is one instance of a general class of solutions to the problem of
minimizing disk usage: force your disk access into a sequential mode,
performing the more complex, direct accesses in memory.

Unfortunately, it is often not possible to use this simple kind of solu-
tion, but when you can, you should take advantage of it. In the case of
sorting, internal sorts are increasingly viable as the amount of memory
space grows. A good illustration of an internal sort is the Unix sort util-
ity, which sorts files in memory if it can find enough space. This utility is

“described in Chapter 8.

6.3.5 The Limitations of Binary Searching and
Internal Sorting

Let’s look at three problems associated with our “sort, then binary search”
approach to finding things.
Problem 1: Binary Searching Requires More Than One or Two Accesses

In the average case, a binary search requires approximately Llog, nl+ 1/2
comparisons. If each comparison requires a disk access, a series of binary

heé¢eps://hemanthrajhemu.github.io



Finding Things Quickly: An Introduction to Internal Sorting and Binary Searching 227

searches on a list of one thousand items requires, on the average, 9.5
accesses per request. If the list is expanded to one hundred thousand items,
the average search length extends to 16.5 accesses. Although this is a
tremendous improvement over the cost of a sequential search for the key,
it is also true that 16 accesses, or even 9 or 10 accesses, is not a negligible
cost. The cost of this searching is particularly noticeable and objectionable,
if we are doing a large enough number of repeated accesses by key.

When we access records by relative record number rather than by key,
we are able to retrieve a record with a single access. That is an order of
magnitude of improvement over the ten or more accesses that binary
searching requires with even a moderately large file. Ideally, we would like
to approach RRN retrieval performance while still maintaining the advan-
tages-of access by key. In the following chapter, on the use of index struc-
tures, we begin to look at ways to move toward this ideal.

Problem 2: Keeping a File Sorted Is Very Expensive

Our ability to use a binary search has a price attached to it: we must keep
the file in sorted order by key. Suppose we are working with a file to which
.we add records as often as we search for existing records. If we leave the file
in unsorted order, conducting sequential searches for records, then on
average each search requires reading through half the file. Each record
addition, however, is very fast, since it involves nothing more than jump-
ing to the end of the file and writing a record.

If, as an alternative, we keep the file in sorted order, we can cut down
substantially on the cost of searching, reducing it to a handful of accesses.
But we encounter difficulty when we add a record, since we want to keep
all the records in sorted order. Inserting a new record into the file requires,
on average, that we not only read through half the records, but that we also
shift the records to open up the space required for the insertion. We are
actually doing more work than if we simply do sequential searches on an
unsorted file.

The costs of maintaining a file that can be accessed through binary
searching are not always as large as in this example involving frequent
record addition. For example, it is often the case that searching is required
much more frequently than record addition. In such a circumstance, the
benefits of faster retrieval can more than offset the costs of keeping the file
sorted. As another example, there are many applications in which record
additions can be accumulated in a transaction file and made in a batch
mode. By sorting the list of new records before adding them to the main
file, it is possible to merge them with the existing records. As we see in
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Chapter 8, such merging is a sequential process, passing only once over
each record in the file. This can be an efficient, attractive approach to
maintaining the file.

So, despite its problems, there are situations in which binary searching
appears to be a useful strategy. However, knowing the costs of binary
searching also lets us see better solutions to the problem of finding things
by key. Better solutions will have to meet at least one of the following
conditions:

®  They will not involve reordering of the records in the file when a new
record is added, and

M They will be associated with data structures that allow for substantial-
ly more rapid, efficient reordering of the file.

In the chapters that follow we develop approaches that fall into each of
these categories. Solutions of the first type can involve the use of simple
indexes. They can also involve hashing. Solutions of the second type can
involve the use of tree structures, such as a B-tree, to keep the file in order.

Problem 3: An Internal Sort Works Only on Small Files

Our ability to use binary searching is limited by our ability to sort the file.
An internal sort works only if we can read the entire contents of a file into
the computer’s electronic memory. If the file is so 1arge that we cannot do
that, we need a different kind of sort.

In the following section we develop a variation on internal sorting
called a keysort. Like internal sorting, keysort is limited in terms of how
large a file it can sort, but its limit is larger. More important, our work on
keysort begins to illuminate a new approach to the problem of finding
things that will allow us to avoid the sorting of records in a file.

6.4 Keysorting

Keysort, sometimes referred to as tag sort, is based on the idea that when
we sort a file in memory the only things that we really need to sort are the
record keys; therefore, we do not need to read the whole file into memory
during the sorting process. Instead, we read the keys from the file into

memory, sort them, and then rearrange the records in the file according to
the new ordering of the keys.
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Since keysort never reads the complete set of records into memory, it
can sort larger files than a regular internal sort, given the same amount of
memory.

6.4.1 Description of the Method

To keep things simple, we assume that we are dealing with a fixed-length
record file of the kind developed in Chapter 4, with a count of the number
of records stored in a header record.

We present the algorithm in an object-oriented pseudocode. As in
Section 6.3.3, we need to identify the supporting object classes. The file
class (FixedRecordFile) must support methods NumRecs and
ReadByRRN. In order to store the key RRN pairs from the file, we need a
class KeyRRN that has two data members, KEY and RRN. Figure 6.15 gives
the minimal functionality required by these classes.

The algorithm begins by reading the key RRN pairs into an array of
KeyRRN objects, We call this array KEYNODES [ ] . Figure 6.16 illustrates
the relationship between the array KEYNODES [ ] and the actual file at the

class FixedRecordFile

{public:
int NumRecs () ;
int ReadByRRN (RecType & record, int RRN);
// additional methods required for keysort
int Create (char * fileName);
int Append (RecType & record);

}s

class KeyRRN ‘
// contains a pair (KEY, RRN)
{public:
KeyType KEY; int RRN;
KeyRRN({) ;
KeyRRN (KeyType key, int rrn);
Yi

int Sort (KeyRRN [], int numKeys); // sort array by key

Figure 6.15 Minimal functionality required for classes used by the keysort algorithm.
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KEYNODES array Records
KEY . RRN
HARRISON SUSAN 1 Harrison | Susan | 387 Eastern...
KELLOG BILL 2

>
P1 Kellog | Bill| 17 Maple...
—

HARRIS MARGARET 3 Harris | Margaret | 4343 West...

—!  Bell | Robert | 8912 Hill...

BELL ROBERT k

In memory On secondary store

Figure 6.16 Conceptual view of KEYNODES array to be used in memory by internal sort
routine and record array on secondary store.

time the keysort procedure begins. The RRN field of each array element
contains the RRN of the record associated with the corre$ponding key.

The actual sorting process simply sorts the KEYNODES[] array
according to the KEVfield. This produces an arrangement like that shown
in Fig. 6.17. The elements of KEYNODES [ ] are now sequenced in such a
way that the first element has the RRN of the record that should be moved
to the first position in the file, the second element identifies the record that
should be second, and so forth.

Once KEYNODES [ ] is sorted, we are ready to reorganize the file
according to this new ordering by reading the records from the input file
and writing to a new file in the order of the KEYNODES [ ] array.

Figure 6.18 gives an algorithm for keysort. This algorithm works much
the same way that a normal internal sort would work, but with two impor-
tant differences:

B Rather than read an entire record into.a memory array, we simply read
each record into a temporary buffer, extract the key, then discard it;
and

B When we are writing the records out in sorted order, we have to read
them in a second time, since they are not all stored in memory.
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KEYNODES array
KEY RRN

Records

BELL ROBERT k Harrison | Susan | 387 Eastern...

e\® ® & 3 0o a2 s »

HARRIS MARGARET | 3 Kellog | Bill ] 17 Maple...

Harris | Margaret | 4343 West...

HARRISON SUSAN 1

KELLOG BILL 2 Bell | Robert | 8912 Hill...

In RAM On secondary store

Figure 6.17 Conceptual view of KEYNODES array and file after sorting keys in memory.

int KeySort (FixedRecordFile & inFile, char * outFileName)
{
RecType obj;
KeyRRN * KEYNODES = new KeyRRN {inFile . NumRecs()];
// read file and load Keys '
for (int 1 = 0; i1 < inFile . NumRecs(); i++)
{
inFile . ReadByRRN (obj, 1);// read record i
KEYNODES[i] = KeyRRN(obj.Key(},i);//put key and RRN into Keys
}
Sort (KEYNODES, inFile . NumRecs{));// -sort Keys
FixedRecordFile outFile;// file to hold records in key .order
outFile . Create (outFileName);// create a new file
// write new file in key order
for (int j = 0; j < inFile . NumRecs(); J++)
{
inFile . ReadByRRN (obj, KEYNODES[]j].RRN);://read in key order
outFile . Append (obj);// write in key order
}
return 1;

)

Figure 6.18 Algorithm for keysort
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6.4.2 Limitations of the Keysort‘Method

At first glance, keysorting appears to be an obvious improvement over
sorting performed entirely in memory; it might even appear to be a case of
getting something for nothing. We know that sorting is an expensive oper-
ation and that we want to do it in memory. Keysorting allows us to achieve
this objective without having to hold the entire file in memory at once.

But, while reading about the operation of writing the records out in
sorted order, even a casual reader probably senses a cloud on this appar-
ently bright horizon. In keysort we need to read in the records a second
time before we can write out the new sorted file. Doing something twice is
never desirable. But the problem is worse than that.

‘Look carefully at the for loop that reads in the records before writing
them out to the new file. You can see that we are not reading through the
input file sequentially. Instead, we are working in sorted order, moving
from the sorted KEYNODES|[] to the RRNs of the records. Since we have
to seek to each record and read it in before writing it back out, creating the
sorted file requires as many random seeks into the input file as there are
records. As we have noted a number of times, there is an enormous differ-
ence between the time required to read all the records in a file sequential-
ly and the time required to read those same records if we must seek to each
record separately. What is worse, we are performing all of these accesses in
alternation with write statements to the output file. So, even the writing of
the output file, which would otherwise appear to be sequential, involves
seeking in most cases. The disk drive must move the head back and forth
between the two files as it reads and writes.

The getting-something-for-nothing aspect of keysort has suddenly
evaporated. Even though keysort does the hard work of sorting in memo-
Iy, it turns out that creating a sorted version of the file from the map
supplied by the KEYNODES(] array is not at all a trivial matter when the
only copies of the records are kept on secondary store.

6.4.3 Another Solution: Why Bother to Write the File Back?

The idea behind keysort is an attractive one: why work with an entire
record when the only parts of interest, as far as sorting and searching are
concerned, are the fields used to form the key? There is a compelling parsi-
mony behind this idea, and it makes keysorting look promising. The
promise fades only when we run into the problem of rearrangmg all the
records in the file so they reflect the new, sorted order.
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It is interesting to ask whether we can avoid this problem by simply
not bothering with the task that is giving us trouble. What if we just skip
the time-consuming business of writing out a sorted version of the file?
What if, instead, we simply write otit a copy of the array of canonical key
nodes? If we do without writing the records back in sorted order, writing
out the contents of our KEYNODES(] array instead, we will have written
a program that outputs an index to the original file. The relationship
between the two files is illustrated in Fig. 6.19.

This is an instance of one of our favorite categories of solutions to
computer science problems: if some part of a process begins to look like
a bottleneck, consider skipping it altogether. Ask if you can do without
it. Instead of creating a new, sorted copy of the file to use for searching,
we have created a second kind of file, an index file, that is to be used in
conjunction with the original file. If we are looking for a particular
record, we do our binary search on the index file and then use the RRN
stored in the index file record to find the corresponding record in the
original file.

There is much to say about the use of index files, enough to fill sever-
al chapters. The next chapter is about the various ways we can use a simple
index, which is the kind of index we illustrate here. In later chapters we
talk about different ways of organizing the index to provide more flexible
access and easier maintenance.

Index file Original file
BELL ROBERT - k 1 Harrison, Susan, 387 Eastern . . .
HARRIS MARGARET 3 Kellogg ! Bill | 17 Maple . . .
HARRISON SUSAN 1 Harris | Margaret | 4343 West . . .
KELLOGG BILL - 2 . Bell , Robert , 8912 Hill . . .

Figure 6.19 Relationship between the index file and the data file.
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6.4.4 Pinned Records

In section 6.2 we discussed the problem of updating and maintaining files.
Much of that discussion revolved around the problems of deleting records
and keeping track of the space vacated by deleted records so it can be

.reused. An avail list of deleted record slots is created by linking all of the
available slots together. This linking is done by writing a link field into
each deleted record that points to the next deleted record. This link field
gives very specific information about the exact physical location of the
next available record.

When a file contains such references to the physical locations of
records, we say that these records are pinned. You can gain an appreciation
for this particular choice of terminology if you consider the effects of sort-
ing one of these files containing an avail list of deleted records. A pinned
record is one that cannot be moved. Other records in the same file or in
some other file (such as an index file) contain references to the physical
location of the record. If the record is moved, these references no longer
lead to the record; they become dangling pointers, pointers leading to
incorrect, meaningless locations in the file.

Clearly, the use of pinned records in a file can make sorting more
difficult and sometimes impossible. But what if we want to support
rapid access by key while still reusing the space made available by record
deletion? One solution is to use an index file to keep the sorted order of
the records while keeping the data file in its original order. Once again,
the problem of finding things leads to the suggestion that we need to
take a close look at the use of indexes, which, in turn, leads us to the next
chapter..

SUMMARY

In this chapter we look at ways to organize or reorganize files to improve
performance in some way. |

Data compression methods are used to make files smaller by re-encod-
ing data that goes into a file. Smaller files use less storage, take less time to
transmit, and can often be processed faster sequentially.

The notation used for representing information can often be made
more compact. For instance, if a 2-byte field in a record can take on only
fifty values, the field can be encoded using 6 bits instead of 16. Another
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form of compression called run-length encoding encodes sequences of
repeating values rather than writing all of the values in the file.

A third form of compression assigns variable-length codes to values
depending on how frequently the values occur. Values that occur often are
given shorter codes, so they take up less space. Huffman codes are an exam-
ple of variable-length codes.

Some compression techniques are irreversible in that they lose
information in the encoding process. The Unix utilities compress,
uncompress, pack, and unpack provide good compression in Unix.

A second way to save space in a file is to recover space in the file after
it has undergone changes. A volatile file, one that undergoes many
changes, can deteriorate very rapidly unless measures are taken to adjust
the file organization to the changes. One result of making changes to files
is storage fragmentation.

Internal fragmentation occurs when there is wasted space within a
record. In a fixed-length record file, internal fragmentation can result
when variable-length records are stored in fixed slots. It can also occur in
a variable-length record file when one record is replaced by another record
of a smaller size. External fragmentation occurs when holes of unused
space between records are created, normally because of record deletions.

There are a number of ways to combat fragmentation. The simplest is
storage compaction, which squeezes out the unused space caused from
external fragmentation by sliding all of the undeleted records together.
Compaction is generally done in a batch mode.

Fragmentation can be dealt with dynamically by reclaiming deleted
space when records are added. The need to keep track of the space to be
reused makes this approach more complex than compaction.

We begin with the problem of deleting fixed-length records. Since
finding the first field of a fixed-length record is very easy, deleting a record
can be accomplished by placing a special mark in the first field.

Since all records in a fixed-length record file are the same size, the
reuse of deleted records need not be complicated. The solution we adopt
consists of collecting all the available record slots intd an avail list. The
avail list is created by stringing together all the deleted records to form a
linked list of deleted record spaces. |

In a fixed-length record file, any one record slot is just as usable as any
other slot; they are interchangeable. Consequently, the simplest way to
maintain the linked avail list is to treat it as a stack. Newly available
‘records are added to the avail list by pushing them onto the front of the
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list; record slots are remov=d frorn the avail list by popping them from the
front of the list.

Next, we consider the matter of deleting variable-length records. We
still form a linked list of available record slots, but with variable- length
records we need to be sure that a record slot is the right size to hold the
new record. Our initial definition of right size is simply in terms of being
big enough. Consequently, we need a procedure that can search through
the avail list until it finds a record slot that is big enough to hold the new
record. Given such a function and a complementary function that places
newly deleted records on the avail list,-we can implement a system that
deletes and reuses variable-length records.

We then consider the amount and nature of fragmentation that devel-
ops inside a file due to record deletion and reuse. Fragmentation can
happen internally if the space is lost because it is locked up inside a record.
We develop a procedure that breaks a single, large, variable-length record
slot into two or. more smaller ones, using exactly as much space as is need-
ed for a new record and leaving the remainder on the avail list. We see that,
although this could decrease the amount of wasted space, eventually the
remaining fragments are too small to be useful. When this happens, space
is lost to external fragmentation.

There are a number of things that one can do to minimize external
fragmentation. These include (1) compacting the file in a batch mode
when the level of fragmentation becomes excessive; (2) coalescing adjacent
record slots on the avail list to make larger, more generally useful slots; and
(3) adopting a placement strategy to select slots for reuse in a way that
minimizes fragmentation. Development of algorithms for coalescing holes
is left as part of the exercises at the end of this chapter. Placement strate-
gies need more careful discussion.

The placement strategy used up to this point by the variable-length
record deletion and reuse procedures is a first-fit strategy. This strategy-
is simple: If the record slot is big enough, use it. By keeping the avail list
in sorted order, it is easy to implement either of two other placement
strategies:

B Best fit, in which a new record is placed in the smallest slot that is still
big enough to hold it. This is an attractive strategy for variable-length
record files in which the fragmentation is internal. It involves more
overhead than other placement strategies.

M Worst fit, in which a new record is placed in the largest record slot
available. The idea is to have the leftover portion of the slot be as large
as possible.
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There is no firm rule for selecting a placement strategy; the best one can
do is use informed judgment based on a number of guidelines.

In the third major section of this chapter, we look at ways to find
things quickly in a file through the use of a key. In preceding chapters it
was not possible to access a record rapidly without knowing its physical
location or relative record number. Now we explore some of the problems
and opportunities associated with keyed direct access.

This chapter develops only one method of finding records by key—
binary searching. Binary searching requires O(log, ) comparisons to find
a record in a file with n records and hence is far superior to sequential
searching. Since binary searching works only on a sorted file, a sorting
procedure is an absolute necessity. The problem of sorting is complicated
by the fact that we are sorting files on secondary storage rather than
vectors in memory. We need to develop a sorting procedure that does not
require seeking back and forth over the file.

Three disadvantages are associated with sorting and binary searching
as developed up to this point:

B Binary searching is an enormous improvement over sequential search-
ing, but it still usually requires more than one or two accesses per
record. The need for fewer disk accesses becomes especially acute in
applications where a large number of records are t¢ be accessed by key.

m  The requirement that the file be kept in sorted order can be expen-
sive. For active files to which records are added frequently, the cost of
keeping the file in sorted order can outweigh the benefits of binary
searching.

M A memory sort can be used only on relatively small files. This limits
the size of the files that we could organize for binary searching, given
our sorting tools.

The third problem can be solved partially by developing more power-
ful sorting procedures, such as a keysort. This approach to sorting resem-
bles a memory sort in most respects, but does not use memory to hold the
entire file. Instead, it reads in only the keys from the records, sorts the keys,
and then uses the sorted list of keys to rearrange the records on secondary
storage so they are in sorted order.

The disadvantage to a keysort is that rearranging a file of n records
requires 7 random seeks out to the original file, which can take much
more time than a sequential reading of the same number of records. The
inquiry into keysorting is not wasted, however. Keysorting naturally leads
to the suggestion that we merely write the sorted list of keys off to
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secondary storage, setting aside the expensive matter of rearranging the
file. This list of keys, coupled with RRN tags pointing back to the original
records, is an example of an index. We look at mdexmg more closely in
Chapter 7.

This chapter closes with a discussion of another, potentially hidden,
cost of sorting and searching. Pinned records are records that are refer-
enced elsewhere (in the same file or in some other file) according to their
physical position in the file. Sorting and binary searching cannot be
applied to a file containing pinned records, since the sorting, by definition,
is likely to change the physical position of the record. Such a change caus-
es other references to this record to become inaccurate, creating the prob-
lem of dangling pointers.

KEY TERMS

Avail list. A list of the space, freed through record deletion, that is available
for holding new records. In the examples considered in this chapter,
this list of space took the form of a linked list of deleted records.

Best fit. A placement strategy for selecting the space on the avalil list used
to hold a new record. Best-fit placement finds the available record slot
that is closest in size to what is needed to hold the new record.

Binary search. A binary search algorithm locates a key in a sorted list by
repeatedly selecting the middle element of the list, dividing the list in
half, and forming a new, smaller list from the half that contains the
key. This process is continued until the selected element is the key that
is sought.

Coalescence. If two deleted, available records are physically adjacent, they

~ can be combined to form a single, larger available record space. This
process of combining smaller available spaces into a larger one is
known as coalescing holes. Coalescence is a way to counteract the prob-
lem of external fragmentation.

Compaction. A way of getting rid of all external fragmentation by sliding
all the records together so there is no space lost between them,

Data compression. Encoding information in a file in such a way as to take
up less space.

External fragmentation. A form of fragmentation that occurs in a file
when there is unused space outside or between individual records.
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First fit. A placement strategy for selecting a space from the avail list. First-
fit placement selects the first available record slot large enough to hold

the new record.

Fragmentation. The unused space within a file. The space can be locked
within individual records (internal fragmentation) or between individ-
ual records (external fragmentation).

Huffman code. A variable-length code in which the lengths of the codes
are based on their probability of occurrence.

Internal fragmentation. A form of fragmentation that occurs when space
is wasted in a file because it is locked up, unused, inside of records.
Fixed-length record structures often result in internal fragmentation.

Irreversible compression. Compression in which information is lost.

Keysort. A method of sorting a file that does not require holding the
_entire file in memory. Only the keys are held in memory, along with
pointers that tie these keys to the records in the file from which they
are extracted. The keys are sorted, and the sorted list of keys is used to
construct a new version of the file that has the records in sorted order.
The primary advantage of a keysort is that it requires less memory
than a memory sort. The disadvantage is that the process of construct-

ing a new file requires a lot of seeking for records.’

Linked list. A collection of nodes that have been organized into a.speciﬁc
sequence by means of references placed in each node that point to a
single successor node. The logical order of a linked list is often differ-
ent from the physical order of the nodes in the computer’s memory.

Pinned record. A record is pinned when there are other records or file
structures that refer to it by its physical location. It is pinned in the
sense that we are not free to alter the physical location of the record:
doing so destroys the validity of the physical references to the record.
These references become useless dangling pointers.

Placement strategy. As used in this chapter, a placement strategy is a
mechanism for selecting the space on the avail list that is to be used to
hold a new record added to the file. ‘

Redundancy reduction. Any form of compression that does not lose
information. .

Run-length encoding. A compression method in which runs of repeated
codes are replaced by a count of the number of repetitions of the code,
followed by the code that is repeated.
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Stack. A kind of list in which all additions and deletions take place at the
same end.

Variable-length encoding. Any encoding scheme'in which the codes are of
different lengths. More frequently occurring codes are given shorter
lengths than frequently occurring codes. Huffman encoding is an
example of variable-length encoding.

Worst fit. A placement strategy for selecting a space from the avail list.
Worst-fit placement selects the largest record slot, regardless of how
small the new record is. Insofar as this leaves the largest possible
record slot for reuse, worst fit can sometimes help minimize external
fragmentation.

FURTHER READINGS

A thorough tréatment of data compression techniques can be found in
Lynch (1985). The Lempel-Ziv method is described in Welch (1984).
Huffman encoding is covered in many data structures texts and also in
Knuth (1997).

Somewhat surprising, the literature concerning storage fragmentation
and reuse often does not consider these issues from the standpoint of
secondary storage. Typically, storage fragmentation, placement strategies,
coalescing of holes, and garbage collection are considered in the context of
reusing space within electronic random access memory. As you read this
literature with the idea of applying the concepts to secondary storage, it is
necessary to evaluate each strategy in light of the cost of accessing
secondary storage. Some strategies that are attractive when used in elec-
tronic memory are too expensive on secondary storage. _

Discussions about space management in memory are usually found
under the heading “Dynamic Storage Allocation.” Knuth (1997) provides
a good, though technical, overview of the fundamental concerns associat-
ed with dynamic storage allocation, including placement strategies.
Standish (1989) provides a more complete overview of the entire subject,
reviewing much of the important literature on the subject.

This chapter only touches the surface of issues relating to searching
and sorting files. A large part of the remainder of this text is devoted to
exploring the issues in more detail, so one source for further reading is the
present text. But there is much more that has been written about even the
relatively simple issues raised in this chapter. The classic reference on sort-
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ing and searching is Knuth (1998). Knuth provides an excellent discussion
of the limitations of keysort methods. He also develops a very complete

discussion of binary searching, clearly bringing out the analogy between
binary searching and the use of binary trees.

EXERCISES

1. In our discussion of compression, we show how we can compress the
“state name” field from 16 bits to 6 bits, yet we say that this gives us a
space savings of 50 percent, rather than 62.5 percent, as we would
expect. Why is this so? What other measures might we take to achieve
the full 62.5 percent savings?

2. What is redundancy reduction? Why is run-length encoding an exam-
ple of redundancy reduction?

3. What is the maximum run length that can be handled in the run-
length encoding described in the text? If much longer runs were
common, how might you handle them?

4, Encode each of the following using run-length encoding. Discuss the
results, and indicate how you might improve the algorithm.

2.010101010101010101040402020203030303 0405060607
b. 07 07 02 02 03 03 05 05 06 06 05 05 04 04
5. From Fig. 6.2, determine the Huffman code for the sequence “cdffe.”

6. What is the difference between internal and external fragmentation?
How can compaction affect the amount of internal fragmentation in a
file? What about external fragmentation?

7. In-place compaction purges deleted records from a file without creat-
ing a separate new file. What are the advantages and disadvantages of
in-place compaction compared withto compaction in which a sepa-
rate compacted file is created?

8. Why is a best-fit placement strategy a bad choice if there is significant
loss of space due to external fragmentation?

9. Conceive of an inexpensive way to keep a continuous record of the
amount of fragmentation in a file. This fragmentation measure could
be used to trigger the batch processes used to reduce fragmentation.

10. Suppose a file must remain sorted. How does this affect the range of

placement strategies available?
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11. Develop an algorithm in the style of Fig. 6.13 for performing in-place
compaction in a variable-length record file that contains size fields at
the start of each record. What operations must be added to class
RecordFile to support this compaction algorithm?

12. Consider the process of updating rather than deleting a variable-

 length record. Outline a procedure for handling such updating,
accounting for the update possibly resulting in either a longer or
shorter record.

13. In Section 6.3, we raised the question of where to keep the stack
containing the list of available records. Should it be a separate list,
perhaps maintained in a separate file, or should it be embedded with-
in the data file? We chose the latter organization for our implementa-
tion. What advantages and disadvantages are there to the second
approach? What other kinds of file structures can you think of to
facilitate various kinds of record deletion?

14. In some files, each record has a delete bit that is set to 1 to indicate
that the record is deleted. This bit can also be used to indicate that a
record is inactive rather than deleted. What is required to reactivate
an Inactive record? Could reactivation be done with the deletion
procedures we have used?

15. In this chapter we outlined three general approaches to the problem
of minimizing storage fragmentation: (a) implementation of a place-
ment strategy, (b) coalescing of holes, and (c) compaction. Assuming
an interactive programming environment, which of these strategies
would be used on the fly, as records are added and deleted? Which
strategies would be used as batch processes that could be run period-
ically?

16. Why do placement strategies make sense only with variable-length
record files?

17. Compare the average case performance of binary search with sequen-
tial search for records, assuming

a. That the records being sought are guaranteed to be in the file,

b. That half of the time the records being sought are not in the file,
and .

c. That half of the time the records being sought are not in the file
and that missing records must be inserted.

Make a table showing your performance comparisons for files of
5000, 10 000, 20 000, 50 000, and 100 000 records.
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18. If the records in Exercise 17 are blocked with 30 records per block,
how does this affect the performance of the binary and sequential
searches?

19. An internal sort works only with files small enough to fit in memory.
Some computing systems provide users who have an almost unlimit-
ed amount of memory with a memory management technique called
virtual memory. Discuss the use of internal sorting to sort large files
on systems that use virtual memory. Be sure to consider the disk
activity that is required to support virtual memory.

20. Our discussion of keysorting covers the considerable expense associ-
ated with the process of actually creating the sorted output file, given
the sorted vector of pointers to the canonical key nodes. The expense

revolves around two primary areas of difficulty:

a. Having to jump around in the input file, performing many seeks to
retrieve the records in their new, sorted order; and

b.- Writing the output file at the same time we are reading the input
file—jumping back and forth between the files can involve seeking.

Design an approach to this problem usingthat uses buffers to hold a
number of records and, therefore mitigating these difficulties. If your
solution is to be viable, obviously the buffers must use less memory
than a sort taking place entirely within electronic memory.

PROGRAMMING EXERCISES

Exercises 21-22 and 23-26 investigate the problem of implementing
record deletion and update. It is very appropriate to combine them into
one or two design and implementation projects.

21. Add method Delete to class BufferFile to support deletion of
fixed-length records. Add a field to the beginning of each record to
mark whether the record is active or deleted. Modify the Read and
Append methods to react to this field. In particular, Read should
either fail to read, if the current record is deleted, or read the next
active record. You may need to modify classes IOBuf fer and
FixedLengthRecord.

22. Extend the implementation of Exercise 21 to keep a list of deleted
records so that deleted records can be reused by the Append method.
Modify the Append method to place a new record into a deleted
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record, if one is available. You.may consider adding a field to the file
header to store the address of the head of the deleted list and using
space in each deleted record to store the address of the next deleted
record.

23. Repeat Exercise 21 for variable-length records.
24. Repeat Exercise 22 for variable-length records.

25. Add an Update method (or modifyWrite)toclassBufferFile
to support the correct replacement of the record in the current file
position with a new record. Your implementation of these methods
must properly handle the case in which where the size of the new
record i1s different from that of the record it replaces. In the case
where the new size is smaller, you may choose to make the necessary
changes to allow the new record to occupy the space of the old record,
even though not all bytes are used. Note that in this case, the record
size in the file, and the buffer size may be different.

26. Improve the variable-length record deletion procedure from Exercise
24 so that it checks to see if the newly deleted record is contiguous
with any other deleted records. If there is contiguity, coalesce the
records to make a single, larger available record slot. Some things to
consider as you address this problem are as follows:

a. The avail list does not keep records arranged in physical order; the
next record on the avail list is not necessarily the next deleted
record in the physical file. Is it possible to merge these two views of
the avail list, the physical order and the logical order, into a single
list? If you do this, what placement strategy will you use?

b. Physical adjacency can include records that precede as well as
follow the newly deleted record. How will you look for a deleted
record that precedes the newly deleted record?

c. Maintaining two views of the list of deleted records implies that as
you discover physically adjacent records you have to rearrange
links to update the nonphysical avail list. What additional compli-
cations would we encounter if we were combining the coalescing
of holes with a best-fit or worst-fit strategy?

27. Implement the BinarySearch function of Fig. 6.13 for class

Person using the canonical form of the combination of last’

name and first name as the key. Write a driver program to test the
function. Assume that the files are created with using class

RecordFile<Person> using a fixed-length buffer.
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28. Modify the BinarySearch function so that if the key is not in the
file, it returns the relative record number that the key would occupy
were it in the file. The function should also continue to indicate
whether the key was found ornot.

29. Write a driver that uses the new BinarySearch function devel-
oped in Exercise 28. If the sought-after key is in the file, the program
should display the record contents. If the key is not found, the
program should display a list of the keys that surround the position
that the key would have occupied. You should be able to move back-
ward or forward through this list at will. Given this modification, you
do not have to remember an entire key to retrieve it. If, for exémple,
you know that you are looking for someone named Smith, but cannot
remember the person’s first name, this new program lets you jump to
the area where all the Smith records are stored. You can then scroll
back and forth through the keys until you recognize the right first
name.

30. Write an internal sort that can sort a variable-length record file creat-
ed with-class BufferFile.

PROGRAMMING PROJECT

This is the fourth part of the programming project. We add methods to
delete records from files and update objects in files. This depends on the
solution to Exercises 21-25. This part of the programming project is
optional. Further projects do not depend on this part.

31. Use the Delete and Update dperations described in Exercises
21-25 to produce files of student records that support delete and
update.

32. Use the Delete and Update operations described in Exercises
21-25 to produce files of student records that support delete and
update.

The next part of the programming project 1s in Chapter 7.
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CHAPTER

Indexing

4

CHAPTER OBJECTIVES

*.
‘Q

v Introduce concepts of indexing that have broad applications in the
design of file systems.

¢ Introduce the use of a simple linear index to provide rapid access to
records in an entry-sequenced, variable-length record file.

++ Investigate the implications of the use of indexes for file
maintenance.

< Introduce the template features of C++.
«% Discuss the object-oriented approach to indexed sequential files.

«+ Describe the use of indexes to provide access to records by more
than one key.

«» Introduce the idea of an inverted list, illustrating Boolean operations
on lists.

¢ Discuss the issue of when to bind an index key to an address in the
data file.

s+ Introduce and investigate the implications of self-indexing files.
g p g
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CHAPTER OUTLINE

7.1 Whatls an Index?

7.2 ASimple Index for Entry-Sequenced Files

7.3 Using Template Classes in C++ for Object 1/0

7.4 Object-Oriented Support for Indexed, Entry-Sequenced Files
of Data Objects ‘
7.4.1 Operations Required to Maintain an Indexed File
7.4.2 Class TextindexedFile '
7.4.3 Enhancements to Class TextIndexedFile

7.5 IndexesThat Are Too Large to Hold in Memory

7.6 Indexing to Provide Access by Multiple Keys

7.7 Retrieval Using Combinations of Secondary Keys

7.8 Improving the Secondary Index Structure: Inverted Lists
7.8.1 A First Attempt at a Solution
7.8.2 A Better Solution: Linking the List of References

7.9 Selective Indexes ' |

7.10 Binding

7.1 What s an Index?

The last few pages of many books contain an index. Such an index is a
table containing a list of topics (keys) and numbers of pages where the
topics can be found (reference fields).

All indexes are based on the same basic concept—Xkeys and reference
fields. The types of indexes we examine in this chapter are called simple
indexes because they are represented using simple arrays of structures that
contain the keys and reference fields. In later chapters we look at indexing
schemes that use more complex data structures, especially trees. In this
chapter, however, we want to emphasize that indexes can be very simple
and still provide powerful tools for file processing.

The index to a book provides a way to find a topic quickly. If you have
ever had to use a book that doesn’t have a good index, you already know.
that an index is a desirable alternative to'scanning through the book.
sequentially to find a topic. In general, indexing is another way to handle
the problem we explored in Chapter 6: an index is a way to find things.

Consider what would happen if we tried to apply the previous chap-
ter’s methods, sorting and binary searching, to the problem of finding
things in a book. Rearranging all the wqrds in the book so they were in
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alphabetical order certainly would make finding any particular term easi-
er but would obviously have disastrous effects on the meaning of the book.
In a sense, the terms in the book are pinned records. This is an absurd
example, but it clearly underscores the power and importance of the index
as a conceptual tool. Since it works by indirection, an index lets you impose
order on a file without rearranging the file. This not only keeps us from
disturbing pinned records, but also makes matters such as record addition
much less expensive than they are with a sorted file.

' Take, as another example, the problem of finding books in a library.
We want to be able to locate books by a specific author, title, or subject
area. One way of achieving this is to have three copies of each book and
three separate library buildings. All of the books in one building would be
sorted by author’s name, another building would contain books arranged
by title, and the third would have them ordered by subject. Again, this is an
absurd example, but one that underscores another important advantage of
indexing. Instead of using multiple arrangements, a library uses a card
catalog. The card catalog is actually a set of three indexes, each using a
different key field, and all of them using the same catalog number as a
reference field. Another use of indexing, then, is to provide multiple access
paths to a file. '

We also find that indexing gives us keyed access to variable-length
record files. Let’s begin our discussion of indexing by exploring this prob-
lem of access to variable-length records and the simple solution that
indexing provides.

One final note: the example data objects used in the following sections
are musical recordings. This may cause some tonfusion as we use the term
record to refer to an object in a file, and recording to refer to a data object.
We will see how to get information about recordings by finding records in
files. We’ve tried hard to make a distinction between these two terms. The
distinction is between the file system view of the elements that make up
files (records), and the user’s or application’s view of the objects that are
being manipulated (recordings).

7.2 A Simple Index for Entry-Sequenced Files

Suppose we own an extensive collection of musical recordings, and we
want to keep track of the collection through the use of computer files. For
each recording, we keep the information shown in Fig. 7.1, Appendix G
includes files recordng.h and recordng.cpp that define class
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Identification number

Title

Composer or composers
Artist or artists

Label (publisher)

Figure 7.1 Contents of a data

record.

Recording.. Program makerec.cpp in Appendix G uses classes.
DelimFieldBuffer and BufferFile to create the file of
Recording objects displayed in Fig. 7.2. The first column of the table
contains the record addresses associated with each record in the file.
_Suppose we formed a primary key for these recordings consisting of
the initials for the company label combined with the recording’s ID
number. This will make a good primary key as it should provide a unique
key for each entry in the file. We call this key the Label ID. The canonical
form for the Label ID consists of the uppercase form of the Label field
followed immediately by the ASCII representation of the ID number. For

example,

LON2312
Record ID
address  Label number Title Composer(s) Artist(s)
17 LON 2312 .Romeo and Juliet ~ Prokofiev Maazel
62 RCA 2626 - Quartet in Beethoven Julliard

: C Sharp Minor
117 WAR 23699 Touchstone Corea Corea
152 ANG ~ 3795 Symphony No. 9 Beethoven “Giulini
196 COL 38358 Nebraska Springsteen Springsteen
241 DG 18807 Symphony No. 9 Beethoven Karajan
285 MER 75016 Coq d’Or Suite Rimsky-Korsakov ~ Leinsdorf
338 COL 31809 Symphony No. 9 Dvorak " Bernstein
382 DG 139201  Violin Coﬁcerto Beethoven Ferras
427 FF 245 Good News Sweet Honey Sweet Honey
in the Rock - in the Rock

Figure 7.2 Contents of sample recording file.
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How could we organize the file to provide rapid keyed access to indi-
vidual records? Could we sort the file and then use binary searching?
Unfortunately, binary searching depends on being able to jump to the
middle record in the file. This is not possible in a variable-length record
file because direct access by relative record number is not possible; there is
no way to know where the middle record is in any group of records.

An alterriative to sorting is to construct an index for the file. Figure 7.3
illustrates such an index. On the right is the data file containing informa-
tion about our collection of recordings, with one variable-length data
record per recording. Only four fields are shown (Label, ID number, Title,
and Composer), but it is easy to imagine the other information filling out
each record.

On the left is the index, each entry of which contains a key corre-
sponding to a certain Label ID in the data file. Each key is associated with
a reference field giving the address of the first byte of the corresponding
data record. ANG3795, for example, corresponds to the reference field
containing the number 152, meaning that the record containing full infor-
mation on the recording with Label ID ANG3795 can be found starting at
byte number 152 in the record file.

Index Recording file
Reference Address
Key field of record Actual data record

ANG3795 152 17 | LON 123121 Romeo and Juliet | Prokofiev | ...
COL31809 338 62 | RCA 12626l Quartet in C Sharp Minor | Beethoven | ...
COL38358 196 117 | WAR 123699 | Touchstone | Corea | ...
DG139201 382 152 | ANG 3795 Symphony No. 9| Beethoven | ...
DG18807 241 196 | COL138358 1 Nebraska | Springsteen | ...

| FF245 427 241 | DG 118807 | Symphony No. 9 | Beethoven | ..
LON2312 17 285 | MER 175016 | Coq d’Or Suite | Rimsky-Korsakov | ...
MER75016 285 - 338 | COLI318091 Symphony No. 9 | Dvorak | ...
RCA2626 62 382 | DG 1139201 | Violin Concerto | Beethoven | ...
WAR23699 117 427 | FF 12451 Good News ISweet Honey in the Rock | ...

Figure 7.3 Index of the sample recording file.
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The structure of the index object is very simple. It is a list of pairs of
fields: a key field and a byte-offset field. There is one entry in the index for
each record in the data file. Class Text Index of Fig. 7.4 encapsulates the
index data and index operations. The full implementation of class
TextIndex is given in files textind.h and textind.cpp of
Appendix G. An index is implemented with arrays to hold the keys and
record references. Each object is declared with a maximum number of
entries and can be used for unique keys (no duplicates) and for nonunique
keys (duplicates allowed). The methods Insert and Search do most of
the work of indexing. The protected method Find locates the element key
and returns its index. If the key is not in the index, Find returns -1. This
method is used by Insert, Remove, and Search.

A C++ feature used in this class is the destructor, method
~TextIndex. This method is automatically called whenever a
TextIndex object is deleted, either because of the return from a function
that includes the declaration of a Text Index object or because of explic-
it deletion of an object created dynamically with new. The role of the
destructor is to clean up the object, especially when it has dynamically creat-
ed data members. In the case of class Text Index, the protected members
Keys and RecAddrs are created dynamically by the constructor and
should be deleted by the destructor to avoid an obvious memory leak:

TextIndex: :~TextIndex () {delete Keys; delete RecAddrs;}

class TextIndex

{public:
TextIndex (int maxKeys
int Insert (const char

100, int unique = 1);
key, int. recAddr); // add to index
int Remove {(const char key); // remove key from index
int Search (const char key) const;
// search for key, return recaddr
void Print (ostream &) const;
protected: .
int MaxKeys; // maximum number of entries
int NumKeys; // actual number of entries
char * * Keys; // array of key values
int, * RecAddrs; // array of record references
int Find (const char * key) const;
int Init (int maxKeys, int unique); .
int Unique; // if true, each key must be unique in the index

*  * ||

X

}i

Figure 7.4 -Class TextIndex.
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Note also that the index is sorted, whereas the data file is not.
Consequently, although Label ID ANG3795 is the first entry in the index,
it is not necessarily the first entry in the data file. In fact, the data file is
entry sequenced, which means that the records occur in the order they are
entered into the file. As we will see, the use of an entry-sequenced file can
make record addition and file maintenance much simpler than the case
with a data file that is kept sorted by some key.

Using the index to provide access to the data file by Label ID is a
simple matter. The code to use our classes to retrieve a single record by key
from a recording file is shown in the function RetrieveRecording:

int RetrieveRecording (Recording & recording, char * key,
TextIndex & RecordinglIndex, BufferFile & RecordingFile)
// read and unpack the recording, return TRUE if succeeds
{ int result;
result = RecordingFile . Read (RecordingIndex.Search(key));
if (result == -1) return FALSE;
result = recording.Unpacx (RecordingFile.GetBuffer());
return ‘result;

With an open file and an index to the file in memory,
RetrieveRecording puts together the index search, file read, and
buffer unpack operations into a single function.

Keeping the index in memory as the program runs also lets us find
records by key more quickly with an indexed file than with a sorted one
since the binary searching can be performed entirely in memory. Once the
byte offset for the data record is found, a single seek is all that is required
to retrieve the record. The use of a sorted data file, on the other hand,
requires a seek for each step of the binary search.

7.3 Using Template Classes in C++ for Object 1/0

A good object-oriented design for a file of objects should provide opera-
tions to read and write data objects without having to go through the inter-

mediate step of packing and unpacking buffers. In Chapter 4, we supported
I/O for data with the buffer classes and class Buf ferFile. In order to

provide I/O for objects, we added Pack and Unpack methods to our
Person object class. This approach gives us the required functionality but
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stops short of providing a read operation whose arguments are a file and a
data object. We want a class RecordFile that makes the following code
possible: '

Person p; RecordFile pFile; "pFile . Read (p);
Recording r; RecordFile rFile; rFile . Read (r);

The major difficulty with defining class RecordFile is making it
possible to support files for different record types without having to modi-
fy the class. Is it possible that class RecordFile can support read and
unpack for a Person and a Recording without change? Certainly the
objects are different; they have different unpacking methods. Virtual func-
tion calls do not help because Person and Recording do not have a
common base type. It seems that class RecordFile needs to be para-
meterized so different versions of the class can be constructed for different
types of data objects.

It i§ the C++ template feature that supports parameterized function
and class definitions, and RecordFile is a template class. As shown in
Fig. 7.5, class RecordFile includes the parameter RecType, which is
used as the argument type for the read and write methods of the class.
Class RecordFile is derived from Buf ferFile, which provides most
of the functionality. The constructor for RecordFile is given inline and’
simply calls the Buf ferFi le constructor.

The definitions of pFile and rEile just given are not consistent
with use of a template class. The actual declarations and calls are:

RecordFile <Person> pFile; pFile . Read {b);
RecordFile <Recording> rFile; rFile . Read (p);

template <class RecType>
class RecordFile: public BufferFile

{public:
int Read (RecTypel & record, int recaddr = -1); .
int Write (const RecType & record, int recaddr = -1); i

int Append (const RecType & record);
RecordFile (IOBuffer & buffer): BufferFile (buffer) {}
)i
// The template parameter RecType must have the following methods
// 1nt Pack (IOBuffer &); pack record into buffer
// int Unpack (IOBuffer &); unpack record from buffer

Figure 7.5 Template Class RecordFile,
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Object rFile is of type RecordFile<Recording>, which is an
instance of class RecordFile. The call to rFile.Read looks the same
as the call to pFile.Read, and the two methods share the same source
code, but the implementations of the classes are somewhat different. In
particular, the Pack and Unpack methods of class Recording are
used for methods of object rFile, but Person methods are used for
pFile.

The implementation of method Read of class RecordFile is
given in Fig. 7.6; the implementation of all the methods are in file
recfile.h in Appendix G. The method makes use of the Read
method of BufferFile and the Unpack method of the parame-
ter RecType. A new version of RecordFile: :Read is created
by the C++ compiler for each instance of RecordFile. The call
rFile.Read(r) «calls Recording::Unpack, and the call
pFile.Read (p) calls Person: :Unpack.

Class RecordFile accomplishes the goal of providing object-
oriented I/O for data. Adding I/O to an existing class (class Recoxding,.
for example) requires three steps: '

~ Add methods Pack and Unpack to class Recording.
2. Create a buffer objéct to use in the I/O:
DelimFieldBuffer Buffer;
3. Declare an object of type RecordFile<Recording>:
RecordFile<Recording> rFile (Buffer);

Now we can directly open a file and read and write objects of class
Recording:

Recording rl, r2;

rFile . Open ("myfile");
rFile . Read (rl);

rFile . Write (r2);

7.4 = Object-Oriented Support for Indexed,
Entry-Sequenced Files of Data Objects

Continuing with our object-oriented approach to I/0, we will add indexed
access to the sequential access provided by class RecordfFile. A new
class, IndexedFile, extends RecordFile with Update and
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template <class RecType> |
int RecordFile<RecTypes>::Read (RecType & record, int recaddr)
{

int writeAddr, result;

writeAddr = BufferFile::Read (recaddr);

if (!writeAddr) return -1;

result = record . Unpack (Buffer); //RecType::Unpack

if (!result) return -1;

return writeAddr;

}

Figure 7.6 Implementation of RecordFile:Read.

Append methods that maintain a primary key index of the data file and a
Read method that supports access to object by key.

So far, we have classes Text Index, which supports maintenance and
search by primary key, and RecordFile, which supports create, open,
and close for files as well as read and write for data objects. We have
already seen how to create a primary key index for a data file as a memory
object. There are still two issues to address:

B How to make a persistent index of a file. That is, how to store the index
in a file when it is not in memory.

B How to guarantee that the index is an accurate reflection of the
contents of the data file.

7.4.1 Operations Required to Maintain an Indexed File

The support and maintenance of an entry-sequenced file coupled with a
simple index requires the operations to handle a number of different
tasks. Besides the Ret rieveRecording function described previous-
ly, other operations used to find things by means of the index include the
following:

M Create the original émpty index and data files,
Load the index file into memory before using it,
Rewrite the index file from memory after using it,

|

|

B Add data records to the data file,
M Delete records from the data file,
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W Update records in the data file, and
B Update the index to reflect changeé} in the data file.

A great benefit of our object-oriented approach is that:everything we need
to implement these operations is already available in the methods of our
classes. We just need to glue them together. We begin by identifying the
methods required for each of these operations. We continue to use class
Recording as our example data class.

Creating the Files

Two files must be created: a data file to hold the data objects and an index
file to hold the primary key index. Both the index file and the data file are
created as empty files, with header records and nothing else. This can be
accomplished quite easily using the Create method implemented in
class Buf ferFile. The data file is represented by an .object of class
RecordFile<Recording>. The index file is a BufferFile of
fixed-size records, as described below. As an example of the manipulation
of index files, program makeind. cpp of Appendix G creates an index
file friom a file of recordings.

|

Loading the Index into Memory

Both loading (reading) and storing (writing) objects is supported in the
TOBuf fer classes. With these buffers, we can make files of index objects.
For this example, we are storing the full index in a single object, so our
index file needs only one record. As our use of indexes develops in the rest
of the book, we will make extensive use of multiple record index files. .
We need to choose a particular buffer class to use for our index
file. We define class TextIndexBuffer as a derived class of
FixedFieldBuffer to support reading and writing of index objects.
TextIndexBuffer includes pack and unpack methods for index
objects. This style is an alternativelto adding these methods to the data
class, which in this case is Text IndexBuf fer. The full implementation
vof class TextIndexBuffer is in files tindbuff.h and
tindbuff.cpp in Appendix G.

Rewriting the Index File from Memory

As part of the Close operation on an IndexedFile, the index in
memory needs to be written to the index file. This is-accomplished using
the Rewind and Write operations of class Buf ferFile.
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It is important to consider what happens if this rewriting of the index
does not take place or if it takes place incompletely. P/rograms do not
always run to completion. A program designer needs to guard against
power failures, the operator turning the machine off at the wrong time,
and other such disasters. One of the dangers associated with reading an
index into memory and then writing it out when the program is over is
that the copy of the index on disk will be out of date and incorrect if the
program is interrupted. It is imperative that a program contain at least the
following two safeguards to protect against this kind of error:

B There should be a mechanism that permits the program to know
when the index is out of date. One possibility involves setting a status
flag as soon as the copy of the index in memory is changed. This status
flag could be written into the header record of the index file on disk as
soon as the index is read into memory and subsequently cleared when
the index is rewritten. All programs could check the status flag before
using an index. If the flag is found to be set, the program would know
that the index is out of date.

m Ifa program detects that an index is out of date, the program must
have access to a procedure that reconstructs the index from the data
file. This should happen automatically and take place before any
attempt is made to use the index. 5 |

Record Addition

Adding a new record to the data file requires that we also add
an entry to the index. Adding to the data file itself wuses
RecordFile<Recording>: :Write. The record key and the result-
ing record reference are then inserted into the index record using
TextIndex.Insert.

- Since the index is kept in sorted order by key, insertion of the new
index entry probably requires some rearrangement of the index. In a way,
the situation is similar to the one we face as we add records to a sorted
data file. We have to shift or slide all the entries with keys that come in
order after the key of the record we are inserting. The shifting opens up a
space for the new entry. The big difference between the work we have to
do on the index entries and the work required for a sorted data file is that
the index is contained wholly in memory. All of the index rearrangement
can be done without any file access. The implementation of
TextIndex: :Insert is given in file textind. cpp of Appendix G.
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Record Deletion

In Chapter 6 we deéscribed a number of approaches to deleting records in
variable-length record files that allow for the reuse of the space occupied
by these records. These approaches are completely viable for our data file
because, unlike a sorted data file, the records in this file need not be moved
around to maintain an ordering on the file. This is one of the great advan-
tages of an indexed file organization: we have rapid access to individual
records by key without disturbing pinned records. In fact, the indexing
itself pins all the records. The implementation of data record deletion is
not included in this text but has been left as exercises.

Of course, when we delete a record from the data file, we
must also delete the corresponding entry from our index, using
TextIndex: : Delete. Since the index is in memory during program
execution, deleting the index entry and shifting the other entries to close
up the space may not be an overly expensive operation. Alternatively, we
could simply mark the index entry as deleted, just as we might mark the
corresponding data record. Again, see textind. cpp for the implemen-
tation of Text Index: :Delete.

Record Updating

Record updating falls into two categories:

B The update changes the value of the key field. This kind of update can
bring about a reordering of the index file as well as the data file.
Conceptually, the easiest way to think of this kind of change is as a
deletion followed by an insertion. This delete/insert approach can be
implemented while still providing the program user with the view that
he or she is merely changing a record..

B The update does not affect the key field. This second kind. of update
does not require rearrangement of the index file but may well involve
reordering of the data file. If the record size is unchanged or decreased
by the update, the record can be written directly into its old space. But
if the record size is increased by the update, a new slot for the record
will have to be found. In the latter case the starting address of the
rewritten record must replace the old address in the corresponding
RecAddrs element. Again, the delete/insert approach to maintaining
the index can be used. It is also possible to implement an operation
simply to change the RecAddrs member.
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7.4.2 Class TextindexedFile -

Class Text IndexedFile is defined in Fig. 7.7 and in file indfile.h
in Appendix G. It supports files of data objects with primary keys that are
strings. As expected, there are methods: Create, Open, Close, Read
(sequential and indexed), Append, and Update. In order to ensure the
correlation between the index and the data file, the members that repre-
sent the index in memory (Index), the index file (IndexFile), and the
data file (DataFile) are protected members. The only access to these
members for the user is through the methods. Text IndexedFileisa
template class so that data objects of arbitrary classes can be used.

template <class RecType>
class TextIndexedFile :
{public: .
int Read (RecType & record); // read next record
int Read (char * key, RecType & record); // read by key
int Append {const RecType & record); '
int Update (char * oldKey, const RecType & record);
int Create (char * name, 1nt mode=ios::inlios::out);
int Open (char * name, int mode:ios::inlibs::out);
int Close ();
TextIndexedFile (IOBuffer & buffer,
int keySize, int maxKeys = 100);
~TextIndexedFile (); // close and delete.
protected: |
Text Index Index;
BufferFile IndexFile;
TextIndexBuffer IndexBuffer;
RecordFile<RecType> DataFile;
char * FileName; // base file name for file
int SetFileName(chaf * fileName,
char *& dataFileName, char *& indexFileName) ;
}i
// The template parameter RecType must have the following method
/7 char * Key/()

Figure 7.7 Class TextIndexedFile ‘
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|
As an example, consider Text IndexedFile: :Append:

template <class RecType>
int TextIndexedFile<RecTypex>::Append (const RecType &
record)

{
char * key = record.Key();
int ref = Index.Search(key);
if (ref !'= -1) // key already in file
return -1;
ref = DataFile . Append(reéord);
int result = Index . Insert (key, ref);
return ref; '

}

The Key method is used to extract the key value from the record. A search
of the index is used to determine if the key is already in thé file. If not, the
record is appended to the data file, and the resulting address is inserted
into the index along with the key.

7.4.3 Enhancements to Class TextindexedFile
Other Types of Keys

Even though class Text IndexedFile is parameterized to support a
variety of data object classes, it restricts the key type to string (char *).
It is not hard to produce a template class SimpleIndex with a parame-
ter for the key type. Often, changing a class to a template class requires
adding a template parameter and then simply replacing a class name with
the parameter name—in this case, replacing char * by keytype.
However, the peculiar way that strings are implemented in C and C++
makes this impossible. Any array in C and C++ is represented by a point-
er, and equality and assignment operators are defined accordingly. Since a
string/is an array, string assignment is merely pointer assignment. If you
mvthhenmﬂmdsotd%sTextIndex you will see that strcmp is
used to test for key equality, and st rcpy is used for key assignment. In
order to produce a template index class, the dependencies on char *
must be removed. The template class SimpleIndex is included in files
simpind.hand simpind.tc in Appendix G. It is used as the basis
for the advanced indexing strategies of Chapter 9.

In C++, assignment and other operators can be overloaded only for
class objects, not for predefined types like int and char *. In order to
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use a template index class for string keys, a class St ring is needed. Files
strclass.hand strclass.cpp of Appendix G have the definition
and implementation of this class, which was first mentioned in Chapter 1.
Included in this class are a copy constructor, a constructor with a char *
parameter, overloaded assignment and comparison operators, and a
conversion operator to char * (operator char*). The following
code shows how String objects and C strings become interchangeable:

String strObj(10); char * strArray([1ll); // strings of <=10 chars
strObj = strArray; // uses String::String(char *)
strArray = strObj; // uses String::operator char * ();

The first assignment is implemented by constructing a temporary
String object using the char * constructor and then doing String
assignment. In this way the constructor acts like a conversion operator to
class String. The second assignment uses the conversion operator from
class String to convert the String object to a simple C string:

Data Object Class Hierarchies

So far, we have required that every object stored in a RecordFile must
be of the same type. Can the I/O classes support objects that are of a vari-
ety of types but all from the same type hierarchy? If the type hierarchy.
supports virtual pack methods, the Append and Update will correctly
add records to indexed files. That is, if BaseClass supports Pack,
Unpack, and Key, the class Text IndexedFile<BaseClass> will
correctly output objects derived from BaseClass, each with its appro-
priate Pack method.

What about Read? The problem here is that in‘a virtual function call,,
it Is the type of the calling object that determines which method to call.
For example, in this code it is the type of the object referenced by Obj
(*Obj) that determines which Pack and Unpack are called:

BaseClass * Obj = new Subclassl;
Obj->Pack (Buffer); Obj->Unpack(Buffer); // virtual function calls

-In the case of the Pack, this is correct. Information from *0bj, of type
Subclassl, is transferred to Buffer. However, in the case of
Unpack, it is a transfer of information from Buffer to *Obj. If
Buffer has been filled from an object of class Subclass2 or
BaseClass, the unpacking cannot be done correctly. In essence, it is the
source of information (contents of the buffer) that determines the type of
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the object in the Unpack, not the memory object. The virtual function
call does not work in this case. An object from a file can be read only into
a memory object of the correct type.

A reliable solution to the read problem—that is, one that does not
attempt to read a record into an object of the wrong type—is not easy to
implement in C++. It is not difficult to add a type identifier to each data
record. We can add record headers in much the same fashion as file head-
ers. However, the read operation must be able to determine reliably the
type of the target object. There is no support in C++ for guaranteeing
accurate type identification of memory objects.

Multirecord Index Files

Class Text IndexedFile requires that the entire index fit in a single
record. The maximum number of records in the file is fixed when the file
is created. This is obviously an oversimplification of the index structure
and a restriction on its utility. Is it worth the effort to extend the class so
that this restriction is eliminated?

It would be easy to modify class Text IndexedFile to allow the
index to be an array of TextIndex objects. We could add protected
methods Insert, Delete, and Search to manipulate the arrays of
index objects. None of this is much trouble. However, as we will see.in the
following section and in Chapter 9, a sorted array of index objects, each
with keys less than the next, does not provide a very satisfactory index for
large files. For files that are restricted to a small number of records, class
TextIndexedFile will work quite well as it is. |

|

Optimization of Operations

The most obvious optimization is to use binary search in the Find
method, which is used by Search, Insert, and Remove. Thisis very
reasonable and is left as an exercise.

Another source of some improvement is to avoid writing the index
record back to the index file when it has not been changed. The standard
way to do this is to add a flag to the index object to signal when it has been
changed. This flag is set to false when the record is initially loaded into
memory and set to trye whenever the index record is modified, that is, by
the Insert.and Remove methods. The Close method can check this
flag and write the record only when necessary. This optimization gains
importance when manipulating multirecord index files,
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7.5 Indexes That Are Too Large to Hold in Memory

The methods we have been discussing—and, unfortunately, many of the
advantages associated with them—are tied to the assumption that the
index is small enough to be loaded into memory in its entirety. If the index
is too large for this approach to be practical, then index access and main-
tenance must be done on secondary storage. With simple indexes of the
kind we have been discussing, accessing the index on a disk has the follow-
ing disadvantages:

B Binary searching of the index requires several seeks instead of taking
place at memory speeds. Binary searching of an index on secondary
storage is not substantially faster than the binary searching of a sorted
file.

B Index rearrangement due to record addition or deletion requires shift-
ing or sorting records on secondary storage. This is literally millions of
times more expensive than performing these same operations in
memory. '

Although these problems are no worse than those associated with any
file that is sorted by key, they are severe enough to warrant the considera-
tion of alternatives. Any time a simple index is too large to hold in memo-
1y, you should consider using |

M A hashed organization if access speed is a top priority; or

B A tree-structured, or multilevel, index, such as a B-tree, if you need the
flexibility of both key ‘1 access and ordered, sequential access.

These alternative file organizations are discussed at length in the chap-
ters that follow. But, before writing off the use of simple indexes on
secondary storage altogether, we should note that they provide some
important advantages over the use of a data file sorted by key even if the
index cannot be held in memory:

M A simple indeéx makes it possible to use a binary search to obtain keyed
access to a record in a variable-length record file. The index provides
the service of associating a fixed-length and therefore binary-search-
able record with each variable-length data record.

m  If the index entries are substantially smaller than the data file records,
sorting and maintaining the index can be less expensive than sorting
and maintaining the data file. There is simply less information to
move around in the index file.
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m If there are pinned records in the data file, the use of an index lets us
rearrange the keys without moving the data records.

There is another advantage associated with the use of simple indexes,
one that we have not yet discussed. By itself, it can be reason enough to use
simple indexes even if they do not fit into memory. Remember the analo-

gy between an index and a library card catalog? The card catalog provides
multiple views or arrangements of the llbr1rys collection, even though
there is only one set of books arranged in a single order. Similarly, we can
use multiple indexes to provide multiple views of a data file.

7.6 Indexing to Provide Access by Multiple Keys

One question that might reasonably arise at this' point is: All this indexing
business is pretty interesting, but who would ever want to find a recording
using a key such as DG188072 What I want is a recording of Beethoven’s
Symphony No. 9.

Let’s return to our analogy of our index as a library card catalog.
Suppose we think of our primary key, the Label ID, as a kind of catalog
number. Like the catalog number assigned to a book, we have taken care to
make our Label ID unique. Now in a library it is very unusual to begin by
looking for a book with a particular catalog number (for example, “I am
looking for a book with a catalog number QA331T5 1959.”). Instead, one
generally begins by looking for a book on a particular subject, with a
particular title, or by a particular author (for example, “I am looking for a
book on functions,” or “I am looking for The Theory of Functions by
Titchmarsh.”). Given the subject, author, or title, one looks in the card
catalog to find the primary key, the catalog number,

Similarly, we could build a catalog for our record collection consisting
of entries for album title, composer, and artist. These fields are secondary
key fields. Just as the library catalog relates an author entry (secondary key)
to a card catalog number (primary key), so can we build an index file that
relates Composer to Label ID, as illustrated in Fig. 7.8.

Along with the similarities, there is an important difference between
this kind of secondary key index and the card catalog in a library..In a
library, once you have the catalog number you can usually go directly to
the stacks to find the book since the books are arranged in order by cata-
log number. In other words, the books are sorted by primary key. The
actual data records in our file, on the other hand, are entry sequenced.
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Composer index

Secondary key Primary key ls:igure 7.8 .
econdary key index

BEETHOVEN ANGS705 organized by composer.

BEETHOVEN _ DG139201

BEETHOVEN DG18807

BEETHOVEN } RCA2626

COREA  WAR23699

DVORAK GOL31809

PROKOFIEV "~ LONZ2312

RIMSKY-KORSAKOV MER75016

SPRINGSTEEN COL38358

SWEET HONEY IN THE R FF245

Consequently, after consulting the composer index to find the Label ID,
you must consult one additional index, our primary key index, to find the
actual byte offset of the record that has this particular Label ID. Figure 7.9
shows part of the class definition for a secondary key index and a read
function that searches a secondary key index for the primary key. It then.
uses the primary key to read an IndexedFile.

Clearly it is possible to relate secondary key references (for example,
Beethoven) directly to a byte offset (241) rather than to a primary key
(DG18807). However, there are excellent reasons for postponing this bind-
ing of a secondary key to a specific address for as long as possible. These
reasons become clear as we discuss the way that fundamental file opera-
tions such as record deletion and updating are affected by the use of
secondary indexes. |

Record Addition

When a secondary index is present, adding a record to the file means
adding an entry to the secondary index. The cost of doing this is very simi-
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class SecondaryIndex
// An index in which the record reference is a string
{public:

int Insert (char * secondaryKey, char * primaryKey);

char * Search (char * secondaryKey); // return primary key

}i

template <class RecType>

int SearchOnSecondary (char * composer, SecondaryIndex index,
IndexedFile<RecType> dataFile, RecType & rec)

char * Key = index.Search (composer);
// use primary key index to read file
return dataFile . Read (Key, rec);

}

Figure 7.9 SearchOnSecOndér’y:an algorithm to retrieve a single record from a recording
file through a secondary key index.

lar to the cost of adding an entry to the primary index: either records must
be shifted, or a vector of pointers to structures needs to be rearranged. As
with primary indexes, the cost of doing this decreases greatly if the
secondary index can be read into memory and changed there.

Note that the key field in the secondary index file is stored in canoni-
cal form (all of the composers’ names are capitalized), since this is the
form we want to use when we are consulting the secondary index. If we
want to print out the name in normal, mixed upper- and lowercase form,
we can pick up that form from the original data file. Also note that the
secondary keys are held to a fixed length, which means that sometimes
they are truncated. The definition of the canonical form should take this
length restriction into account if searching the index is to work properly.

One important difference between a secondary index and a primary
index is that a secondary index can contain duplicate keys. In the sample
index illustrated in Fig. 7.10, there are four records with the key
BEETHOVEN. Duplicate keys are, of course, grouped together. Within
this group, they should be ordered according to the values of the reference
fields. In this example, that means placing them in order by Label ID. The

' reasons for this second level of ordering become clear a little later, as we
discuss retrieval based on combinations of two or more secondary keys.
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Title index

) Figure 7.10
Secondary key Primary key — secondary key index
COQ D'OR SUITE MER75016 ;I?ea”'zed by recording
GOOD NEWS FF245

NEBRASKA COL38358

QUARTET IN C SHARP M RCA2626

ROMEO AND JULIET LON2312

SYMPHONY NO. 9 ANG3795

SYMPHONY NO. 9 ~ COL31809

SYMPHONY NO. 9 DG18807

TOUCHSTONE WAR23699

VIOLIN CONCERTO DG139201°
Record Deletion

Deleting a record usually implies removing all references to that record in
the file system. So removing a record from the data file would mean
removing not only the corresponding entry in the primary index but also
all of the entries in the secondary indexes that refer to this primary index
entry. The problem with this is that secondary indexes, like the primary
index, are maintained in sorted order by key. Consequently, deleting an
entry would involve rearranging the remaining entries to close up the
space left open by deletion.

This delete-all-references approach would indeed be advisable if the
secondary index referenced the data file directly. If we did not delete the
secondary key references and if the secondary keys were associated with
actual byte offsets in the data file, it could be difficult to tell when these
references were no longer valid. This is another instance of the pinned-
record problem. The reference fields associated with the secondary keys
would be pointing to byte offsets that could, after deletion and subsequent
space reuse in the data file, be associated with different data records.
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But we have carefully avoided referencing actual addresses in the
secondary key index. After we search to find the secondary key, we do
another search, this time on primary key. Since the primary index does
reflect changes due to record deletion, a search for the primary key of a
record that has been deleted will fail, returning a record-not-found condi-
tion. In a sense, the updated primary key index acts as a kind of final
check, protecting us from trying to retrieve records that no longer exist.

Consequently, one option that is open to us when we delete a record
from the data file is to modify and rearrange only the primary key index. We
‘could safely leave intact the references to the deleted record that exist in the
‘secondary key indexes. Searches starting from a secondary key index that
lead to a deleted record are caught when we consult the primary key index.

If there are a number of secondary key indexes, the savings that results
from not having to rearrange all of these indexes when a record is deleted
can be substantial. This is especially important when the secondary key
indexes are kept on secondary storage. It is also important with an inter-
active system in which the user is waiting at a terminal for the deletlon
operation to complete. )

There is, of course, a cost associated with this shortcut: deleted records
take up space in the secondary index files. In a file system that undergoes
few deletions, this is not usually a problem. In a somewhat more volatile
file structure, it is possible to address the problem by periodically remov-
ing from the secondary index files all entries that contain references that
are no longer in the primary index. If a file system is so volatile that even
periodic purging is not adequate, it is probably time to consider another
index structure, such as a B-tree, that allows for deletion without having to
rearrange a lot of records.

Record Updating

In our discussion of record deletion, we find that the primary key index
serves as a kind of protective buffer, insulating the secondary indexes
from changes in the data file. This insulation extends to record updating
as well. If our secondary indexes contain references directly to byte
offsets in the data file, then updates to the data file that result in chang-
ing a record’s physical location in the file also require updating the
secondary indexes. But, since we are confining such detailed information
to the primary index, data file updates affect the secondary index only
when they change either the primary or the secondary key. There are
three possible situations:
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B Update changes the secondary key: if the secondary key is changed, we
may have to rearrange the secondary key index so it stays in sorted
order. This can be a relatively expensive operation.

B Update changes the primary key: this kind of change has a large impact
on the primary key index but often requires that we update only the
affected reference field (Label ID in our example) in all the secondary
indexes. This involves searching the secondary indexes (on the
unchanged secondary keys) and rewriting the affected fixed-length
ﬁeid. It does not require reordering of the secondary indexes unless
the corresponding secondary key occurs more than once in the index:
If a secondary key does occur more than once, there may be some
local reardering, since records having the same secondary key are
ordered by the reference field (primary key).

B Update confined to other fields: all updates that do not affect either the
primary or secondary key fields do not affect the secondary key index,
even if the update is substantial. Note that if there are several
secondary key indexes associated with a file, updates to records often
affect only a subset of the secondary indexes.

7.7 Retrieval Using Combinations of Secondary Keys .

One of the most important applications of secondary keys involves using

two or more of them in combination to retrieve special subsets of records

from the data file. To provide an example of how this can be done, we will
‘extract another secondary key index from our file of recordings. This one

uses the recording’s title as the key, as illustrated in Fig. 7.10. Now we can
- respond to requests such as

B Find the recording with Label ID COL38358 (primary key access);
E Find all the recordings of Beethoven’s work (secondary keyiicompos-
er); and

®  Find all the recordings titled “Violin Concerto” (secondary keyititle).

What is more interesting, however, is that we can also respond to a
request that combines retrieval on the composer index with retrieval on the
title index, such as: Find all recordings of Beethoven’s Symphony No. 9.
Without the use of secondary indexes, this kind of request requires a
sequential search through the entire file. Given a file containing thousands,
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or even hundreds, of records, this is a very expensive process. But, with the

aid of secondary indexes, responding to this request is simple and quick.
We begin by recognizing that this request can be rephrased as a

Boolean and operation, specifying the intersection of two subsets of the

data file:

Find all data records with:
composer = ‘BEETHOV_EN' and title = 'SYMPHCONY NO. 9

We begin our response to this request by searching the composer
index for the list of Label IDs that identify recordings with Beethoven as
the composer. This yields the following list of Label IDs:

ANG3795
DG1339201

DG18807
RCA2626

Next we search the title index for the Label IDs associated with records
that have SYMPHONY NO. 9 as the title key:

ANG3795
COL31809
DG18807

Now we perform the Boolean and, which is a match operation,
combining the lists so only the members that appear in both lists are

placed in the output list.

Composers Titles Matched list
ANG3795 —— ANG3795—— ANG3795
DG139201 COL31809. DG18807
DG18807——‘——DG18807——J—_-

RCA2626

We give careful attention to algorithms for performing this kind of
match operation in Chapter 8. Note that this kind of matching is much
easier if the lists that are being combined are in sorted order. That is the
reason that, when we have more than one entry for a given seconidary key,
the records are ordered by the primary key reference fields.

Finally, once we have the list of primary keys occurring in both lists,
we can proceed to the primary key index to look up the addresses of the
data file records. Then we can retrieve the records:

ANG | 3795 | Symp‘hor{y No. 9 | Beethoven | Guilini
DG | 18807 | Symphony No. 8 | Beethoven | Karajan
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3

This is the kind of operation that makes computer-indexed file
systems useful in a way that far exceeds the capabilities of manual
systems. We have only one copy of each data file record, and yet, working
through the secondary indexes, we have multiple views of these records:
we can look at them in order by title, by composer,or by any other field
that interests us. Using the computer’s ability to combine sorted lists
rapidly, we can even combine different views, retrieving intersections
(Beethoven and Symphony No. 9) or unions (Beethoven or Prokofiev or
Symphony No. 9) of these views. And since our data file is entry
sequenced, we can do all of this without having to sort data file records
and can confine our sorting to the smaller index records that can often be
held in memory.

Now that we have a general idea of the design and uses of secondary
indexes, we can look at ways to improve these indexes so they take less
space and require less sorting.

7.8 Improving the Secondary Index Structure:
Inverted Lists

The secondary index structures that we have developed so far result in two
distinct difficulties:

B We have to rearrange the index file every time a new record is added
to the file, even if the new record is for an existing secondary key.
For example, if we add another recording of Beethoven’s Symphony
No. 9 to our collection, both the composer and title indexes would
have to be rearranged, even though both indexes already contain
entries for secondary keys (but not the Label IDs) that are being
added. :

W If there are duplicate secondary keys, the secondary key field is
repeated for each entry. This wastes space because it makes the files
larger than necessary. Larger index files are less likely to fit in
memory.

7.8.1 AFirst Attempt at a Solution

One simple response to these difficulties is to change the secondary index
structure so it associates an array of references with each secondary key.
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For example, we might use a record structure that allows us to associate up
to four Label ID reference fields with a single secondary key, as in

BEETHOVEN ANG3795 DG139201 DG1880’} RCA2626

Figure 7.11 provides a schematic example of how such an index would
look if used with our sample data file. ‘

The major contribution of this revised index structure is its help in
solving our first difficulty: the need to rearrange the secondary index file
every time a new record is added to the data file. Looking at Fig. 7.11, we
can see that the addition of another recording of a work by Prokofiev does
not require the addition of another record to the index. For example, if we
add the recording

ANG 36133 Piano Concertos 3 and 5 Prokefiev Francois

we need to modify only the corresponding secondary index record by
inserting a second Label ID:

PROKOFIEV ANG36193 LON2312

Since we are not adding another record to the secondary index, there is no
need to rearrange any records. All that is required is a rearrangement of
the fields in the existing record for Prokofiev. '

Although this new structure helps avoid the need to rearrange the
secondary index file so often, it does have some problems. For one thing,
it provides space for only four Label IDs to be associated with a given key.
In the very likely case that more than four Label IDs will go with somé key,
we need a mechanism for keeping track of the extra Label IDs.

A second problem has to do with space usage. Although the structure
does help avoid the waste of space due to the repetition of identical keys,
this space savings comes at a potentially high cost. By extending the fixed
length of each of the secondary index records to hold more reference
fields, we might easily lose more space to internal fragmentation than we
gained by not repeating identical keys.

Since we don’t want to waste any more space than we have to, we
need to ask whether we can improve on this record structure. Ideally,
what we would like to do is develop a new design, a revision of our revi-
sion, that
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‘Revised composer index

Secondary key ' Set of primary key references
BEETHOVEN ANG3795 DG139201 DG}8807 RCA2626
COREA WAR23699
DVORAK COL31809
PROKOFIEV ~ LON2312
RIMSKY-KORSAKOV ' MER750 16
SPRINGSTEEN COL.38358
SWEET HONEY IN THE R FF245

Figure 7.11 Secondary key index containing space for multiple references for each
secondary key.

B Retains the attractive feature of not requiring reorganization of the
secondary indexes for every new entry to the data file;

B Allows more than four Label IDs to be associated with each secondary
- key; and '

K Eliminates the waste of space due to internal fragmentation.

7.8.2 A Better Solution: Linking the List of References

Files such as our secondary indexes, in which a secondary key leads to a set
- of one or more primary keys, are called inverted lists. The sense in which
the list is inverted should be clear if you consider that we are working our
way backward from a secondary key to the primary key to the record itself,
The second word in the term “inverted list” also tells us something
important: we are, in fact, dealing with a list of primary key references.
Our revised secondary index, which collects a number of Label IDs for
each secondary key, reflects this list aspect of the data more directly than
our Initial secondary index. Another way of conceiving of this list aspect of
our inverted list is illustrated in Fig. 7.12.
As Fig. 7.12 shows, an ideal situation would be to have each secondary
key point to a different list of primary key references. Each of these lists
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Lists of primary

Secondary key index key references

BEETHOVEN = —| ANG3795
COREA DG139201
DVORAK - \ DG18807
PROKOFIEV - RCA2626
WAR23699
COL31809
LON2312

9

Figure 7.12 Conceptual view of the primary key reference fields as a series of lists.

could grow to be just as long as it needs to be. If we add the new Prokofiev
record, the list of Prokofiev references becomes

PROKOFIEV —>1 ANG36193

LON2312

Similarly, adding two new Beethoven recordings adds just two addi-
tional elements to the list of references associated with the Beethoven key.
Unlike our record structure which allocates enough space for four Label
IDs for each secondary key, the lists could contain hundreds of references,
if needed, while still requiring only one instance of a secondary key. On the
other hand, if a list requires only one element, then no space is lost to
internal fragmentation. Most important, we need to rearrange only the file
of secondary keys if a new composer is added to the file.
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How can we set up an unbounded number of different lists, each of
varying length, without creating a large number of small files? The
simplest way is through the use of linked lists. We could redefine our
secondary index so it consists of records with two fields—a secondary key
field and a field containing the relative record number of the first corre-
sponding primary key reference (Label ID) in the inverted list. The actual
primary key references associated with each secondary key would be
stored in a separate, entry-sequenced file.

Given the sample data we have been working with, this new design
would result in a secondary key file for composers and an associated Label
ID file that are organized as illustrated in Fig. 7.13. Following the links for
the list of references associated with Beethoven helps us see how the Label
ID List file is organized. We begin, of course, by searching the secondary
key index of composers for Beethoven. The record that we find points us
to relative record number (RRN) 3 in the Label ID List file. Since this is a
fixed-length file, it is easy to jump to RRN 3 and read in its Label ID

Improved revision of the composer index

Secondary Index file . Label ID List fiie
0 | BEETHOVEN 3 o | Lon2s1z -1
1 | COREA ' 2 | 1 | RCA2626 -1
2 | pvorak 7 2 | Warzsess -1
3 | PROKOFIEV 10 3 | ANG3795 8
4 | RIMSKY-KORSAKOV £ 4 | coLsssss - 1
5 | SPRINGSTEEN 4 5 { DG18807 1
6 | SWEET HONEY IN THE R 9 6 | MER75016 -1
7 | coL31809 1
8 | DG139201 5
9 | FF245 -1
Fjgure 7.'1 3 Secondary key index referencing linked 10 | ANG36193 0
lists of primary key references. |
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(ANG3795). Associated with this Label ID is a link to a record with RRN
8. We read in the Label ID for that record, adding it to our list (ANG379
DG139201). We continue following links and collecting Label IDs until the
list looks like this:

ANG3795 DG139201 DG18807 RCAZ626

The link field in the last record read from thJ f,abel ID List file
contains a value of -1. As in our earlier programs, this indicates end-of-list,
so we know that we now have all the Label ID references for Beethoven
records. .

To illustrate how record addition affects the Secondary Index and
Label ID List files, we add the Prokofiev recording mentioned earlier:

ANG 36193 Piano Concertos 3 and 5 Prokofiev Francois

You can see (Fig. 7.13) that the Label ID for this new recording is the
last one in the Label ID List file, since this file is entry sequenced. Before
this record is added, there is only one Prokofiev recording. It has a Label
ID of LON2312. Since we want to keep the Label ID Lists in order by
ASCII character values, the new recording is inserted in the list for
Prokofiev sb it logically precedes the LON2312 recording.

Associating the Secondary Index file with a new file contammo linked
lists of references provides some advantages over any of the structures
considered up to this point:

M The only time we need to rearrange the Secondary Index file is when a
new composer’s name is added or an existing composer’s name is
changed (for example, it was misspelled on input). Deleting or adding
recordings for a composer who is already in the index involves chang-
ing only the Label ID List file. Deleting all the recordings for a
composer could be handled by modifying the Label ID List file while
leaving the entry in the Secondary Index file in place, using a value of
-1 in its reference field to indicate that the list of entries for this
composer 1s empty.

Bm In the event that we need to rearrange the Secondary Index file, the
task is quicker now since there are fewer records and each record is
smaller.

W Because there is less need for sorting, it follows that there is less of a
penalty associated with keeping the Secondary Index files off on
‘secondary storage, leaving more room in memory for other data
structures. '
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M The Label ID List file is entry sequenced. That means that it never
needs to be sorted.

B Since the Label ID List file is a fixed-length record file, it would be very
easy to implement a mechanism for reusing the space from deleted
records, as described in Chapter 6.

There is also at least one potentially significant disadvantage to this
kind of file organization: the Label IDs associated with a given composer
are no longer gnaranteed to be grouped together physically. The technical
term for such “togetherness” is locality. With a linked, entry-sequenced
structure such as this, it is less likely that there will be locality associated
with the logical groupings of reference fields for a given secondary key.
Note, for example, that our list of Label IDs for Prokofiev consists of the
very last and the very first records in the file. This lack of locality means
that picking up the references for a composer with a long list of references
could involve a large amount of seeking back and forth on the disk. Note
that this kind of seeking would not be required for our original Secondary
Index file structure.

One obvious antidote to this seeking problem is to keep the Label ID
List file in memory. This could be expensive and impractical, given many
secondary indexes, except for the interesting possibility of using the same,
Label ID List file to hold the lists for a number of Secondary Index files.
Even if the file of reference lists were too large to hold in memory, it might
be possible to obtain a performance improvement by holding only a part
of the file in memory at a time, paging sections of the file in and out of
memory as they are needed.

Several exercises at the end of the chapter explore these possibilities
more thoroughly. These are very important problems, as the notion of
dividing the index into pages is fundamental to the design of B-trees and
other methods for handling large indexes on secondary storage.

7.9 Selective Indexes

Another interesting feature of secondary indexes is that they can be used
to divide a file into parts and provide a selective view. For example, it is
possible to build a selective index that contains only the titles of classical
recordings in the record collection. If we have additional information
about the recordings in the data file, such as the date the recording was
released, we could build selective indexes such as “recordings released prior
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to 1970” and “recordings since 1970.” Such selective index information
- could be combined into Boolean and operations to respond to requests
such as “List all the recordings of Beethoven’s Ninth Symphony released
since 1970.” Selective indexes are sometimes useful when the contents of a

file fall naturally and logically into several broad categories.

7.10 Binding

A recurrent and very important question that emerges in the design of file
systems that use indexes is: At what point is the key bound to the physical
address of its associated record?

In the file system we are designing in the course of this chapter, the
binding of our primary keys to an address takes place at the time the files

’ are constructed. The secondary keys, on the other hand, are bound to an
address at the time that they are used. '

Binding at the time of the file construction results in faster access.
Once you have found the right index record, you have in hand the byte
offset of the data record you are seeking. If we elected to bind our
secondary keys to their-associated records at the time of file construction
so when we find the DVORAK record in the composer index we would
know immediately that the data record begins at byte 338 in the data file,
secondary key retrieval would be simpler and faster. The improvement in
performance is particularly noticeable if both the primary and secondary
index files are used on secondary storage rather than in memory. Given the
arrangement we designed, we would have to perform a binary search of
the composer index and then a binary search of the primary key index
before being able to jump to the data.record. Binding early, at file
construction time, eliminates the need to search on the primary key.

The disadvantage of binding directly in the file, of binding tightly, is
that reorganizations of the data file must result in modifications to all
bound index files. This reorganization cost can be very expensive, particu-
larly with simple index files in which modification would often mean
shifting records. By postponing binding until execution time, when the
records are being used, we are able to develop a secondary key system that
involves a minimal amount of reorganization when records are added or
deleted.

~ Another important advantage to postponing binding until a record is
retrieved is that this approach is safer. As we see in the system that we set
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up, associating the secondary keys with reference fields consisting of
primary keys allows the primary key index to act as a kind of final check of
whether a record is really in the file. The secondary indexes can afford to
be wrong. This situation is very different if the secondary index keys
contain addresses. We would then be jumping directly from the secondary
key into the data file; the address would need to be right.

This brings up a related safety aspect: it is always more desirable to
make important changes in one place rather than in many places. With a
bind-at-retrieval-time scheme such as we developed, we need to remem-
ber to make a change in only one place, the primary key index, if we move
a data record. With a more tightly bound system, we have to make many
changes successfully to keep the system internally consistent, braving
power failures, user interruptions, and so on.

When designing a new file system, it is better to deal with this question
of binding intentionally and early in the design process rather than letting
the binding just happen. In general, tight, in-the-data binding is most
attractive when

B - The data file is static or nearly so, requiring little or no adding, delet-
ing, or updating of records; and .

M Rapid performance during actual retrieval is a high priority.

For example, tight binding is desirable for file organization on a mass-
produced, read-only optical disk. The addresses will never change because
no new records can ever be added; consequently, there is no reason not to
obtain the extra performance associated with tight binding.

For file applications in which record addition, deletion, and updating
do occur, however, binding at retrieval time is usually the more desirable
option. Postponing binding as long as possible usually makes these opera-
tions simpler and safer. If the file structures are carefully designed, and, in
particular, if the indexes use more sophisticated organizations such as B-
trees, retrieval performance is usually quite acceptable, even given the
additional work required by a bind-at-retrieval system.

SUMMARY

We began this chapter with the assertion that indexing as a way of struc-
turing a file is an alternative to sorting because records can be found by
key. Unlike sorting, indexing permits us to perform binary searches for keys
in variable-length record files. If the index can be held in memory, record
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addition, deletion, and retrieval can be done much more quickly with an
indexed, entry-sequenced file than with a sorted file.

Template classes in C++ provide support for sharing class definitions
and code among a number of unrelated classes. Template classes are used
in this chapter for class RecordFile, which supports I/O of data records
without explicit packing and unpacking of buffers, and for general
purpose index records in class SimpleIndex.

Support for sequential and indexed access to a data file is provided by
the template class Text indexedFile. It extends the capabilities of
class RecordFile by adding indexed read, update, and append opera-
tions. Each modification of the data file is accompanied by the proper
changes to the index. Each Text IndexedFile object is represented by
an index record object in memory and two files, a data file and an index
file. The Text IndexedFile: : Close method writes the contents of
the index record object into the index file and closes both files.

Indexes can do much more than merely improve on access time: they.
can provide us with new capabilities that are inconceivable with access
methods based on sorted data records. The most exciting new capability
involves the use of multiple secondary indexes. Just as a library card cata-
log allows us to regard a collection of books in author order, title order, or
subject order, so index files allow us to maintain different views of the
records in a data file. We find that not only can we use secondary indexes
to obtain different views of the file but we can also.combine the associated
lists of prirnary key references and thereby combine particular views.

In this chapter we address the problem of how to rid our secondary
indexes of two liabilities:

‘W The need to repeat duplicate secondary keys, and

B The need to rearrange the secondary indexes every time a record is

added to the data file.

A first solution to. these problems involves associating a fixed-size
vector of reference fields with each secondary key. This solution results in
an overly large amount of internal fragmentation but illustrates the attrac-
tiveness of handling the reference fields associated w1th a partlcular
secondary key as a group, or /ist.

Our next iteration of solutions to our secondary index problems is
more successful and much more interesting. We can treat the primary key
references as an entry-sequenced file, forming the necessary lists through
the use of link fields associated with each primary record entry. This allows
us to create a secondary index file that, in the case of the composei‘ index,
needs rearrangement only when we add new composers to the data file.
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The entry-sequenced file of linked reference lists never requires sorting.
We call this kind of secondary index structure an inverted list.

There are also, of course, disadvantages associated with our new solu-
tion. The most serious disadvantage is that our file demonstrates less local-
ity: lists of associated records are less likely to be physically adjacent. A
'good antidote to this problem is to hold the file of linked lists in memory.
We note that this is made more plausible because a single file of primary
references can link the lists for a number of secondary indexes.

As indicated by the length and breadth of our consideration of
secondary indexing, multiple keys, and inverted lists, these topics are
among the most interesting aspects of indexed access to files. The concepts
of secondary indexes and inverted lists become even more powerful later,
as we develop index structures that are themselves more powerful than the
simple indexes we consider here. But, even so, we already see that for small
files consisting of no more than a few thousand records, approaches to
inverted lists that rely merely on simple indexes can provide a user with a
great deal of capability and flexibility.

KEY TERMS

Binding. Binding takes place when a key is associated with a particular
physical record in the data file. In general, binding can take place
-either during the preparation of the data file and indexes or during
program execution. In the former case, called tight binding, the index-
es contain explicit references to the associated physical data record. In
the latter case, the connection between a key and a particular physical
record is postponed until the record is retrieved in the course of
program execution.

- Entry-sequenced file. A file in which the records occur in the order that
they are entered into the file.

Index. An index is a tool for finding records in a file. It consists of a key
field on which the index is searched and a reference field that tells
where to find the data file record associated with a particular key.

Inverted list. The term inverted list refers to indexes in which a key may be
associated with a list of reference fields pointing to documents that
contain the key. The secondary indexes developed toward the end of
this chapter are examples of inverted lists.

Key field. The key field is the portion of an index record that contains the
canonical form of the key that is being sought.
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Locality. Locality exists in a file when records that will be accessed in a
given temporal sequence are found in physical proximity to each other
on the disk. Increased locality usually results in better performance, as
records that are in the same physical area can often be brought into
memory with a single read request to the disk.

Reference field. The reference field is the portion of an index record that
contains information about where to find the data record containing
the information listed in the associated key field of the index.

Selective index. A selective index contains keys for only a portion of the
records in the data file. Such an index provides the user with a view of -
a specific subset of the file’s records.

Simple index. All the index structures discussed in this chapter are simple
indexes insofar as they are all built around the idea of an ordered,
linear sequence of index records. All these simple indexes share a
common weakness: adding records to the index is expensive. As we see
later, tree-structured indexes provide an alternate, more efficient solu-
tion to this problem.

Template class. A C++ class that is parameterized, typically with class (or
type) parameters. Templates allow a single class definition to be used
to construct a family of different classes, each with different argu-
ments for the parameters.

FURTHER READINGS

We have much more to say about indexing in later chapters, where we take
up the subjects of tree-structured indexes and indexed sequential file orga-
nizations. The topics developed in the current chapter, particularly those
relating to secondary indexes and inverted files, are also covered by many
other file and data structure texts. The few texts that we list here are of
interest because they either develop certain topics in more detail or present
the material from a different viewpoint.

Wiederhold (1983) provides a survey of many of the index structures
we discuss, along with a number of others. His treatment is more mathe-
matical than that provided in our text. Tremblay and Sorenson (1984)
provide a comparison of inverted list structures with an alternative orga-
nization called multilist files. M. E. S. Loomis (1989) provides a similar
discussion, along with some examples oriented toward COBOL users.
Kroenke (1998) discuss inverted lists in the context of their application in
information retrieval systems.
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EXERCISES

1. Until now, it was not possible to perform a binary search on a vari-
able-length record file. Why does indexing make binary search possi-
ble? With a fixed-length record file it is possible to perform a binary
search. Does this mean that indexing need not be used with fixed-
length record files?

2. Why is Title not used as a primary key in the Recording file
described in this chapter? If it were used as a secondary key, what
problems would have to be considered in deciding on a canonical
form for titles?

3. What is the purpose of keeping an out-of-date-status flag in the head-
er record of an index? In a multiprogramming environment, this flag
might be found to be set by one program because another program is
in the process of reorganizing the index. How should the first
program respond to this situation?

4. Consult a reference book on C++ to determine how template classes
like RecordFile are implemented. How does the compiler process
the method bodies of a template class? How does the compiler
process template instantiations?

5. Explain how the use of an index pins the data records in a file.

6. When a record in a data file is updated, corresponding primary and
secondary key indexes may or may not have to be altered, depending
on whether the file has fixed- or variable-length records, and depend-
ing on the type of change made to the data record. Make a list of the
different updating situations that can occur, and explain how each
affects the indexes. '

7. Discuss the problem that occurs when you add the following record-
ing to the recordings file, assuming that the composer index shown in
Fig. 7.11 is used. How might you solve the problem without substan-
tially changing the secondary key index structure?

LON 1259 Fidelio Beethoven Maazel

8. How are the structures in Fig. 7.13 changed by the addition of the
recording
LON 1259 Fidelio Beethoven Maazel

9. Suppose you have the data file described in this chapter, but it’ s great-
ly expanded, with a primary key index and secondary key indexes
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organized by composer, artist, and title. Suppose that an inverted list
structure is used to organize the secondary key indexes. Give step-by-
step descriptions of how a program might answer the following
queries: '

a. List all recordings of Bach or Beethoven, and
b. List all recordings by Perleman of pieces by Mozart or Joplin.

10. Using the program makerec . cpp, create a file of recordings. Make
a file dump of the file and find the size and contents of the header as
well asand the starting address and the size for each record.

11. Use the program makeind.cpp to create an index file for the
recording file created by program makerec.cpp. Using a file
dump, find the size and contents of the header, the address and size of
the record, and the contents of the record.

© 12, "The method and timing of binding affect two important attributes of
a file system—speed and flexibility. Discuss the relevance of these .
attributes, and the effect of binding time on them, for a hospital
patient datainformation system designed to provide information
about current patients by patient name, patient ID, location, medica-
tion, doctor or doctors, and illness.

_PROGRAMMING AND DESIGN EXERCISES
13. Add method(s) to class Text Index to support iterating through
the index in key order. One possible strategy is to define two methods:

int FirstRecAddr (); // return reference for the smallest key
int NextRecAddr (); // return reference for the next key

Implementation of these methods can be supported by adding
members to the class.

14. Write a program to print the records of a Recording file in key
order. One way to implement this program is to read all the records of
the file and create an index record in memory and then iterate
through the index in key order and read and print the records. Test
the program on the file produced by makerec. cpp.

15. Write a program to print the records of a file of type
RecordFile<Recording> in key order. Test the program on the
file produced by makeind. cpp.
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16. Modify the method Text Index: : Search to perform a binary
search on the key array.

17. Implement the Remove methods of class Text IndexedFile.

18. Extend class Text IndexedFile to support the creation of an
indexed file from a simple data file. That is, add a method that initial-
izes a Text IndexedFile object by opening and reading the exist-
ing data file and creating an index from the records in the file.

19. As a major programming project, create a class hierarchy based on
Recording that has different information for different types of
recordings. Develop a class to support input and output of records of
these types. The class should be consistent with the style described in
the part of Section 7.4.3 about data object class hierarchies. The
Unpack methods must be sensitive to the type of object that is being
initialized by the call.

20. Define and implement a class SecondaryIndex to support
secondary indexes, as described in Section 7.6. Use this class to create
a class RecordingFile that uses RecordFile as its base class to
manage the primary index and the data file and has secondary index-
es for the Composer and Artist fields.

21. When searching secondary indexes that contain multiple records for
some of the keys, we do not want to find just any record for a given
secondary key; we want to find the first record containing that key.
Finding the first record allows us to read ahead, sequentially, extract-
ing all of the records for the given key. Write a variation of a search
method that returns the relative record number of the first record
containing the given key.

22. Identify and eliminate memory leaks in the code of Appendix F.

PROGRAMMING PROJECT

This 1s the fifth part of the programming project. We add indexes to the
data files created by the third part of the project in Chapter 4.

23. Use class IndexedFile (or Text IndexedFile) to create an
index of a file of student objects, using student identifier as key. Write
a driver program to create an index file from the student record file
created by the program of part three of the programming project in
Chapter 4.
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24. Use class IndexedFile (or TextIndexedFile) to create an
index of a file of course registration objects, using student identifier
as key. Note that the student identifier is not unique in course regis-
tration files. Write a driver program to create an index file from the
course registration record file created by the program of part three of
the programming project in Chapter 4.

25. Write a program that opens an indexed student file and an indexed
course registration file and retrieves information on demand. Prompt
a user for a student identifier and print all objects that match it.

26. Develop a class that supports indexed access to course registration
files by student identifier and by course identifier (secondary key).
See Exercise 20 for an implementation of secondary indexes. Extend
the program of Exercise 25 to allow retrieval of information about
specific courses.

27. Extend the above projects to support update and deletion of student
records and course registration records.

The next part of the programming project is in Chaptef 8.
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