

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

File Structures

An Object-Oriented

Approach with C++

Michael J. Folk

University ofIllinois

Bill Zoellick

CAP Ventures

Greg Riccardi

Florida State University

Ayy ADDISON-WESLEY

Addison-Wesley is an imprint ofAddison Wesley Longman,Inc..

Reading, Massachusetts * Harlow, EnglandMenlo Park, California

Berkeley, California * Don Mills, Ontario + Sydney

Bonn + Amsterdam « Tokyo * Mexico City

https://hemanthrajhemu.github.io

Contents VIE

Chapter 7 Indexing 247

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8.

“7.9

What is anIndex? 248
A Simple Index for Entry-SequencedFiles 249

Using Template Classes in C++ for Object !/O 253
Object-Oriented Support for Indexed, Entry-SequencedFiles

of Data Objects 255 .
7.4.1 Operations Required to Maintain an Indexed File 256

7.4.2 Class TextIndexedFile 260
7.4.3 EnhancementstoClass TextIndexedFile 261

Indexes That Are Too Large to Holdin Memory 264

Indexing to Provide Access by Multiple Keys 265

Retrieval Using Combinations of Secondary Keys 270

Improving the SecondaryIndex Structure: Inverted Lists 272
7.8.1 A First Attempt at a Solution” 272

7.8.2 A Better Solution: Linking the List of References 274
Selective Indexes 278

7.10 Binding 279 .

Summary 280 KeyTerms 282 FurtherReadings 283 Exercises 284
Programming and Design Exercises 285 Programming Project 286

Chapter 8 Cosequential Processing and the Sorting

of Large Files 289

8.1

8.2

8.3

8.4

8.5

An Object-Oriented Modelfor Implementing Cosequential
Processes 291

8.1.1 Matching Names in Two Lists 292

8.1.2 Merging Two Lists 297

8.1.3 Summary of the Cosequential Processing Model 299

Application of the Model to a General Ledger Program 301
8.2.1 The Problem 301

8.2.2 Application of the Model to the Ledger Program 304

Extension of the Model to Include Multiway Merging 309
8.3.1 A K-way Merge Algorithm 309
8.3.2 A Selective Tree for Merging Large Numbersof Lists ' 310
A Second Look at Sortingin Memory 311
8.4.1 Overlapping Processing and !/O:Heapsort 312
8.4.2 Building the Heap while Reading the File 313
8.4.3 Sorting While Writing to the File 316

Merging as a Wayof Sorting Large Fileson Disk 318

8.5.1 How Much Time Does a Merge Sort Take? 320
8.5.2 Sorting a File That ls Ten Times Larger 324

https://hemanthrajhemu.github.io

XViil Contents

8.6

8.7

8.8

8.5.3 The Cost of Increasing the File Size 326

8.5.4 Hardware-Based Improvements 327
8.5.5 Decreasing the Numberof Seeks Using Multiple-Step Merges 329
8.5.6 Increasing Run Lengths Using ReplacementSelection 332

8.5.7 ReplacementSelection Plus Multistep Merging 338

8.5.8 Using Two Disk Drives with ReplacementSelection 341

’ 8.5.9 More Drives? Mare Processors? 343

- 8.5.10 Effects of Multiprogramming 344
8.5.11 A Conceptual Toolkit for External Sorting 344
Sorting FilesonTape 345
8.6.1 The Balanced Merge 346
8.6.2 The K-way Balanced Merge 348

8.6.3 Multiphase Merges 349
8.6.4 Tapes versus Disks for External Sorting 351.

Sort-Merge Packages 35:2!

Sorting and Cosequential Processing in Unix 352
8.8.1 Sorting and Merging in Unix 352
8.8.2 Cosequential Processing Utilities in Unix 355

Summary 357 KeyTerms 360 FurtherReadings 362 Exercises 363

Programming Exercises 366 Programming Project 367

[See

Chapter9 Multilevel Indexing and B-Trees 369

9.1. Introduction: The Invention of the B-Tree 370

9.2 Statementofthe Problem 372

9.3

9.4

9.5

9.6 -

9.7

9.8

9.9

Indexing with Binary Search Trees 373
9.3.1 AVL Trees 377

9.3.2 Paged Binary Trees 380

9.3.3 Problems with PagedTrees 382
Multilevel Indexing, a Better Approach to Tree Indexes 384
B-trees: Working up from the Bottom 387
Example of Creating aB-Tree 388

An Object-Oriented Representation of B-Trees 391
9.7.1 Class BTreeNode: representing B-Tree Nodes in Memory 397
9.7.2 Class BTree: SupportingFiles of B-Tree Nodes 393
B-Tree Methods Search, Insert,and Others 394

9.8.1 Searching 394
9.8.2 Insertion 395

9.8.3 Create, Open,and Close 398

9.8.4Testing the 8-Tree 398

B-Tree Nomenclature 399
9.10 Formal Definition of B-Tree Properties 401

https://hemanthrajhemu.github.io

Contents xix

9.11

9.12

9.13

9.14

9.15

9.16

Worst-Case Search Depth 401
Deletion, Merging, and Redistribution 403
9.12.1 Redistribution 406
Redistribution During Insertion: A Way to Improve Storage

Utilization 407
B* Trees 408

Buffering of Pages: Virtual B-Trees 409
9.15.1 LRU Replacement 410

9.15.2 Replacement Based on Page Height 411

9.15.3 Importance of Virtual B-Trees 412
Variable-Length Records and Keys 413

Summary 414 KeyTerms 416 FurtherReadings 417 Exercises 419

Programming Exercises 421 Programming Project 422

Chapter 10 Indexed Sequential File Access and Prefix B* Trees 423

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

Indexed Sequential Access 424

Maintaining a Sequence Set 425

10.2.1 The Use of Blocks 425
10.2.2 Thoice of Block Size 428
Adding a Simple Index to the Sequence Set 430
The Content of the Index;Separators Instead of Keys 432

The Simple Prefix B+ Tree 434 .
Simple Prefix B+ Tree Maintenance 435.

10.6.1 Changes Localized to Single Blocks in the Sequence Set 435
10.6.2 ChangesInvolving Multiple Blocks in the Sequence Set 436
Index Set Block Size 439

Internal Structure of Index Set Blocks: A Variable-Order

B-Tree 440

Loading a Simple Prefix Bt Tree 443
10.10 BtTrees 447

10.11 B-Trees, B+ Trees, andSimple Prefix B+ Treesin Perspective 449

Summary 452 KeyTerms 455 FurtherReadings 456 Exercises 457

Programming Exercises 460 Programming Project 461

Chapter 11 Hashing «463

11.1

11.2

Introduction 464

11.1.1 What Is Hashing? 465

11.1.2 Collisions 466

A Simple Hashing Algorithm 468

https://hemanthrajhemu.github.io

CHAPTER

Cosequential
Processing and the
sorting of Large Files

CHAPTER OBJECTIVES

Describe a class of frequently used processing activities knownas

cosequential processes.

* Provide a general object-oriented model for implementing all
varieties of cosequential processes.

>,Illustrate the use of the model to solve a numberofdifferent kinds

of cosequential processing problems, including problems other

than simple merges and matches.

“* Introduce heapsort as an approachto overlappingI/O with sorting
in memory.

Show how merging provides the basis for sorting verylarge files.

*.
CF

+
+

Examine the costs of K-way merges on disk and find ways to reduce
those costs.

Introduce the notion of replacement selection.

+
o

~
+

Examine someof the fundamental concerns associated with sorting
large files using tapesrather than disks.

“* Introduce Unix utilities for sorting, merging, and cosequential
processing.

aonhttps://hemanthrajhemu.github.io

290 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

CHAPTER OUTLINE

An Object-Oriented Model!for Implementing Cosequential

Processes

8.1.1 Matching Names in TwoLists
8.1.2 Merging TwoLists

8.1.3 Summary of the Cosequential Processing Model
Application of the Model to a General Ledger Program

8.2.1 The Problem

8.2.2 Application of the Model to the Ledger Program
Extension of theModelto include Multiway Merging

8.3.1 A K-way Merge Algorithm

8.3.2 A Selection Tree for Merging Large Numbers ofLists

A Second Lookat Sorting in Memory

8.4.1 Overlapping Processing and I/O: Heapsort

8.4.2 Building the Heap While Reading the File °
8.4.3 Sorting While Writing to the File
Merging as a Wayof Sorting Large Files on Disk

8.5.1 How Much Time Does a MergeSort Take?
8.5.2Sorting a File That Is Ten Times Larger
8.5.3 The Cost of Increasing the File Size

8.5.4 Hardware-Based Improvements

8.5.5 Decreasing the Numberof Seeks Using Multiple-Step Merges

8.5.6 Increasing Run Lengths Using ReplacementSelection

. 8.5.7 Replacement Selection Plus Multistep Merging
8.5.8 Using Two Disk Drives with ReplacementSelection

8.5.9 More Drives? More Processors?

8.5.10 Effects of Multiprogramming
8.5.11 A Conceptual Toolkit for External Sorting
Sorting Files on Tape

8.6.1 The Balanced Merge
8.6.2 The K-way Balanced Merge
8.6.3 Multiphase Merges
8.6.4 Tapes versus Disks for External Sorting

Sort-Merge Packages
Sorting and Cosequential Processing in Unix
8.8.1 Sorting and Mergingin Unix
8.8.2 Cosequential Processing Utilities in Unix

https://hemanthrajhemu.github.io

8.1

An Object-Oriented Model for Implementing Cosequential Processes 291

Cosequential operations involve the coordinated processing of two or more
sequentiallists to produce a single output list. Sometimes the processing

results in a merging, or union, of the items in the inputlists; sometimes the
goal is a matching, or intersection, of the itemsin thelists; and other times

the operation is a combination of matching and merging. These kindsof
operations on sequentiallists are the basis of a great deal of file processing.

In the first half of this chapter we develop a general object-oriented
model for performing cosequential operations,illustrate its use for simple
‘matching and merging operations, then applyit to the developmentof a

more complex general ledger program. Next we apply the model to multi-

way merging, which is an essential component of external sort-merge

operations. We conclude the chapter with a discussion of external sort-

merge procedures, strategies, and trade-offs, paying special attention to

performance considerations.

An Object-Oriented Modelfor Implementing
Cosequential Processes

Cosequential operations usually appear to be simple to construct; given

the information that we provide in this chapter, this appearance of

simplicity can be turned into reality. However,it is also true that approach-
es to cosequential processing are often confused, poorly organized, and

incorrect. These examples of bad practice are by no meanslimited to

student programs: the problemsalso arise in commercial programs and
textbooks. Thedifficulty with these incorrect programsis usually that they
are not organized around a single, clear model for cosequential processing.
Instead, they seem to deal with the various exception conditions and prob-
lems of a cosequential process in an ad hoc rather than systematic way.

This section addresses such lack of organization head on. We present
a single, simple model that can bethe basis for the construction of any

kind of cosequential process. By understanding and adheringto the design
principles inherent in the model, you will be able to write cosequential
procedures that are simple, short, and robust.

Wepresent this model by defining a class CosequentialProcess

that supports processing of any type of list, in the same way that class

TOBuffer supports buffer operations on any type of buffer. Class

Cosequential Process includesoperations to match and mergelists.
It defines the list processing operations required for cosequential processing

https://hemanthrajhemu.github.io

292 Chapter 8 Cosequential Processing and the Sortingof Large Files

as virtual methods. We will then define new subclasses that include the

methods for accessing the elements of particular types oflists.

8.1.1 Matching Na:v3ssin Two Lists

Suppose we want to output the names commonto the twolists shown in

Fig. 8.1. This operation is usually called a match operation, or an intersec-
tion. We assume, for the moment,that we will not allow duplicate names
within list and thatthelists are sorted in ascending order.

Webegin by readingin the initial item from eachlist, and wefindthat
they match. We output this first item as a member of the match set, or
intersection set. We then read in the next item from eachlist. This time the

List 1 List 2

ADAMS ADAMS
CARTER ANDERSON
CHIN ANDREWS
DAVIS BECH
FOSTER BURNS
GARWICK CARTER
JAMES DAVIS

JOHNSON DEMPSEY
KARNS GRAY
LAMBERT JAMES
MILLER JOHNSON

PETERS KATZ
RESTON PETERS
ROSEWALD. "ROSEWALD

TURNER SCHMIDT

THAYER

WALKER
WILLIS

Figure 8.1 Sample inputlists for cosequential operations.

https://hemanthrajhemu.github.io

An Object-Oriented Model for Implementing Cosequential Processes 293

item in List 2 is less than the item in List 1. When we are processing these

lists visually as we are now, we rememberthat we are trying to match the
item CARTER from List 1 and scan downList 2 until we eitherfind it or

jump beyondit. In this case, we eventually find a match for CARTER,so

we outputit, read in the next item fromeachlist, and continue the process.

Eventually we cometo the end of oneofthelists. Since we are looking for
items commonto bothlists, we know wecan stopatthis point.

Although the match procedure appears to be quite simple,there are

a number of matters that have to be dealt with to make it work reason-
ably well.

m@ Initializing: we need to arrange things in such a way that the procedure
gets going properly.

m Getting and accessing the nextlist item: we need simple methodsthat
support getting the next list element and accessingit.

m Synchronizing: we have to make sure that the current item from one
list is never so far ahead of the current item on the otherlist that a’

match will be missed. Sometimes this meansgetting the next item
from List 1, sometimes from List 2, sometimes from bothlists.

m Handling end-of-file conditions: when we get to the end ofeitherList1
or List 2, we need to halt the program.

m Recognizing errors: when an error occurs in the data (for example,
duplicate items or items out of sequence), we want to detect it and
take someaction.

Finally, we wouldlike our algorithm to be reasonably efficient, simple,

and easy to alter to accommodate different kinds of data. The key to
accomplishing these objectives in the model weare aboutto presentlies in
the way we deal with the third item in our list—synchronizing.

At each step in the processing of the twolists, we can assumethat we

have two items to compare: a current item from List 1 and a current item

from List 2. Let’s call these two current items Item(1) and Item(2).
We can compare the two items to determine whether Item(1) is less

than, equal to, or greater than Item(2):

m IfItem(1) is less than Item(2), we get the next item from List 1;

“m= If Ttem(1) is greater than Item(2), we get the next item from List
2; and ,

m Ifthe items are the same,we outputthe item and get the next items

from the twolists.

https://hemanthrajhemu.github.io

294 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

It turns out that this can be handled verycleanly with a single loop
containing one three-way conditional statement, as illustrated in the algo-

rithmof Fig. 8.2. The key feature of this algorithm is that control always

returns to the head of the main loop after every step of the operation. This
meanis that no extra logic is required within the loop to handle the case
when List 1 gets ahead ofList 2, or List 2 gets ahead of List 1, or the end-

of-file condition is reached on onelist beforeit is on the other. Since each

‘pass through the main loop looks at the nextpair of items, the fact that

one list may be longer than the other does not require any speciallogic.

Nor does the end-of-file condition—each operation to get a new item.
resets the MoreNames flag that records whether itemsare available in

both lists. The while statement simply checks the value of the flag
MoreNamesonevery cycle.

int Match (char * ListlName, char * List2Name,

{

}

char * OutputListName)

int MoreItems;// true if items remain in both of the lists

// initialize input and output lists

InitializeList (1, ListiName);// initialize List 1

TnitializeList (2, List2Name);// initialize List 2

TnitializeOutput (OutputListName) ;

// get first item from both lists

MoreItems = NextItemInbList(1) && NextItemInList (2);

while (MoreItems){// loop until no items in one of the lists.

if (Item(1) < Item(2))

MoreItems = NextItemInList (1);

else if (Item({1) == Item(2)) // Itemi == Item2

{

ProcessiItem (1); // match found ;

Moreltems = NextItemInList(1) && NextItemInList (2);:

else // Item(1) > Item(2)

MoreItems = NextItemInList{2);
;

FinishUp ();

return 1;

Figure 8.2 Cosequential match function based ona single loop.

https://hemanthrajhemu.github.io

An Object-Oriented Mode!for Impiementing Cosequential Processes 295

The logic inside the loopis equally simple. Only three possible condi-
tions can exist after reading an item:the if-then-else logic handlesall of

them. Because we are implementing a match process here, output occurs
only wheri the items are the same.

Note that the main program does not concernitself with such matters
as getting the next item, sequence checking, and end-of-file detection.

Since their presence in the main loop would only obscure the main

synchronization logic, they have been relegated to supporting methods.It

is also the case that these methodsare specific to the particular type oflists

being used and mustbe different for different applications.
Method NextItemInbList has a single parameter that identifies

whichlist is to be manipulated.Its responsibility is to read the next name
from thefile, store it somewhere, and return true if it was able to read
another name andfalse otherwise. It can also check the condition that the
list must be in ascending order with no duplicate entries.

“Method Match must be supported by defining methods

InitializeList, InitializeOutput, NextItemInList,

Item, ProcessItem, and FinishUp. The Match methodis

perfectly general and is not dependent on the type of the items nor on

the waythelists are represented. These details are provided by the
supporting methods that need to ve defined for the specific needs of

particular applications. What follows is a description of a class

CosequentialProcessing that supports method Match and a
class StringListProcess that defines the supporting operations for
the lists like those of Figure 8.1.

Class CosequentialProcessing,as given in Fig. 8.3 and infile

coseq.h and coseq. cpp of Appendix H,encapsulates the ideas of
cosequential processing that were described in the earlier example of list

matching. Note that this is an abstract class, since it does not contain defi-
nitions of the supporting methods. This is a template class so the opera-
tions that comparelist items can be different for different applications.
The code of method Match in Fig. 8.2 is exactly that of method
Match2Lists ofthis class, as you can see in file coseq. cpp.

In order to use class CosequentialProcess for the application

described earlier, we need to create a subclass StringListProcess
that defines the specific supporting methods. Figure 8.4 (and file

strlist.h of Appendix H) shows the definition of class

StringList Process. The implementations of the methodsare given
in fle strlist.cpp of ‘Appendix H. Theclass definition allows any
numberof input lists. Protected membersare included for the input and

https://hemanthrajhemu.github.io

296 Chapter 8 Cosequential Processing and the Sorting ofLargeFiles

template <class ItemType>

class CosequentialProcess

// base class for cosequential processing

{public:

// The following methods provide basic list processing

// These must be defined in subclasses

virtual int InitializeList (int ListNumber, char * ListName) =0;

virtual int InitializeOutput (char * OutputListName) =0;

virtual int NextItemInList (int ListNumber)=0;

//advance to next item in this list

‘virtual ItemType Item (int ListNumber) = 0;'

/f return current item from this list

virtual int ProcessItem (int ListNumber) =0;

i/ process the item in this list

virtual int FinishUp()=0; // complete the processing

// 2-way cosequential match method

virtual int Match2Lists

(char * ListlName, char * List2Name, char * OutputListName);

};

Figure 8.3

#include

int main

{

Main members and methodsof a generalclass for cosequential processing.

outputfiles and for the values of the current item of éach list. Member

LowVaueis a value that is smaller than any value that can appear in a

list—inthis case, the null string (""). LowValueis used so that method

Next ItemInList does not haveto get thefirst item in any special way.

Member HighValLuehas a similar use, as we will see in the next section.

Given these classes, you should be able to work through the twolists

providedin Fig. 8.1, following the code, and demonstrate to yourself that

these simple procedures can handle the various resynchronization prob-
lems that these samplelists present. A main program (file match. cpp)

to process thelists storedin files list].txt and list2.txt is

"coseq.h"

()

StringListProcess ListProcess(2);// process with 2 lists

ListProcess.Match2Lists ("listi.txt","List2.txt", “match.txt") ;

https://hemanthrajhemu.github.io

An Object-Oriented Modelfor Implementing Cosequential Processes 297

class StringListProcess: public CosequentialProcess<Stringk>

// Class to process lists that are files of strings, one per line

{

public:

StringListProcess (int NumberOfLists); // constructor

// Basic list processing methods

int InitializeList (int ListNumber, char * List1Name);

int InitializeOutput (char * OutputListName) ;

int NextItemInList (int ListNumber); //get next

String& Item (int ListNumber);//return current

int ProcessItem (int ListNumber); // process the item

int FinishUp(); // complete the processing

protected:

ifstream * Lists; // array of list files

String * Items; // array of current Item from each list

ofstream OutputList;

static const char * LowValue;

static const char * HighValue;

};

Figure 8.4: A subclass to supportlists that are files of strings, one per line.

8.1.2 Merging TwoLists

The three-way-test, single-loop model for cosequential processing can
easily be modified to handle merging oflists simply by producing output
for every case of theif-then-else construction since a merge is a union of
the list contents.

An importantdifference between matching and mergingis that with
merging we must read completely through each ofthelists. This necessi-

tates a change in how MoreNames isset. We needto keepthisflag set to
TRUEas long as there are records in either list. At the same time, we must

recognize that one ofthelists has been read completely, and we should
avoid trying to read from it again. Both of these goals can be achieved if
we introduce two MoreNamesvariables, one for eachlist, and set the
stored Item value for the completed list to some value (we call it

HighValue)that

m Cannotpossibly occuras a legal input value, and

https://hemanthrajhemu.github.io

298 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

m Has a higher collating sequence value than anypossiblelegal input
value. In other words, this special value would comeafter all legal

input values in the file’s ordered sequence.

For HighValue,weusethe string “\xFF” whichis a string of only one
character and that character has the hex value FF, whichis the largest char-

acter value.

Method Merge2Listsis given in Fig. 8.5 and in file coseq. cpp
of Appendix. H. This method has been added to class
CosequentialProcess. No modifications are required to class

StringListProcess.

template <class ItemType>
int

{

CosequentialProcess<ItemType>: :Merge2Lists
(char * ListlName, char * List2Name, char * OutputListName)

int MoreItemsl, MoreItems2; // true if more items in list

InitializeList’ (1, ListiName) ;

InitializeList (2, List2Name);
InitializeOutput (OutputListName) ;
MoreItemsl = NextItemInList (1);
MorelItems2 NextIteminbList (2);1

while (MoreItemsl || MoreItems2){// if either file has more

}

if (Item(1) < Item(2))

{// list 1 has next item to be processed
Processitem (1);

Moreitemsi = NextItemInbList (1);

}
else if (Item(1) == Item(2))
{// lists have the same item, process from list 1

ProcessItem (1);

MorelItems1 NextItemInList (1);
MorelItems2 NextIteminbList (2);

}
else // Item(1} > Item(2}

{// list 2 has next item to be processed.
ProcessItem (2);
MoreItems2 = NextItemInList (2);

it
oMt

}
}
FinishUp();
return 1;

Figure 8.5 Cosequential merge procedure based ona single loop:

https://hemanthrajhemu.github.io

An Object-Oriented Model for Implementing Cosequential Processes 299

Once again, you shoulduse this logic to work, step by step, through
the lists provided in Fig. 8.1 to see how the resynchronization is handled
and howthe use of the HighValueforces the procedureto finish both

"lists before terminating.

With these two examples, we have covered all of the pieces of our
model. Now let us summarize the model before adapting it to a more
complex problem..

8.1.3 Summary of the Cosequential Processing Model

Generally speaking, the model can be applied to problemsthat involve the
performance of set operations (union, intersection, and more complex

processes) on two or more sorted input files to produce one or more
outputfiles. In this summary of the cosequential processing model, we

assume that there are only two inputfiles and one outputfile.It is impor-

tant to understand that the model makes certain general assumptions
about the nature ofthe data andtype of problem to besolved. Following
is a list of the assumptions, together with clarifying comments.

Assumptions

Two or more inputfiles are to be processed.
in a parallel fashion to produce one or more
outputfiles.

Each file is sorted on one or morekeyfields,
and all files are ordered in the same ways on

the samefields.

In somecases, there mustexist a high-key
value that is greater than anylegitimate
record key and a low-key value thatis less:

than anylegitimate record key..

Recordsare to be processed in logical sorted

order. ,

Comments

In somecases an outputfile may be the
samefile as one of the inputfiles.

It is not necessary thatall files have the
samerecord structures.

The use of a high-keyvalue and a low-key

value is not absolutely necessary, but it can

help avoid the need to deal with beginning-
of-file and end-of-file conditions as special
cases, hence decreasing complexity.

The physical ordering of recordsis irrele-
vant to the model, butin practice it may be

important to the way the modelis imple-
mented. Physical ordering can have a large

impact on processing efficiency

https://hemanthrajhemu.github.io

300 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

Assumptions (cont.) Comments (cont.)

For each file there is only one current The modeldoesnotprohibit looking ahead

record. This is the record whosekeyis or looking back at records, but such opera-
accessible within the main synchronization tions should berestricted to subclasses and

loop. should not be allowedto affect the structure
of the main synchronization loop.

Records can be manipulated only in internal A program cannotalter a record in place on’
memory. secondary storage.

- Given these assumptions,the essential componentsof the modelare:

1. Initialization. Previous item values forall files are set to the low value;
then current records for all files are readfrom thefirst logical records
in the respectivefiles,

2. One main synchronization loop is used, and the loop continues as

long as relevant records remain.
3. Within the body of the main synchronization loopis a selection based

on comparison of the record keys from respective inputfile records.If
there are two inputfiles, the selection takes the form given in function
MatchofFig. 8.2,

4. Input files and outputfiles are sequence checked by comparing the
previous item value with the new item value when a recordis read.

After a successful sequence check, the previousitem valueis set to the

new item value to prepare for the next input operation on the corre-

spondingfile.
5. High values are substituted for actual key values when end-of-file

occurs. The main processing loop terminates when high values have

occurred for all relevant inputfiles. The use of high values eliminates
the need to add special code to deal with each end-of-file condition.
(This step is not needed in a pure match procedure because a match
procedure halts when the first end-of-file condition is encountered.)

6. All possible I/O and error detection activities are to be relegated to
supporting methodsso the details of these activities do not obscure

the principal processing logic. |

This three-way-test, single-loop model for creating cosequential
processes is both simple and robust. You will find very few applications
requiring the coordinated sequential processing of two files that cannot be

handled neatly and efficiently with the model. We now look at a problem

that is much more complex than a simple match or merge but that never-
theless lendsitself nicely to solution by meansof the model.

https://hemanthrajhemu.github.io

Application of the Model to a General Ledger Program 301

ee

8.2 Application of the Model to a General
Ledger Program

8.2.1 The Problem

Suppose we are given the problem of designing a generalledger posting

program as part of an accounting system. The system includes a journal

file and a ledgerfile. The ledger contains month-by-month summaries of

the values associated with each of the bookkeeping accounts. A sample

portionofthe ledger, containing only checking and expense accounts,is
illustrated in Fig. 8.6.

The journal file contains the monthly transactionsthatare ultimately
to be posted to the ledgerfile. Figure 8.7 shows these journal transactions.
Note that the entries in the journalfile are paired. This is because every
check involves both subtracting an amount from the checking account

balance and adding an amountto at least one expense account. The
accounting-program package needs proceduresfor creating this journal
file interactively, probably outputting recordsto thefile as checks are keyed
in arid then printed.

Acct.No. Accounttitle | Jan Feb "Mar Apr

101 Checking account #1 1032.57 2114.56 5219.23

102 Checking account #2 943.78 3094.17 1321.20

505: Advertising expense 25.00 25.00 25.00

510 Auto expenses 195.40 307.92. 501.12

515 Bankcharges 0.00 0.00 0.00

520 Books and publications 27.95 27.95 87.40

525 Interest expense 103.50 255.20 380.27

535 Miscellaneous expense 12.45 17.87 23.87

540 Office expense 57.50 105.25 138.37

545 Postage and shipping 21,00 27.63 57.45

550 Rent 500.00 1000.00 1500.00

555 Supplies 112.00 167.50 2441.80

Figure 8.6 Sample ledger fragment containing checking and expense accounts.

https://hemanthrajhemu.github.io

302 Chapter 8 ‘Cosequential Processing and theSorting of Large Files

Acct.No CheckNo. Date — Description Debit/ credit

101 127] 04/02/86 Auto expense -78.70

510 127] 04/02/97 Tune-up and minorrepair 78.70

101 1272 04/02/97 Rent -500.00

550 1272 04/02/97 Rentfor April 500.00

101 1273 04/04/97 Advertising -87.50

505 1273 04/04/97 Newspaperad re: new product 87.50

102-670 04/02/97 Office expense -32.78

540- 670 04/02/97 Printer cartridge 32.78

101 1274 04/02/97 Auto expense -31.83

510 1274 04/09/97 Oil change 31.83

Figure 8.7 Sample journal entries.

Once the journal file is complete for a given month, meaningthat it
containsall of the transactions for that month,the journal must be posted
to the ledger. Posting involves associating each transaction with its account.

in the ledger. For example, the printed output produced for accounts 101,

102, 505, and 510 during the posting operation, given the journal entries

in Fig. 8.7, might look like the outputillustrated in Fig. 8.8.

101 Checking account #1

1271 04/02/86 Auto expense -78.70

1272 04/02/97 Rent | . -500.00

1273 04/04/97 Advertising -87.50

1274 04/02/97 Auto expense -31.83

, Prev. bal: 521$.23 New bal: 4521.20
102 Checking account #2 ,

670 04/02/97 Office expense -32.78

Prev. bal: 1323.20 New bal: 1288.42
505 Advertising expense

1273 04/04/97 Newspaper ad re: new product 87.50

Prev. bal: 25.30 Newbal: 112,50

510 Auto expenses

1271 04/02/97 Tune-up and minor repair 78.70

1274 04/09/97 Oil change 31.83

Prev. bal: 591.12 New bal: 611.65

Figure 8.8 Sample ledger printout showingthe effect of posting from the journal.

https://hemanthrajhemu.github.io

Application of the Modelto a General Ledger Program 303

Howis the posting process implemented? Clearly, it uses the account
number as a key to relate the journal transactions to the ledger records.

Onepossible solution involves building an index for the ledger so we can
work through the journal transactions using the account numberin each

journal entry to look up the correct ledger record. But this solution

involves seeking back and forth across the ledgerfile as we work through
the journal. Moreover, this solution does not really address the issue of
creating the output list, in which all the journal entries relating to an

accountare collected together. Before we could print the ledger balances
and collect journal entries for even the first account, 101, we would have to

proceed all the way through the journallist. Where would we save the
transactions for account 101 as we collect them during this complete pass
throughthe journal?

A muchbetter solution is to begin bycollectingall the journal trans-

actionsthat relate to a given account. This involves sorting the journal

transactions by account number, producing a list ordered asin Fig. 8.9.
Nowwecan create our outputlist by working through both the ledger

and the sorted journal cosequentially, meaning that we process the twolists
sequentially and in parallel. This conceptis illustrated in Fig. 8.10. As we
start working through the twolists, we note that we have aninitial match

on account number. We know that multiple entries are possible in the
journalfile but not in the ledger, so we move aheadto the next entryin the

Acct.No CheckNo. Date Description Debit/ credit

101 1271 04/02/86 . Auto expense -78.70

101 1272 04/02/97 Rent -500.00

102 1273 04/04/97 Advertising -87.50

101 1274 04/02/97 Auto expense -31.83

102-670 04/02/97 Office expense -32.78

505 1273 04/04/97 Newspaperad re: new product 87.50

510 127) 04/02/97 Tune-up and minorrepair 78.70

510 1274 04/09/97 Oil change 31.83

540 670 04/02/97 Printer cartridge 32.78
550 1272 04/02/97 Rent for April 500.00

Figure 8.9 List of journal transactions sorted by account number.

https://hemanthrajhemu.github.io

304 Chapter 8 Cosequential Processing and the Sorting of Large Files

journal. The account numbersstill match. We continue doing this until the
account numbers no longer match. We then resynchronize the cosequential
action bymoving aheadin the ledgerlist. This process is often referred to

as a master-transaction process. In this case the ledger entry is the master
record and the journal citry is the transaction entry.

This matching process seems simple, as in fact it is, as long as every

account in one file also appears in another. But there will be ledger
accounts for which there is no journalentry, and there can be typograph-

ical errors that create journal account numbers that donotexist in the
ledger. Such situations can make resynchronization more complicated and

can result in erroneous outputorinfiniteloops if the programmingis
donein an ad hoc way.By using the cosequential processing model, we can

guard against these problems. Let us now apply the model to our ledger
problem.

8.2.2 Application of the Model to the Ledger Program

The monthly ledger posting program must perform two tasks:

mM It needs to update the ledger file with the correct balance for each
accountfor the current month.

m= It must produce a printed version of the ledger that not only showsthe
beginning and current balance for each accountbutalsolistsall the

journaltransactions for the month.

LedgerList JournalList

101

102

505

510

Checking account #1 101 1271 Auto expense

101 1272 Rent

101 1273 Advertising

101 1274 Auto expense

Checking account #2 102. 670 Office expense’

Advertising expense 505 1273 Newspaperadre: new product

Auto expenses 510 1271 Tune-up and minorrepair

510 1274 Oil change

Figure 8.10 Conceptual view of cosequential matching of the ledger and journal files.

https://hemanthrajhemu.github.io

Application of the Model to a General Ledger Program 305

Wefocus on the secondtask as it is the more difficult.Let’s look again

at the form of the printed output, this. time extending the output to
include a.few more accounts as shown in Fig. 8.11. As you can see, the
printed output from the monthly ledger posting program shows the

balancesofall ledger accounts, whether or not there were transactions for
the account. From the pointofview of the ledger accounts, the processis
a merge, since even unmatched ledger accounts appear in the output.

What about unmatched journal accounts? The ledger accounts and
journal accounts are not equal in authority. The ledgerfile defines the set
of legal accounts; the journalfile contains entries that are to be posted to
the accounts listed in the ledger. The existence of a journal account that

does not match a ledger accountindicates an error. From the point ofview
of the journal accounts, the posting processis strictly one of matching.

Our post method needs to implement a kind of combined merging/
matching algorithm while simultaneously handling the choresof printing

accounttitle lines, individual transactions, and summarybalances.

101

505

510

515

520

Checking account #1

1271 04/02/86 Auto expense -~78.70

1272 04/02/97 Rent -~500.00

1274 04/02/97 Auto expense -31.83

1273 04/04/97 Advertising -87.50

Prev. bal: 5219.23 New bal: 4521.20

Checking account #2

670 04/02/97 Office expense -32,78

Prev.. bal: 1321.20 New bal: 1288.42

Advertising expense
1273 04/04/97 Newspaper ad re: new. product 87.50

Prev. bal: 25.00 New bal: 112.50

Auto expenses ,

1271 04/02/97 Tune-up and minor repair 78.70
1274 04/09/97 Oil change 31.83

Prev. bal: 501.12 New bal: 611.65

Bank charges

Prev. bal: 0.00 New bal: 0.00
Books and publications

Prev. bal: 87.40 New bal: 87.40

Figure 8.11 Sample ledger printoutfor the first six accounts.

https://hemanthrajhemu.github.io

306 Chapter 8 Cosequential Processing and the Sorting of Large Files

In summary, there are three different steps in processing the ledger
entries:

1. Immediately after reading a new ledger object, we need to print the

header line andinitialize the balance for the next month from the
previous month’s balance.

2. For each transaction object that matches, we need to update the

account balance.

3. After the last transaction for the account, the balance line should be

printed. This is the place where a new ledger record could be written
to create a new ledgerfile.

This posting operation is encapsulated by defining subclass

MasterTransactionProcess of CosequentialProcess and

defining three new pure virtual methods, one for each of the steps in
processing ledger entries. Then wecan give the full implementation ofthe

posting operation as a method ofthis class. Figure 8.12 showsthe defini-

tion of this class. Figure 8.13 has the codefor the three-way-test loop of
method PostTransactions.The newmethods ofthe class are used
for processing the master records (in this case the ledger entries). The
transaction records (journal entries) can be processed by the

Processitem methodthatis in the base class.

The reasoning behind the three-waytestis as follows:

1. If the ledger (master) account number (Item[1]) is less than the

journal (transaction) account number (Item[2]), then there are no

more transactions to addto the ledger account this month (perhaps

there were noneat all), so we print the ledger account balances

(ProcessEndMaster) and read in the next ledger account

(NextItemInList (1)). If the account exists (MoreMasters

is true), we print the title line for the new account

(ProcessNewMaster).

2. Ifthe account numbers match, then we have a journaltransaction that

is to be posted to the current ledger account. We add thetransaction
amount to the account balance for the new month
(ProcessCurrentMaster), print the description of the transac-

tion (ProcessItem(2).), then read the next journal entry

(Next ItemInList (1)). Note that unlike the match case in either

the matching or merging algorithms, we do notread a new entry from
both accounts. Thisis a reflection of our acceptance ofmore than one
journalentry for a single ledger account.

https://hemanthrajhemu.github.io

Application of the Model to a General Ledger Program 307

template <class ItemType>

class MasterTransactionProcess:

_ public CosequentialProcess<ItemType>

// a cosequential process that supports

// master/transaction processing

{public:
MasterTransactionProcess ();//constructor

virtual int ProcessNewMaster ()=0;

// processing when new master read _
virtual int ProcessCurrentMaster ()=0;

// processing for each transaction for a master

virtual int ProcessEndMaster (}=0;

// processing after all transactions for a master

virtual int ProcessTransactionError ()=0;

-// no master for transaction

// cosequential processing of master and transaction records

int PostTransactions. (char * MasterFileName,

char * TransactionFileName, char * OutputListName);

‘3

Figure 8.12. Class MasterTransactionProcess.

while (MoreMasters || MoreTransactions)

if (Item(1) < Item(2)){// finish this master record

ProcessEndMaster (};
MoreMasters = NextItemInList (1);

if (MoreMasters) ProcessNewMaster();

i

else if (Item(1) == Item(2)){ // transaction matches’ master

ProcessCurrentMaster(}); // another transaction for master

ProcessiItem (2);// output transaction record

MoreTransactions = NextItemInList (2);
\

else { // Item(1) > Item(2) transaction with no master

ProcessTransactionError();

MoreTransactions = NextItemInList (2);

Figure 8.13 Three-way-test loop for method PostTransactions ofclass
MasterTransactionProcess.

https://hemanthrajhemu.github.io

308 Chapter 8 Cosequential Processing and the Sorting of Large Files

3. If the journal account ts less than the ledger account, thenit is an

unmatched journal account, perhaps due to-an input error. We print

an error message (ProcessTransactionError) and continue
with the next transaction.

In order to complete our implementation of the ledger posting appli-
cation, we need to create a subclass LedgerProcess that includes

implementation of the Next ItemInList, Item,and ProcessItem
methods and the methodsforthe three steps ofmaster record processing.
This new class is given in files Ledgpost.hand ledgpost .cpp of

Appendix H. The master processing methodsare all very simple, as shown

in Fig. 8.14.

The remainder of the code for the ledger posting program, including
the simple main program,is given in files ledger.h, ledger. cpp,

and post .cpp in Appendix H.This includes the ost ream formatting
that produced Figs. 8.8 and 8.11. The classes Ledger and Journal

makeextensive use of the [OBuffer and RecordFile classes for their

file operations.
The developmentof this ledger posting procedure from our‘basic

cosequential processing modelillustrates how the simplicityof the model

contributes to its adaptability. We can also generalize the model in an

entirely different direction, extending it to enable cosequential processing

int LedgerProcess::ProcessNewMaster ()

{// print the header and setup last month's balance

ledger .PrintHeader (GutputList);

ledger .Balances [MonthNumber] = ledger.Balances[MonthNumber-1] ;

int LedgerProcess::ProcessCurrentMaster ()

{// add the transaction amount to the balance for this month

ledger.Balances{MonthNumber] += journal.Amount;

int LedgerProcess::ProcessEndMaster ()

{// print the balances line to output

PrintBalances (QutputList,

ledger .Balances {[MonthNumber-1], ledger.Balances (MonthNumber]);

}

Figure 8.14 Master record processing for ledger objects,

https://hemanthrajhemu.github.io

Extension of the Modelto Include Multiway Merging 309

of more than twoinputfiles at once. Toillustrate this, we now extend the

model to include multiway merging.

8.3 Extension of the Model to Include Multiway
Merging

The most common application of cosequential processes requiring more

than two inputfiles is a K-way merge, in which we want to merge K input

lists to create a single, sequentially ordered outputlist. K is often referred
to as the order of a K-way merge.

8.3.1 A K-way Merge Algorithm

Recall the synchronizing loop weuse to handle a two-way mergeof two
lists of names. This merging operation can be viewedas a processof decid-
ing which of two input items has the minimum value, outputting that
item, then moving aheadin the list from which thatitem is taken, In the

event of duplicate input items, we move aheadin eachlist.

Suppose we keep an arrayoflists and array of the items(or keys) that
are being used from eachlist in the cosequential process:

list[O], list {1], list({2],... list[k-1]}

Item[0}], Item[1], Item[3],... Item({k-1]

The main loop for the merge processing requires a call to a MinIndex func-
tion to find the index of item with the minimum collating sequence value

and an innerloop that findsall lists that are using that item:

‘int minItem = MinIndex(Item,k); // find an index of minimum item
Processitem(minItem); // Item(minItem) is the next output

for {i = 0; ick; i++) // look at each list

if (Item(minItem) == Item(i)} // advance list i

MoreItems{i] = NextItemInList{1);

Clearly, the expensive parts of this procedure are finding the minimum
and testing to see in whichlists the item occurs and whichfiles therefore
need to be read. Note that because the item can occurin severallists,
every one of these if tests must be executed on every cycle through the

loop. However,it is often possible to guaranteethata single item,or key,

occurs in only onelist. In this case, the procedure becomes simpler and
more efficient.

https://hemanthrajhemu.github.io

310 Chapter 8 Cosequential Processing and the Sorting ofLarge Files

int minI = minIndex(Item,k); // find index of minimum item

ProcessItem(minI); // Item({minI} is the next output

MorelItems [minI]=NextItemInList (minTI) ;

The resulting merge procedureclearly differs in many ways from our

initial three-way-test, single-loop merge for twolists. But, even so, the
single-loop parentageisstill evident: there is no looping within list. We

determine whichlists have the key with the lowest value, output that key,
move ahead one keyin each of thoselists, and loop again. The procedure

is as simple asit is powerful. |

8.3.2 A Selection Tree for Merging Large Numbersof Lists

The K-way merge described earlier works nicely if Kis no larger than 8 or
so. When we begin merging a larger numberoflists, the set of sequential
comparisonsto find the key with the minimum value becomesnoticeably

expensive. We see later that for practical reasons it is rare to want to
merge more than eight files at one time, so the use of sequential compar-

isons is normally a good strategy. If there is a need to merge considerably

more than eight lists, we could replace the loopof comparisons with a

selectiontree.

The use of a selection tree is an example of the classic time-versus-
space trade-off we so often‘ encounter in computer science. We reduce the

time required to find the key with the lowest value by using a data struc-

ture to save information about the relative key values across cycles of the
procedure’s main loop. The concept underlying a selection tree can be

readily communicated through a diagram suchas thatin Fig. 8.15. Here
we have usedlists in which the keys are numbersratherthanstrings.

Theselection tree is a kind of tournament tree in which each higher-

level node represents the “winner”(in this case the minimum key value) of

- the comparison between the two descendent keys. The minimum valueis
alwaysat the root nodeofthetree. If each key has an associated reference

to the list from which it came,it is a simple matter to take the key at the

root, read the next element from the associatedlist, then run the tourna-
ment again. Since the tournamenttreeis a binarytree,its depthis

[log, K|

for a mergeof K lists. The numberof comparisonsrequired to establish a

new tournament winneris, of course, related to this depth rather than

being a linear function of K.

https://hemanthrajhemu.github.io

8.4

A Second Look at Sorting in Memory ‘317

7,10,17. . . List 0

ro

_— 919,93... List 1
7ae en 13,32. . . List 2

11
“18, 22, 24... List 3

<€— Input ———— 5
| “re 12, 14, 21. List 4

5
_— “~ 5, 6,25... List 5

5
— 15, 20, 30. « « List 6

8a
8, 16,29... List 7

Figure 8.15 Use of a selection tree to assist in the selection of a key with
minimum value in a K-way merge.

A Second Lookat Sorting in Memory

In Chapter 6 we considered the problem of sorting a disk file that is small

enoughto fit in memory. The operation we described involves three sepa-

rate steps: ,

1. Read the entire file from disk into memory.

2. Sort the records using a standard sorting procedure,suchas shellsort.

3. Write thefile back to disk.

The total time taken to sort the file is the sum ofthe times for the three
steps. We see that this procedure is much faster than sortingthefile in

place, on the disk, because both reading and writing are sequential and

each record is read once and written once.
Can we improve on the timethat it takes for this memorysort? If we

assume that we are reading and writing the file as efficiently as possible
and we have chosen the best internal sorting routine available, it would

seem not. Fortunately, there is one way that we might speed up analgo-
rithm that hasseveral parts, and that is to perform someof those parts in

parallel.
Of the three operations involved in sorting file that is small enough

to fit into memory,is there any way to perform someof them in parallel?

If we have only one-disk drive, clearly we cannot overlap the reading and

writing operations, but how aboutdoingeither the reading or writing (or
both) at the same time that wesortthefile? .

https://hemanthrajhemu.github.io

312 Chapter 8 Cosequential Processingand the Sorting of Large Files

8.4.1 Overlapping Processingand I/O: Heapsort

Most of the time when weusean internalsort, we have to wait until we
have the wholefile in memory before we can start sorting. Is therean

internal sorting algorithm that is reasonably fast and that can begin sort-
ing numbers immediately as they are read rather than waiting for the

wholefile to be in memory? In fact there is, and we have already seen part
ofit in this chapter. It is called heapsort, andit is loosely based on the same

principle as the selection tree.

Recall that the selection tree compares keys as it encounters them.
Each time a new keyarrives,it is compared with the others; and if it is the

smallest key, it goes to the root of the tree. This is very useful for our

purposes because it means that we can begin sorting keys as they arrive in

memoryratherthan waiting until the entirefile is loaded before westart
sorting. Thatis, sorting can occur in parallel with reading.

Unfortunately, in the case of the selection tree, each time a new small-

est key is found,it is output to the file. We cannotallow this to happen if

we wantto sort the whole file because we cannot begin outputting records
until we know which one comesfirst, second, and so on, and we won't
knowthis until we have seenall of the keys.

Heapsortsolves this problem by keepingall of the keys in a structure.

called a heap. A heap |is a binary tree with the following properties:

1. Each node has a single key, and that keyiis greater than or equalto the
keyat its parent node.

2. tis a complete binary tree, whichmeansthat all ofits leaves are on no
more than twolevels andthat all of the keys on the lowerlevel are in’
the leftmost position.

3. Because of properties 1 and 2, storage for the tree can be allocated

sequentially as an array in such a waythat the root nodeis index 1 and
| the indexes of the left andright children of node i are 2i and 21+1,

respectively. Conver‘ely, the index of the parent of node is Li/2J.

Figure 8.16 shows a heap in both its tree form and as it would be

stored in an array. Note that this is only one of manypossible heapsfor the

given set of keys. In practice, each key has an associated recordthat.is

either stored in thearray with thekey or pointed to by a pointerstored
with the key.

_ Property 3 is very useful for our purposes because it meansthat a heap.

1S Just an array of keys in whichthepositionsof thekeys in the arrayare

‘sufficient to impose an ordering on the entire set of keys. There is no need

https://hemanthrajhemu.github.io

A Second Lookat Sorting in Memory 313

JIN. 1 2 3 4 5 6 7 8 9

J /\ ‘OGogGogE

/\

Figure 8.16 A heapin bothits tree form and as it would be stored in an array.

for pointers or other dynamic data structuring overhead to create and
maintain the heap. (As we pointed out earlier, there may be pointers asso-
ciating each key with its correspondingrecord,butthis has nothing to do
with maintaining the heap.)

8.4.2 Building the Heap While Reading theFile

The algorithm for heapsort has twoparts. First we build the heap; then we

output the keys in sorted order. The first stage can occurat virtually the
same time that we read the data, so in termsofelapsed time it comes
essentially free. The main members of a simple class Heap andits
Insert methodthat adds a string to the heap is shownin Fig. 8.17. full

implementation of this class and a test program are in file.
heapsort .cpp in Appendix H. Figure 8.18 contains a sample applica-
tion of this algorithm.

This shows howto build the heap, but it doesn’t tell how to make the

input overlap with the heap-building procedure.To solve that problem, we
need to look at how we perform the read operation. For starters, we are
not going to do a seek every time we wanta newrecord.Instead, we read a

block of records at a time into an input buffer and then operate on all of
the records in the block before going on to the next block. In terms of

memorystorage, the input buffer for each new block of keys can be part of

the memoryarea that is set up for the heap. Each time we read a new
block, we just appendit to the end of the heap (that is, the input buffer
“moves”as the heap gets larger). The first new record is then at the end of

the heap array, as required by the Insert function (Fig. 8.17). Oncethat

record is absorbedinto the heap, the next new record is at the endofthe

heaparray, ready to be absorbed into the heap,andsoforth.

https://hemanthrajhemu.github.io

314 Chapter 8 Cosequential Processing and the Sorting of Large Files

class Heap

{public:

Heap (int maxElements) ;

int Insert (char * newKey);

char * Remove(};

protected:

int MaxElements; int NumElements;

char ** HeapArray;

void Exchange(int i, int j); // exchange element i and j

int Compare {int i, int j) // compare element i and j

{return strcmp (HeapArray [i] ,HeapArray![3]);}

};
int Heap::Insert (char * newKey)

{

if (NumElements == MaxElements) return FALSE;

NumElements++; // add the new key at the last position
HeapArray [NumElements] = newkKey;

// re-order the heap .

int k = NumElements; int parent;

‘while (k > 1) // k has a parent

{
parent = k / 2;

if (Compare(k, parent) >= 0) break;

// HeapArray[k} is in the right place:

// else exchange k and parent

Exchange(k, parent);

k = parent;

}
return TRUE;

}

Figure 8.17 Class Heap and method Insert.

Use'of an inputbufferavoidsan excessivenumberofseeks, but.it
still doesn’t let input occur at the same timethatwebuildtheheap. We

sawin Chapter 3 thatthewayto make processing overlap with I/Ois to
use more than one buffer. With multiple buffering, as we process the

keys in one block from thefile, we can simultaneously read later blocks

fromthefile. If we use multiple buffers, how many should weuse, and

where should we put them? We already answered these questions when

we decided to put each newblock at the end of the array. Each time we

https://hemanthrajhemu.github.io

A Second Look at Sortingin Memory 315

FDCGHIBEA

New key to Heap,after insertion Selected heaps

be inserted of the new key in tree form

F 123456789

F

D 12345678 9

DF

c
5678 9Cc 1234 roaON,

Cc FD —>

G 123456788

Cc FODG

H 123456789 Ze

CFDGHR oy D

G H I
I Lpsaser89

CFDGHI

B
B ara Pa

FCGH ——_—_—_}
of Na 1% “op

E 12345678 9
BECFHIDG

A
A 123,45.67893 3B” Cc

BCEHIDGF ——

D>

YN, NpaN H I
G FE

Figure 8.18 Sample application of the heap-building algorithm. ThekeysF,
D,C,G,H,1,B, E,and A are added to the heapin the order shown.

add a newblock,the array getsbigger by thesize of that block, in effect
creating a-new input buffer foreach blockinthefile. So the numberof
buffers is the numberof blocksin thefile, and they are located. in
sequencein the array. -

Figure 8.19 illustrates the technique that we have just described, in
which we append each newbiockofrecordsto the end ofthe heap,there-
by employing a memory-sized set of input buffers. Now we read new

blocksas fast as we can, never having to wait for processing before reading

a new block, On the other hand, processing (heap building) cannot occur

on a given block until the block to be processed is read, so there may be

some delay in processing if processing speeds are faster than reading

speeds.

https://hemanthrajhemu.github.io

316 Chapter 8 Cosequential Processing and the Sorting of Large Files

k¢—--____—— Total RAM area allocatedfor heap ——___—-»

First input buffer. First part of heap is built here. The first recordis
addedto the heap, then the second recordis added, andso forth.

L LTT L L

Second inputbuffer. This buffer is being
filled while heap is beingbuilt in first buffer.

Second part of heapis built here. The first record is

addedto the heap, then the secondrecord,etc.

Le | CE J .

Third input buffer. This bufferis filled

.while heapis being built in second buffer.

poepart of heapis built here.

Ld ceceFATLUTNNLEAUATA iF

Fourth input buffer is filled while

heapis being built in third buffer.

Figure 8.19 Illustration of the technique described in the text for overlap-
ping input with heap building in memory.First read in a block into thefirst
part of memory.The first record is the first record in the heap.Then extend

the heapto include the second record, and incorporatethat record into the

heap, and so forth. While the first block is being processed,read in the second
block. Whenthefirst block is a heap, extendit to includethe first record in the
second block, incorporate that record into the heap, and go onto the next
record. Continue until all blocks are read in and the heapis completed.

8.4.3 Sorting While Writing to the File

Thesecondandfinal step involves writing the heap in sorted order. Again,
itispossible to overlap 1/O (in this case writing) withprocessing.First,let’s
look at how to outputthe sorted keys. Retrieving the keys in orderis
simply a repetition of the followingsteps:

1. Determinethe value of the key-in the first position of the heap. Thisis
the smallest value in the heap.

https://hemanthrajhemu.github.io

A Second Lookat Sorting in Memory 317

2. -Move the largest value in the heap intothefirst position, and decrease
the numberof elements by one. The heap is now outof orderatits

root.

3. Reorder the heap by exchanging the largest element with the smaller

of its children and moving downthe tree to the new position ofthe
largestelement until the heapis back in order.

Each time these three steps are executed, the smallest valueis retrieved and
removed from the heap. Figure 8.20 contains the code for method

Remove that implements these steps. Method Compare simply
compares two heap elements and returns —1 if the left elementis smaller.

Again, there is nothing inherent in this algorithm thatlets it overlap

with I/O, but we can take advantage ofcertain features of the algorithm to

char * Heap: :Remove()

{// remove the smallest element, reorder the heap,

-// and return the smallest element

// put the smallest value into ‘val’ for use in return

char * val = HeapArray{1];

// put largest value into root

HeapArray(1] = HeapArray iNumElements];

// decrease the number of elements

NumEléements-;

// veorder the heap by exchanging and moving down

int k = 1; // node of heap that contains the largest value

int newK; // node to exchange with largest value

while (2*k <= NumElements)// k has at least one child

{ // set newK to the index of smallest child of k

if (Compare(2*k, 2*k+1)<0) newK = 2*k;

else newK = 2*k+1;

// done if k and newK are in order

if (Compare(k, newK) < 0) break; //in order

Exchange(k, newK); // k and newK out of order

k = newK; // continue down the tree

}
return val;

}

Figure 8.20 MethodRemoveofclass Heap removesthe smallest element and reorders
the heap,

https://hemanthrajhemu.github.io

318

8.5

Chapter 8 Cosequential Processing and the Sorting of LargeFiles

make overlapping happen.First, we see that we know immediately which
record will be written first in the sortedfile; next, we know whatwill come

second; and so forth. So as soon as we have identified a block of records,

we can write that block, and while we are writing that block, we can iden-

tify the next block, and so forth.
Furthermore, each time weidentify a block to write, we make the heap

smaller by exactly the size of a block, freeing that space for a new output

buffer. So just aswas the case whenbuilding the heap, we can have as many

output buffers as there are blocksin thefile. Again,a little coordinationis

required between processing and output, but the conditionsexist for the
two to overlap almost completely.

A final point worth making aboutthis algorithm is thatall I/O it

performsis essentially sequential. All records are read in the order in

which they occurin thefile to be sorted, and all records are written in sort-
ed order. The technique could work equally well if the file were kept on
tape or disk. More important,sinceall I/O is sequential, we knowthatit
can be done with a minimum amountof seeking.

Merging as a Wayof Sorting Large Files on Disk

In Chapter 6 we ran into problems when we neededtosortfiles thatwere

too large to be wholly contained in memory. The chapter offered a
partial, but ultimately unsatisfactory, solution to this problem in the
form of a keysort, in which we neededto hold only the keys in memory,
along with pointers to each key’s correspondingrecord. Keysort had two

shortcomings:

1. Once the keys were sorted, we then had to bear the substantial cost of

seeking to each record in sorted order, reading each record in and then
writing it into the new,sortedfile.

2. Withkeysorting, the size of thefile that can be sorted is limited by the

number of key/pointer pairs that can be contained in memory.

Consequently, westill cannotsortreally largefiles.

As an example of the kind of file we cannot sort with either a memo-

ry sort or a keysort, suppose we havea file with 8 000 000 records, each of

whichis 100 bytes long and containsa keyfield that is 10 bytes long. The

total length ofthis file is about 800 megabytes. Let us further suppose that
we have 10 megabytes of memoryavailable as a work area, not counting

https://hemanthrajhemu.github.io

Mergingas a WayofSorting Large Files on Disk 319

memory used to hold the program,operating system, I/O buffers, and so
forth. Clearly, we cannotsort the wholefile in memory. We cannot even

sort all the keys in memory, because it would require 80 megabytes.

The multiway merge algorithm discussed in Section 8.3 providesthe

beginningofan attractive solution to the problem ofsorting largefiles
such asthis one. Since memory-sorting algorithms such as heapsort can
work in place, using only a small amount of overhead for maintaining

pointers and some temporary variables, we can create a sorted subset of

ourfull file by reading records irito memory until the memory work area
is almost full, sorting the records in this work area, then writing the sorted
records back to disk as a sorted subfile. We call such a sorted subfile a run.

Given the memoryconstraints and record size in our example, a run could

contain approximately

10 000 000 bytes of memory
= 100 000 records

100 bytes per record

Once wecreate the first run, we then read a newsetofrecords, once again

filling memory, and create another run of 100 000 records. In our exam-
ple, we repeat this process until we havecreated eighty runs, with each run

containing 100 000 sorted records.
Once we have the eighty runs in eighty separate files on disk, we can

perform an eighty-way merge of these runs, using the multiway merge

logic outlined in Section 8.3, to create a completely sorted file containing
all the original records. A schematic view of this run creation and merging
process is provided in Fig. 8.21.

This solution to our sorting problem hasthe followingfeatures:

m@ Itcan, in fact, sort large files and can be extendedto files of anysize.

m Readingofthe inputfile during the run-creation step is sequential and
hence is muchfaster than input that requires seeking for every record

individually (as in a keysort).

m Reading througheach run during merging and writing the sorted
recordsis also sequential. Random accesses are required only as we
switch from run to run during the merge operation.

m =f a heapsortis used for the in-memorypart of the merge, as described

in Section 8.4, we can overlap these operations with I/O so the in-

memory part does not add appreciablyto thetotal time for the merge.

m Since I/O is largely sequential, tapes can be usedif necessary for both

input and output operations.

https://hemanthrajhemu.github.io

320 Chapter 8 Cosequential Processing andthe Sorting of LargeFiles

 l+— 800 000 unsorted records — >|

 ioébed
80 runs, each containing 10 000 sorted records

y _¥

SSM

erte

 oo 800 000 records in sorted orderns

Figure 8.21 Sorting through the creation of runs {sorted subfiles) and subsequent

merging of runs.

8.5.1 How Much Time Does a MergeSort Take?

This general approach to the problem of sorting largefiles looks promis-

ing. To compare this approach with others, we now look at how much
time it takes. We do this by taking our 8 million record files and seeing
how longit takes to do a merge sort on theSeagate Cheetah 9 disk drive
whose specificationsarelisted in Table 3.1. You might recall that this was
the fastest disk available for PCs in early 1997. Please note that our inten-

tion here is not to derive time estimates that mean anything in any envi-
ronmentother than the hypothetical environment we have posited. Nor
do we want to overwhelm you with numbers or provide you with magic
formulas for determining how longa particular sort on a real system will

really take. Rather, our goal in this section is to derive some benchmarks

that we can use to compare several variations on the basic merge sort
approachto sorting externalfiles.

https://hemanthrajhemu.github.io

Merging as a Way of Sorting Large Files on Disk 321

‘We can simplify matters by making the following simplifying assump-

tions about the computingenvironment:

m Entirefiles are always stored in contiguousareas on disk (extents), and

a single cylinder-to-cylinder seek takes no time. Hence, only one seek is
requiredfor any single sequential access.

m Extents that span more than onetrack are physically staggered in such
a way that only one rotational delay ts required per access.

Wesee in Fig. 8.21 that there are four times when I/O is performed.
During the sort phase: |

m Readingall records into memoryfor sorting and forming runs, and
m Writing sorted runs to disk.

During the merge phase:

m Readingsorted runs into memory for merging, and
mM Writing sortedfile to disk.

Let’s look at each of these in order.

Step 1: Reading Records into Memoryfor Sorting and Forming Runs

Since we sort the file in 10-megabyte chunks, we read 10 megabytes at a
time from thefile. In a sense, memoryis a 10-megabyte input buffer that
wefill up eighty times to form the eighty runs. In computingthetotal time

to input each run, we need to include the amountoftimeit takes to access
each block (seek time + rotational delay), plus the amountof timeit takes

to transfer each block. We keep these two times separate because, as we see
later in our calculations, the role that each plays can varysignificantly
depending on the approach used. . .

From Table 3.1 we see that seek and rotational delay times are 8 msec!
and 3 msec,respectively, so total time per seek is 11 msec.? The transmis-

sion rate is approximately 14 500 bytes per msec. Total input time for the
sort phase consists of the time required for 80 seeks,plus the time required
to transfer 800 megabytes:

1, Unless the computing environmenthas manyactive users pulling the read/write head to other parts
of the disk, seek timeis likely to be less than the average, since many of the blocks that make up the

file are probably going to be physically adjacent to one another on the disk. Many will be on the

same cylinder, requiring no seeks at all. However, for simplicity we assumethe average seek time.

2. For simplicity, we use the term seek even though wereally mean seek and rotational delay. Hence,

the time we give for a seekis the time thatit takes to perform an average seek followed by an aver-
age ratationaldelay.

https://hemanthrajhemu.github.io

322 Chapter 8 Cosequential Processing and the SortingofLa rge Files

Access: 80 seeks x 11 msec = lsec

Transfer: 800 megabytes @ 14 500 bytes/msec = 60sec

Total : 61 sec

Step 2: Writing Sorted Runsto Disk

In this case, writing is just the reverse of reading—the same numberof
seeks and the same amount ofdata to transfer. So it takes another 61

seconds to write the 80 sorted runs.

Step 3: Reading Sorted Runs into Memoryfor Merging

Since we have 10 megabytes of memoryfor storing runs, we divide 10
megabytes into 80 parts for buffering the 80 runs. In a sense, weare real-
locating our 10 megabytes of memoryas 80 input buffers. Each of the 80
buffers then holds 1/80th of a run (125 000 bytes), so we have to access

each run 80 timesto readall ofit. Because there are 80 runs, in orderto

complete the merge operation (Fig. 8.22) we end up making

80 runs X 80 seeks = 6400 seeks.

Total seek and rotation time is then 6400 x 11 msec =70 seconds.

Since 800 megabytesis still transferred, transfer timeis still 60 seconds.

Step 4: Writing Sorted File to Disk

To compute the timefor writing the file, we need to know how big our

output buffers are. Unlike steps 1 and 2, where our big memorysorting

Ist run = 80 buffers’ worth (80 accesses)

LITT TT TTe TPP rTPyyTT yyy errr ry yr

2nd run = 80 buffers’ worth (80 accesses)

Livi ti Tey TTT TTT TTT TTT TTT TTT ret tt)

800 .000

e sorted records

80th run = 80 buffers’ worth (80 accesses) __

SERSRRR

Figure 8.22 Effect of buffering on. the numberofseeks required, where each run is as

large as the available work area in memory.

https://hemanthrajhemu.github.io

' Merging as.a WayofSorting Large Files on Disk _ 323

space doubled as our I/O buffer, we are now using that memoryspace for

storing the data from the runs before it is merged. To keep matters simple,
let us assume that we can allocate two 200 000-byte output buffers.3 With
200 000-byte buffers, we need to make

800 000 000
200 000 bytes per seek = 4000 seeks.

Total seek and rotation time is then 4000 x 11 msec = 44 seconds.Transfer

timeis still 60 seconds.
The time estimates for the four steps are summarized inthefirst row

in Table 8.1. The total time for this mergesort is 356 seconds, or 5 minutes,

56 seconds. The sort phase takes 122 seconds, and the merge phase takes
234 seconds.

To gain an appreciation of the improvement that this merge sort

approach provides us, we need only look at how long it would take us to
do one part of a nonmerging methodlike the keysort method described in
Chapter 6. Thelast partof the keysort algorithm (Fig. 6.16) consists ofthis
for loop:

// write new file in key order

for (int j.= 0; j < inFile . NumRecs(); j++}
(

inFile . ReadByRRN (obj, Keys[j] . RRN);// read in key order
outFile . Append (obj);// write in key order

3. We use two buffers to allow double buffering; we use 20 000 bytes per buffer because thatis
approximately the size of a track on our hypotheticaldisk drive.

Table 8.1 Time estimates for merge sort of 80-megabytefile, assuming use of the

Seagate Cheetah 9 disk drive described in Table 3.1.The total time for the sort phase
(steps 1 and 2) is 14 seconds, and thetotal time for the merge phaseis 126 seconds.

‘Amount Seek + Transfer

‘Number transferred rotation time time Total time

of seeks (megabytes) (seconds) (seconds) (seconds)

Sort: reading “800 | 800 1 60 61

Sort: writing 800 800] 60 61

Merge:reading 6400 800 70 60 130

Merge: writing 4000 -800 44 60 104

Totals 10 560 3200 116 240 356

https://hemanthrajhemu.github.io

324 Chapter 8 Cosequential Processing and the Sorting of Large Files

This for loop requires us to do a Separate seek for every recordin thefile.

That is 8 000 000 seeks. At 11 msec per seek, the total time required to

perform that one operation works out to 88 000 seconds,or 24 hours, 26
minutes, 40 seconds!

Clearly, for large files the merge sort approach in generalis the best
option of any that we have seen. Does this mean that we have found the

best technique for sorting largefiles? If sorting is a relatively rare event
andfiles are nottoo large, the particular approach to mergesortingthat

we have just looked at produces acceptable results. Let’s see how those
results stand up as we change some of the parameters of our sorting
example.

8.5.2 Sorting a File That Is Ten Times Larger

The first question that comes to. mind when we ask about the general
applicability of a computing technique is: What happens when we make

the problem bigger? In this instance, we need to ask howthis approach
stands up as we scale upthe size of thefile. "

Before we look at how a biggerfile affects the performance of our

merge Sort, it will help to examine the kinds of I/O that are being done in
the two different phases—thesort phase and the merge phase. Wewill see
that for the purposesoffinding ways to improve on ouroriginal appfoach,
weneed pay attention only to one of the two phases.
A major difference between the sort phase and the mergephaseis in

the amountof sequential (versus random) access that each performs. By
using heapsort to create runs during the sort phase, we guarantee thatall
I/O is, in a sense, sequential.* Since sequential access implies minimal

seeking, we cannot algorithmically speed up I/O during the sort phase. No

matter what we do with the records in the file, we have to read them and
write them all at least once. Since we cannot improve on this phase by

changing the way we do the sort or merge, we ignore the sort phasein the

analysis that follows.
The merge phaseis a different matter. In particular, the reading step of

the merge phaseis different. Since there is a memory buffer for each run,

and these buffers get loaded andreloaded at unpredictable times, the read

step of the merge phaseis, to a large extent, one inwhich random accesses

4, It is not sequential in the sensethat in a multiuser environmentthere will be other users pulling the

read/write head to other parts of the disk between reads and writes, possibly forcing the disk to do
a seek each timeit reads or writes a block.

https://hemanthrajhemu.github.io

Merging as a WayofSorting Large Files on Disk 325

are the norm. Furthermore, the numberand size of the memorybuffers that

we read the run data into determine the numberof times we have to do

randomaccesses. If we can somehow reconfigurethese buffers in ways that
reduce the number of random accesses, we can speed up I/O correspond-
ingly. So, if we are going to look for ways to improve performance in a merge

sort algorithm, our best hopeis to look for ways to cut down on the numberof
random accesses that occur while reading runs during the merge phase.

Whatabout the write step of the merge phase? Like the steps ofthe

sort phase,this step is not influencedby differences in the waywe organize
runs. Improvements in the way we organize the merge sort do notaffect
this step. On the other hand, wewill see later thatit is helpful to include

this phase when we measurethe results of changes in the organization of
the mergesort. .

To sum up, since the merge phase is the only one in which we can

improve performance by improving the method, we concentrate onit

from now on. Nowlet’s get back to the questionthat we started this

section with: What happens when we make the problem bigger? How,for

instance, is the time for the merge phase affected if our file is 80 million
records rather than 8 million?

If we increase the size of ourfile by a factor of 10 withoutincreasing
the memory space, we clearly need to create more runs, Instead of 80

initial 100 000-record runs, we now have 800 runs. This means we have to
do an 800-way merge in our 10 megabytes of memory space. This, in turn,
means that during the merge phase we must divide memoryinto 800

buffers. Each of the 800 buffers holds 1/800th of a run, so we would end
up making 800 seeks per run, and

800 runs x 800 seeks/run = 640 000 seeksaltogether

The times for the merge phase are summarizedin Table 8.2. Note that
the total time is more than 2 hours and 24 minutes, almost 25 times

greater than for the 800-megabytefile. By increasing thesize of ourfile, we
have gotten ourselves backinto thesituation we had with keysort, in which
we can’t do the job we need to do without doing a huge amountof seek-
ing. In this instance, by increasing the order of the merge from 80to 800,

we madeit necessary to divide our 10-megabyte memoryarea into 800
tiny buffers for doing I/O; and because the buffers are tiny, each requires
manyseeksto processits corresponding run.

If we want to improve performance,clearly we needto look for ways

to improve on the amountof time spentgetting to the data during the
merge phase. We will do this shortly, but first let us generalize what we
have just observed.

https://hemanthrajhemu.github.io

326 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

Table 8.2 Time estimates for mergesort of 8000-megabyte file, assuming use of the
Seagate Cheetah 9 disk drive described in Table 3.1.The total time for the merge phaseis

7600 seconds, or 2 hours, 6 minutes, 40 seconds,

Amount Seek + Transfer

Number transferred rotation time time Total time

of seeks (megabytes) (seconds) (seconds) (seconds)

Merge: reading 640 000 8000 7040 600 7640

Merge: writing 40 000, 8000 440 600 1040

Totals 680 000 16 000 7480 1200 » 8680

8.5.3 The Cost of Increasing the File Size

Obviously, the big difference between the time it took to merge the 800-
megabytefile and the 8000-megabytefile was due to the difference in total
seek and rotational delay times. You probablynoticed that the numberof
seeks for the largerfile is 100 times the numberofseeksfor thefirst file,

and 100 is the square ofthe difference in size between the two files. We can

formalize this relationship as follows: in general, for a K-way merge of K

runs where each runis as large as the memory space available, the buffer

size for eachof the runsis

x size of memoryspace = x size of each run
r

so K seeksare requiredto read all of the records in each individual run.

Since there are K runsaltogether, the merge operation requires K? seeks.

‘Hence, measured in termsof seeks, our sort. merge is an O(K2) opera-

tion. Because K is directly proportional to N (if we increase the number
of records from 8 000 000 to 80 000 000, K increases from 80 to 800) it

also follows that our sort.merge is an O(N2) operation, measured in

terms of seeks. .
This brief, formal look establishes the principle thatasfiles grow large,

we can expect the time required for our merge sort to increase rapidly.It

would be very nice if we could find some ways to reduce this time.

Fortunately, there are several ways:

m Allocate more hardware, such as disk drives, memory, and I/O

channels; 7

https://hemanthrajhemu.github.io

Merging as a Wayof Sorting Large Files on Disk 327.

m Perform the merge in more than onestep, reducing the order of each
merge and increasing the buffer size for each run;

m Algorithmically increase the lengthsof the initial sorted runs; and

m Find ways to overlap I/O operations.

Inthe following sections we look at each of these ways in detail, begin-

ning with the first; invest in more hardware.

8.5.4 Hardware-Based Improvements

Wehave seen that changes in oursorting algorithm can improve perfor-

mance. Likewise, we can make changes in our hardware that will also

improve performance.In this section we look at three possible changes to

a system configuration that could lead to substantial decreases in sort
time:

mw Increasing the amount of memory,

m Increasing the numberofdisk drives, and

m™ =©Increasing the numberof I/O channels.

Increasing the Amount ofMemory

It should be clear now that when we have to divide limited buffer space
into manysmall buffers, we increase seek and rotation times to thepoint
where they overwhelm all other sorting operations. Roughlyspeaking, the

increase in the numberof seeks is proportional to the square of the
increasein file size, given a fixed amountoftotal buffer space.

It stands to reason, then, that increasing memoryspace ought to have
a substantial effect on total sorting time. A larger memory size means
longer and fewerinitial runs during the sort phase, and it means fewer

seeks per run.during the merge phase. The product of fewer runs and

fewer seeks per run means.a substantial reduction in total seeks.

Let’s test this conclusion with our 80 000 000-recordfile, which took

about 2 hours, 6 minutes using 10 megabytes of memory. Suppose weare

able to obtain 40 megabytes of memorybuffer space for our sort. Each of

the initial runs would increase from 100 000 records to 400 000 records,

resulting in two hundred 400 000-record runs. For the merge phase, the

internal buffer space would be divided into 200 buffers, each capable of

holding 1/200th of a run, meaningthat there would be 200 x 200 = 40 000
seeks. Using the same time estimates that we used for the previous two

https://hemanthrajhemu.github.io

328° Chapter 8 Cosequential Processing and the Sorting of Large Files

cases, the total time for this merge is 16 minutes, 40 seconds, nearly a
sevenfold improvement.

Increasing the Number ofDedicated Disk Drives

If we could have a separate read/write head for every run and no other

users contending for use of the same read/write heads, there would be no
delay due to seek time afterthe original runs are generated. The primary

source of delay would now berotational delays and transfers, which would
occur every time a new block hadto be read.

For example, if each run is on a separate, dedicated drive, our 800-way

merge calls for only 800 seeks (one seek per run), down from 640 000,
cutting the total seek and rotation times from 7040 secondsto1 second.

Of course, we can’t configure 800 separate disk drives every time we want
to do a sort, but perhaps somethingshort ofthis is possible. For instance,

if we had twodisk drives to dedicate to the merge, we could assign oneto
input and the other to output, so reading and writing could overlap when-
ever they occurred simultaneously. (This approach takes some clever

buffer management, however. Wediscussthis later in this chapter.) _

Increasing the Numberof[/O Channels

If there is only one I/O channel, no two transmissions can occurat the
same time, and the total transmission time is the one we have computed.

Butif there is a separate I/O channel for each diskdrive, I/O can overlap
completely.

For example, if for our 800-way merge there are 800 channelsfrom

800 disk drives, then transmissions can overlap completely. Practically

speaking,it is unlikely that 800 channels and 800 disk drives are available,
and even if they were,it is unlikely that all transmissions would overlap

because all buffers would not need to be refilled at one time. Nevertheless,
increasing the numberof I/O channels could improve transmission time

substantially.
So we see that there are ways to improve performance if we have some

control over how our hardwareis configured. In those environments in
which external sorting occupies a large percentage of computing time, we

are likely to have at least some such control. On the other hand, ‘many
times we are not able to expand a system specificallyto meet sorting needs

that we might have. Whenthis is the case, we need to look for algorithmic
ways to improve performance, and this is what we do now.

https://hemanthrajhemu.github.io

Merging as a WayofSorting Large Files on Disk 329

8.5:5 Decreasing the Numberof Seeks Using
Multiple-Step Merges.

Oneof the hallmarksof a solution to a file structure problem, as opposed
to the solution of a mere data structure problem,is the attention given to
the enormousdifference in cost between accessing information on disk

and accessing information in memory. If our merging problem involved

only memoryoperations, the relevant measure of work, or expense, would
be the numberof comparisons required to complete the merge. The merge
pattern that would minimize the number of comparisons for our sample

problem, in which we want to merge 800 runs, would be the 800-way

merge considered. Lookedat from a point of view that ignoresthe cost of
seeking, this K-waymerge has the following desirable characteristics:

m= Eachrecord is read only once.

m Ifaselection tree is used for the comparisonsperformedin the merg-
ing operation, as described in Section 8.3, then the number of
comparisons required for a K-way merge of N records (total) is a
function of Nx log, K.

m Since K is directly proportionalto N, this isan O(N x log, N) opera-
tion (measured in numbers of comparisons), whichis to say thatit is
reasonably efficient even as N growslarge.

This would all be very good news were we working exclusively in

memory, but the very purpose of this merge sort procedureis to be ableto
sortfiles that are too large to fit into memory. Given the task at hand, the

‘costs associated with disk seeks are orders of magnitude greater than the
costs of operations in memory. Consequently, if we can sacrifice the
advantages of an 800-way merge and trade them forsavingsin access time,

we maybe able to obtain a net gain in performance.
Wehave seen that one ofthe keys to reducing seeks is to reduce the

numberof runs that we have to merge, thereby giving each run a bigger

share of available buffer space. In the previous section we accomplished
this by adding more memory. Multiple-step merging provides a way for us

to apply the same principle without having to buy more memory.

In multiple-step merging, we do nottry to mergeall runs at one time.

Instead, we break the original set of runs into small groups and merge the
runs in these groups separately. On each of these smaller merges, more

buffer space is available for each run; hence, fewer seeks are required per

run. Whenall of the smaller merges are completed, a second pass merges

the new set of merged runs.

https://hemanthrajhemu.github.io

330 Chapter 8 Cosequential Processing and the Sorting of Large Files

It should be clear that this approachwill lead to fewer seeks on the first
pass, but now there is a second pass. Not only are a numberof seeks
required for reading and writing on the secondpass, but extra transmis-

sion time is used in reading and writing all records in the file. Do the

advantages of the two-pass approach outweigh these extra costs? Let’s
revisit the merge step of our 80 million recordsort to find out.

Recall that we began with 800 runs of 100 000 records each. Rather

than mergingall 800 runs at once, we could merge them as,say, 25 sets of

32 runs each, followed by a 25-way mergeof the intermediate runs. This

schemeis illustrated in Fig. 8.23.
When compared with our original 800-way merge, this approach has

the disadvantage of requiring that we read every record twice: once to
form the intermediate runs and again.to form thefinal sorted file. But,

since each step of the mergeis readingfrom 25 inputfiles at a time,we are
able to use larger buffers and avoid a large numberof disk seeks. When we

analyzed the seeking requiredfor the 800-way merge,disregardingseeking

for the outputfile, we calculated that the 800-way merge involved 640 000

seeks between the inputfiles. Let’s performsimilar calculations for our

multistep merge. -

First Merge Step

For each of the 32-way merges of the initial runs, each input buffer can
hold 1/32 run, so we end up making 32 x 32 = 1024seeks. Forall 25 of the

 4 —__- 25 sets of 32 runs each — —>

32 runs 39 runs 32 runs 32 runs
eee. @eees--: @#ee --- eee eee-.:@

VVVVv

Figure 8.23 Two-step merge of 800 runs.

https://hemanthrajhemu.github.io

Merging as a WayofSorting Large Files on Disk 331

32-way merges, we make 25 x 1024 = 25 600 seeks. Each ofthe resulting
runs is 3 200 000 records, or 320 megabytes.

“Second Merge Step

For each of the 25 final runs, 1/25 of the total buffer spaceis allocated, so

each input buffer can hold 4000 records, or 1/800 run. Hence,in this step

there are 800 seeks per run, so we end up making 25 x 800 = 20 000 seeks,

and

The total numberof seeks for the two steps = 25 600 + 20 000 = 45 600

So, by accepting the cost of processing each record twice, we reduce the
numberof seeks for reading from 640 000 to 45 600, and we haven’t spent

a penny for extra memory.

But what aboutthe total time for the merge? We save on access times
for inputting data, but there are costs. We now have to transmitall of the

records four times instead oftwo, so transmission time increases by 1200

seconds. Also, we write the records twice, rather than once, requiring an
extra 40 000 seeks. When we add these extra operations,the total time for

the merge is 3782 seconds, or about 1 hour, 3 minutes, compared with 2

hours, 25 minutesfor the single-step merge. These results are summarized
_ in Table 8.3.

Once more, note that the essence of what we have doneis to find a way
to increase the available buffer space for each run. Wetrade extra passes
over the data for a dramatic decrease in random accesses.In this case the

trade is certainly a profitable one.

Table 8.3 Time estimates for two-step merge sort of 8000-megabytefile, assuming use

of the Seagate Cheetah 9 disk drive described in Table 3.1. The total time is 27 minutes.

Amount Seek + Transfer

Number transferred _ rotation time time Total time

of seeks (megabytes) (seconds) (seconds) (seconds)

1st Merge: reading 25 600 8000 282 600 882

1st Merge: writing 40 000 * 8000 440 600 1040

2nd Merge: reading 20000 8000 220 600 820
2nd Merge: writing 40000 8000 440 600 1040

Totals 125 600 32 000 1382 2400 3782

https://hemanthrajhemu.github.io

332 Chapter & Cosequential Processing and the Sorting of Large Files

If we can achieve such an improvementwith a two-step merge, can we

do even better with three steps? Perhaps, but it is important to note in

Table 8.3 that we have reducedtotal seek and rotation timesto the point

where transmission times are more expensive. Since a three-step merge
would require yet another pass over the file, we have reached a point of

diminishing returns.
Wealso could have chosen to distribute our initial runs differently.

How would the merge perform if we did 400 two-way merges, followed by
one 400-way merge, for instance? A rigorous analysis of the trade-offs

between seek and rotation time and transmission time, accounting for
different buffer sizes, is beyond the scopeof our treatmentof the subject.
Ourgoalis simply to establish the importance ofthe interacting roles of
the major costs in performing mergesorts: seek and rotation time, trans-

mission time, buffer size, and numberof runs. In the next section we focus

on the pivotal role of the last of these—the numberofruns.

8.5.6 Increasing Run Lengths Using ReplacementSelection

What would happen if we could somehow increasethesize.oftheinitial

runs? Consider, for example, our earlier sort of 80 000 000 records in

which each record was 100 bytes. Ourinitial runs were limited to approx-

imately 100 000 records because the memory workarea waslimited to 10
megabytes. Suppose we are somehow able to createruns of twice this
length, containing 200 000 records each. Then, rather than needing to
perform an 800-way merge, we need to do only a 400-way merge. The
available memoryis divided into 400 buffers, each holding 1/800th of a
run. Hence, the number of seeks required per run is 800, andthetotal
numberofseeksis | |

800 seeks/run x 400 runs = 320 000 seeks,

half the numberrequired for the 800-way merge of 100 000-byte runs.
In general, if we can somehow increase thesize oftheinitial runs, we

decrease the amount of work required during the merge step of the sort-

ing process. A longerinitial run means fewer total runs, which means a
lower-order merge, which meansbigger buffers, which means fewer seeks.
But how,short of buying twice as much memoryfor the computer, can wé
create initial runs that are twice as large as the numberofrecords that we

5. For morerigorous and detailed analyses of these issues, consult the references cited at the end of
this chapter, especially Knuth (1998) and Salzberg (1988, 1990).

https://hemanthrajhemu.github.io

Merging as aWayof Sorting Large Files on Disk 333

can hold in memory? The answer, onceagain, involves sacrificing some

efficiency in our in-memory operations in return for decreasing the

amountof work to be done ondisk. In particular, the answer involves the
use of an algorithm knownas replacement selection.

~ Replacementselection is based on the idea of alwaysselecting the key
from memory that has the lowest value, outputting that key, and then
replacing it with a newkey from the inputlist. Replacementselection can
be implemented as follows:

1. Read collection of records and sort themusing heapsort. This creates
a heap of sorted values. Call this heap the primary heap.

2. Instead ofwriting the entire primary heap in sorted order(as we doin
a normal heapsort), write only the record whose key has. the lowest
value.

3. Bring iin a newrecord and compare the value ofitskeywith that of the
key that has just been output.

a. If the new key value is higher, insert the new record into its proper
place in the primary heap along with the other records that are
being selected for output. (This makes the new record part of the
run that is being created, which meansthat the run being formed

will be larger than the numberofkeys that can be held in memory
at one time.)

b. If the new record’s key value is lower, place the record in a secondary

heap of records with key values lower than those already written.(It
cannot be put into the primary heap becauseit cannotbe included
in the.run that is being created.)

4. Repeatstep 3 as long as there are records left in the primary heap and

there are recordsto be read. When the primary heapis empty, make.

thesecondary heapinto the primary heap, and repeatsteps 2 and 3.

To see howthis works,let’s begin with a simple example, using an
inputlist of only six keys and a memory work areathat can holdonly three
keys. As Fig. 8.24 illustrates, we begin by reading into memory the three

keys thatfit there and use heapsortto sort them. Weselect the key with the
minimum value, which happensto be 5 in this example, and output that

key. We now have room in the heap for another key, so we read one from
the input list. The new key, which has a value of 12, now becomes a

memberoftheset of keys to be sorted into the output run.In fact, because

it is smaller than the other keys in memory, 12 is the next key that is
output. A newkeyis read into its place, and the process continues. When

https://hemanthrajhemu.github.io

334 Chapter 8 Cosequential Processing and theSorting of LargeFiles

Input: .
21, 67, 12, 5, 47, 16°

tLgyont of input string

Remaining input Memory (P = 3) Output run

21, 67, 12 5 AT 16 -

21, 67 12 A? 16 5

21 67 47 16 12, 5

- 67 47 21 16, 12, 5

- 67

=

47 - 21, 16, 12,°5

- 67 - - 47, 21, 16, 12, 5

— _ - - 67,. 47, 21, 16, 12, 5

Figure 8.24 Example ofthe principle underlying replacementselection.

the process is complete, it producesa sortedlist of six keys while using
only three memorylocations.

In this exampletheentirefile is created using only one heap, but what

happensifthe fourth key in the inputlist is 2 rather than 12? This key

arrives in memorytoo late to be outputinto its properposition relative to

the other keys: the 5 has already been written to the outputlist. Step 3b in
the algorithm handlesthis case by placing such values in a second heap,to

be includedinthe next run. Figure 8.25 illustrates howthis process works.
During the first run, when keys that are too small to be included in the

primaryheap are brought in, we mark them with parentheses, indicating

that they have to be held for the second run.

It is interesting to use this example to comparethe action ofreplace-
ment selection to the procedure we have been using up to this point,

namely that of reading keys into memory,sorting them, and outputting a
run that is the size of the memoryspace. In this example our inputlist

contains thirteen keys. A series of successive memorysorts, given only
three memorylocations, results in five runs. The replacementselection

procedureresults in only two runs. Since the disk accesses during a multi-
way merge'can be a major expense, replacementselection’s ability to create

longer, and therefore fewer, runs can be an important advantage.
Two questions emergeatthis point:

1. Given P locations in memory, howlong a run can we expect replace-

mentselection to produce, on the average?

2.. Whatare the costs of using replacement selection?

https://hemanthrajhemu.github.io

Merging as.a Wayof Sorting Large Files on Disk

Input:

33, 18, 24, 58, 14, 1%, 7, 21, 67, 12, 5, 47, 16

Remaining input

33, 18, 24, 58, 14, 17, 7, 21, 67, 12 5

33, 18, 24, 58, 14, 17, 7, 21. 67 12
33, 18, 24, 58, 14, 17, 7, 21 67
33, 18, 24, 58, 14, 17, 7 67
33, 18, 24, 58, 14, 17 67
33,18, 24, 58, 14 67
33, 18, 24, 58 (14)

AT

47

AT

AT

47

{17

{17

Memory (P- = 3)

16

16

16

2)

{ 7)

) (7)

) (7)

First run complete; start building the second

33, 18, 24, 58 14
33, 18, 24 14

33, 18 24
33 24
- 24

1?

17

17

18

I)

33

7

58

58

58

58

58

58

t_Front of input string

Output run

16,
21, 16,

47, 21, 16,

67, 47, 21, 16,

17,

18, 17,

24, 18, 17,

33, 24, 18, 17,

58, 33, 24, 18, 17,

335

l2,

12,

le,

12,

le,

14,

14,

14,

14,

14,

14,

o
n

a
m
w
o
M
m

Y
A
A
W
W
W
A

A

Figure 8.25 Step-by-step operation of replacementselection working to form two

sorted runs.

Average Run Length for Replacement Selection

The answerto thefirst questionis that, on the average,we can expect a run
length of 2P, given P memorylocations.Knuth® provides an excellent

description of an intuitive argument for whythisis so:

A clever way to show that 2P is indeed the expected run length was
discovered by E. F Moore, who compared thesituation to a snowplow on

' a circular track [U.S. Patent 2983904 (1961), Cols. 3-4]. Consider the

situation shown [page 336]; flakes of snowarefalling uniformly on a’
‘circular road, and a lone snowplowis continually clearing the snow. Once

the snow has been. plowedoff the road,it disappears from the system.
Points on theroad maybe designated by real numbers x, 0 < x< Ij; flake
of snowfalling at position x represents an input record whosekeyis x,

6. From Donald Knuth, The Art of Computer Programming, vol. 3 1973, Addison-Wesley, Reading,
Mass. Pages 254-55 and Figs. 64 and 65. Reprinted with permission.

https://hemanthrajhemu.github.io

336 Chapter 8 Cosequential Processing and the Sorting of Large Files

and the snowplowrepresents the output of replacementselection. The

groundspeed of the snowplowis inversely proportionalto the height of
the snowthatit encounters, and thesituation 1sperfectly balanced so that
the total amount of snow on the road atall times is exactly P A new run
is formed in the output whenever the plowpasses point0.

vs

After this system has been in operation for a while,it is intuitively clear
that it will approach a stable situation in which the snowplow runsat
constant speed (because of the circular symmietry of thetrack). This

meansthat the snowis at constant height when it meets the plow, and

the height drops off linearly in front of the plow as shown [below]. It
follows that the volume of snow removed in one revolution {namely the
run length)is twice the amountpresent at any one time (namely P).

Falling snow

ee
BeSRrecat CoM

: oer Bxisting ‘snow Q

4+}Totu! length of the Toad ——__—___

So, given a random ordering ofkeys, we can expect replacement
selection to form runsthat contain about twice as manyrecords as we can

holdin memory at one time. It follows that replacementselection creates
half as many runs asa series of memory sorts of memory contents,
assuming that the replacementselection and the memorysort haveaccess
to the same amount of memory. (As we see in a moment, the replacement

selection does, in fact, have to make do with less memory than the memo-

ry sort.)

https://hemanthrajhemu.github.io

Merging as a Wayof Sorting Large Files on Disk _ 337

_It is often possible to create runsthat are substantially longer than 2P.
In manyapplications, the orderof the records is not wholly random; the
keys are often already partially in ascending order. In these cases replace-
mentselection can produce runs that, on the average, exceed 2P. (Consider
what would happen if the inputlist is already sorted.) Replacementselec-
tion becomesan especially valuable tool for such partially ordered input

files.”

TheCosts of Using ReplacementSelection

Unfortunately, the no-free-lunch rule applies to replacementselection,as
it does to so manyotherareasoffile structure design. In the worked-by-
hand examples we have lookedat up to this point, we have been inputting

records into memory oneat a time. We know,in fact, that the cost of seek-

ing for every single input record is prohibitive. Instead, we want to buffer

the input, which means, in turn, that we are not able to use ail of the

memoryfor the operation of replacementselection. Someofit has to be
used for input and output buffering. This cost, and the affect it has on
available space for sorting,is illustrated in Fig. 8.26.

To see the effects of this need for buffering during the replacement
selection step, let’s return to our example in which we sort 80 000000
records, given a memoryarea that can hold 100 000 records.

For the memory sorting methods such as heapsort, which simply read
records into memoryuntilit is full, we can perform sequential reads of
100 000 records at a time, until 800 runs have been created. This means
that the sort step requires 1600 seeks: 800 for reading and 800forwriting.

For replacementselection we might use an input/output buffer that

can hold,for example, 25 000 records;leaving enough space to hold 75 000

recordsfor the replacementselection process.If the I/O buffer holds 2500
records, we can perform sequential reads of 25 000 recordsat a time,so it

heapsort area Figure 8.26 In-memory

sort versus replacement
(a) In-RAM sort: all available space used forthe sort. selection, in terms of

their use of available

memoryfor sorting
operation.

ifo buffer heapsort area

(b) Replacementselection: someof available space is used for I/O.

https://hemanthrajhemu.github.io

338 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

takes 80 000 000/25 000 = 3200 seeks to accessall recordsin thefile. This
means that the sort step for replacementselection requires 6400 seeks:

3200 for reading and 3200for writing.
If the records occur in a random key sequence, the average run length

using replacementselection will be 2 x 75 000 = 150 000 records, and there

will be about 80 000 000/150 000 = 534 such runs produced. For the merge
step we divide the 10 megabytes of memoryinto 534 buffers, which hold
an average of 187.3 records, so we end up making 150 000/187.3 = 801
seeks per run, and

801 seeks per run X 534 runs = 427 734 seeks altogether

Table 8.4 compares the access times required to sort the 80 million
records using both a memory sort and replacementselection. The table

includes ourinitial 800-way merge and two replacementselection exam-

ples. The second replacementselection example, which produces runs of
400 000 records while using only 75 000 record storage locations in

memory, assumes that thereis already a gooddeal of sequential ordering

within the input records.
It is clear that, given randomly distributed input data, replacement

- selection can substantially reduce the number of runs formed. Even

though replacementselection requires four times as many seeks to form

the runs, the reduction in the amountof seeking effort required to merge
the runs more than offsets the extra amountofseeking thatis required to
form the runs. And whentheoriginal data is assumed to possess enough

order to make the runs 400 000 records long, replacement selection
producesless than one-third as many seeks as memorysorting.

8.5.7 Replacement Selection Plus MultistepMerging

While these comparisons highlight the advantages of replacementselec-
tion over memory sorting, we would probablynotin reality choose the
one-step merge patterns shown in Table 8.4. We have seen that two-step

merges can result in muchbetter performance than one-step merges. Table
8.5 shows how these same three sorting schemes compare when two-step

merges are used. From Table.8.5 (page 340) we see that the total number
of seeks is dramatically less-in every case than it was for the one-step

merges. Clearly, the method used to form runsis not nearly as important

as the use of multistep, rather than one-step, merges.

Furthermore, because thenumberof seeks required for the merge

steps is much smaller in all cases, while the numberofseeks required to

https://hemanthrajhemu.github.io

3
3
3

M
e
r
g
i
n
g

as
a
Wa

y
o
f

So
rt
in
g
La
rg
e

Fi
le
s
o
n
Di

sk

(paiapio Ayjerjied

sp102a1) adiaw

Aem-00z Aq pamoyjoy
BE 00 OOF 902 002 009 002 000 OOF 000 SZ uondsayas Juatuaoeyday

(19p1o WOpuRs

UI $p1020.1) 38y9U
Aem-pEg AQ pamoyloj

9€ 1 Pel 1% PES 0069 bES 000 OST 00067 VONDajas uatIaDe;day

adiaul Aem-9Qg

ue Aq paMmojjoj
S c 009 189 008 0091 ; 008 000 001 000 OOT $]108 Arowaui 008

(tutu) (44) |

. SUMWIJ
awAeyap $995 JO pasn SUTILI UIIOJ 0} _ paursoj paussoy 0] 4325

[euonej01 pure Jaquinu Iapio parmba.i sxaas sunt jo suni Jad spiooas
4aas [RO], {EIOL, as1aW JO saquiny Jaquinn jo azIg jO Jaquinyy ypvoiddy

_ ‘Pauoy sunt yo saquinu au} 0} jenba st sapio ahiayy "UOolDa|as

juauare|dad pue Yos Ajowatu y}0q Bulsn spsodad UOT} Og 40S 0} pasinbas saw} ssande jo UosHedwo>y »°g ayqeL

https://hemanthrajhemu.github.io

Ch
ap
te
r
8

Co
se

qu
en

ti
al

Pr
oc
es
si
ng

an
d
th

e
So

rt
in

g
of

La
rg

e
Fi

le
s

3
4
0

AtM-QZ UY
(parapi0

Ajyetqied sp10al)

07 0 OOF OLT 000 91/000 8 Avm-O1 X OZ Q0Z 000 00% 000 Sz Woralas Jusuaaejday
. (4ap10

ARM-6] Uay] WIOPpUrI UI sp109al)
€c) Ser rc] C91 SI/9Z8 77 ALM-8Z X 61 PEG 000 OST 000 SZ uolajas Juauarefday

AeM-GZ Ua)

bc 0 00 Z7T_ 000 02/009 Sz AvM-ZE x SZ 008 000 00T 000 O0T sHos A10uIat 008

(tit) (4y)

SUNT WIOJ
aur Avpap syaas jo sasryd ag1aur pasn paurtoj) pauo} 0} yas

[PUOTJTJOI pur Iaquinu UT Syaas uaayed sunJo sunz Jad sp1sosa1
Yaas [RIOL Jeq0], jo Jaquiny asia Jaquinyy joazig joraquiny yovoiddy

‘aia days-omj e Ag pamol]|oj yrea ‘uoaayas
juatuade|dad pue Jos Aiowaw YyiOg Hulsn spiodad UOI|[ILY Og 10S 0} paiinbad saussaare yo UOSedUIOD ¢*g atqeL

https://hemanthrajhemu.github.io

Merging as a Wayof Sorting Large Files on Disk 341

form runs remainsthe same,the latter have abigger effect proportionally

on thefinal total, and the differences between the memory-sort based
method and replacementselection are diminished.

The differences between the one-step and two-step merges are exag-

gerated bytheresults in Table 8.5 because they don’t take into account the
amountof time spent transmitting the data. The two-step merges require
that we transfer the data between memoryand disk two moretimes than

the one-step merges. Table 8.6 showsthe results after adding transmission
timeto our results. The two-step mergesarestill better, and replacement
selection still wins, but the results are less dramatic.

8.5.8 Using Two Disk Drives with ReplacementSelection

Interestingly, and fortunately, replacementselection offers an opportunity

to save on both transmission and seek times in ways that memorysort

methods do not.As usual, this is at a cost, butif sorting time is expensive,
it could well be worth the cost.

Suppose we have two disk drives to which we canassign the separate
dedicated tasks of reading and writing during replacementselection. One

drive, which containsthe originalfile, does only input, and the other does
only output. This has two very nice results: (1) it means that input and
output can overlap, reducing transmission time by as muchas 50 percent;

and (2) seekingis virtually eliminated.

If we have two disks at our disposal, we should also configure memo-
ry to take advantage of them. We configure memoryasfollows: weallocate

two buffers each for input and output, permitting double buffering, and
allocate the rest of memoryfor formingthe selection tree. This arrange-
mentis illustrated in Fig. 8.27. |

, input

buffers

output

CO ne er

Figure 8.27 Memory organization for replacementselection.

heap

https://hemanthrajhemu.github.io

C
h
a
p
t
e
r
8

Co
se
qu
en
ti
al

Pr
oc

es
si

ng
a
n
d
th

e
So
rt
in
g
of

La
rg

e
Fi
le
s

3
4
2

(palapio Aypenued

$p.10da1) adiatu

ABM-QZ au dajs-om) @ Aq pamoyyoy

08 09 9 0c OOP/OLT ALM-OT X OZ 000 SZ uOoT}IaIas juatuaseday

(sapio Wopurl

UI Spode1) as1au

AtM-6] 3U0 dajs-omy eB AQ pamoyjjo}

€8 09 9 cz * SEP/ P71 ABM-BZ X 61 000 SZ uorparas yuauraaeyday

asiadays-omy

Avm-G7 3U0 e Aq paMmo]]o}

€8 09 9 €Z OOZ/ZZ1 Avm-7EX EZ 000 001 5310S AIOLUSLLL QOS

(posspao Ayuajird

_$pi0da1) aB.19Lu

AvM-QOZ & Aq PaMmo]]o)

BZ OF - Se OOr/Y0TZ Atm-Q0Z 000 SZ UO]DI]Is qususadv]doy

_(Japio wopuel

Ut sprodai) adzauut
AUM-7EG B Aq pamo]]Oj

9€1 OF P 96 PEL/TZS AGM-C 000 SZ UONda]9$ jUaLIaDe[day

adiatu AUM-008

uv Aq pamoy[Oj

Sor OF ¥ Sél 002/189 Avm-008 000 OOT sos ArOUWaul OOS

(titi) aut] (tu) ayy ayy (tit) sagjoul sund W410}

UOISSTUISURT} JUIT} UOIS BEYNG) aut) Avyap pur s}10s pasn 0} Yaas iad

pur ‘u01}B}]04 -SIULSURL} sassed [BUOT}B}]OI 10} Syaas Jo ujajjed $p.10da1 Jo

‘Yas Jo ye],]BIOL [BIOL + 422g Jaquinyy 3313 Jaquingy youoiddy

"JUNODIe OJU! Sau} UOISSiLUsUeI? Hurye} ‘Sg pue p'g Sajqey Ul pajessnyy! SaBiou Yos Jo UOSHedWIOy g°g xIqeL

https://hemanthrajhemu.github.io

Merging as a Wayof Sorting Large Files on Disk 343

Let’s see how the merge sort process might proceed to take advantage

of this configuration.
First, the sort phase. We begin by reading enoughrecordstofill up the

heap-sized part of memory and form the heap. Next, as we move records

from the heap into oneofthe output buffers, we replace those records with
records from one of the input buffers, adjusting the tree in the usual

manner. While we empty one input buffer into the tree, we can be filling

the other one from the input disk, This permits processing and inputto

overlap. Similarly, at the same time that wearefilling one of the output
buffers from the tree, we can transmit the contents of the other to the

outputdisk. In this way, run selection and output can overlap.
During the merge phase, the output disk becomesthe inputdisk, and

vice versa. Since the runs are all on the same disk, seeking will occur on the
input disk. But outputis still sequential, since it goes'to a dedicated drive.

Because of the overlapping of so manypartsofthis procedure,it is diffi-

cult to estimate the amountof time the procedureislikely to take. But it

should be clear that by substantially reducing seeking and transmission
time, weare attacking those parts of the sort merge that are the mostcostly.

8.5.9 More Drives?.More Processors?

If two drives can improve performance, why notthree, or four, or more?
Isn’t it true that the more drives we have to hold runs during the merge

phase, the faster we can perform I/O? Upto a pointthis is true, but of
course the number and speed of I/O processors mustbe sufficient to keep

up with the data streaming in and out. Andthere will also be a pointat

which I/O becomessofast that processing can’t keep up withit.

But whois to say that we can use only one processor? A decade ago,.it

would have been farfetched to imagine doing sorting with more than one
processor, but nowit is very commonto beable to dedicate more than one

processorto a single job. Possibilities include the following:

Mainframe computers, many of which spend a greatdeal of their time

sorting, commonly come with two or moreprocessors that can simul-

taneously work on different parts of the same problem.

m Vectorand array processors can be programmedto execute certain
kinds of algorithm orders of magnitudefaster than scalar processors.

m@ Massively parallel machines provide thousands, even millions, of

processors that can operate independently and at the same time com-
municate in complex ways with one another.

https://hemanthrajhemu.github.io

344 Chapter 8 Cosequential Processing and the Sorting of Large Files

m Veryfast local area networks and communication software makeit
relatively easy to parcel out different parts of the same process to
several different machines.

It is not appropriate, in this text, to cover in detail the implications of
these newerarchitecturesfor external sorting. But just as the changes over
the past decade in the availability and performance of memoryand disk
storage have altered the way welook at external sorting, we can expectit to
change many moretimesas the current generation of new architectures
becomes commonplace.

8.5.10 Effects of Multiprogramming

In our discussions of external sorting on disk we are, of course, making

tacit assumptions about.the computing environmentin which this merg-

ing is taking place. We are assuming, for example, that the merge job is
running in a dedicated environment (no multiprogramming). If, in fact,

the operating system is multiprogrammed,asit normallyis, the total time

for the 1/O might be longer, as our job waits for other jobs to perform
their I/O. . .

Onthe other hand, one of the reasons for multiprogrammingis to
allow the operating system to find ways to increase the efficiency of the

overall system by overlapping processing and I/O amongdifferentjobs. So

the system could be performing I/O for our job while it is doing CPU
processing on others, and vice versa, diminishing any delays caused by
overlap of I/O and CPU processing within ourjob.

Effects such as these are hard to predict, even when you have much

information about your system. Only experimentation can determine
whatreal performance will be like on a busy, multiuser system.

8.5.11 A ConceptualToolkit for External Sorting

Wecan nowlist many tools that can improve external sorting perfor-
mance. It should be our goal to add these various tools to our conceptual
toolkit for designing external sorts and to pull them out and use them
wheneverthey are appropriate.A full listing of our newsetof tools would
includethe following:

m For in-memorysorting, use heapsort for forming the originallist of
sorted elements in a run. With it and double buffering, we can overlap
input and output with internal processing. .

https://hemanthrajhemu.github.io

8.6

Sorting Files on Tape 345

m Use as muchmemory as possible. It makes the runs longer and

provides bigger and/or more buffers during the merge phase.

m= If the numberofinitial runs is so large that total seek and rotation
time is much greater than total transmission time, use a multistep
merge. It increases the amountof transmission time but can decrease
the numberof seeks enormously. |

m . Consider using replacement selection forinitial run formation, espe-
cially if there is a possibility that the runs will be partially ordered.

m Use more than onedisk drive and I/O channelso reading and writing
can overlap. This is especially true if there are no other users on the

system.

m. Keep in mind the fundamental elements ofexternal sorting andtheir

relative costs, and look for ways to take advantage of new architectures

and systems, such as parallel processing and high-speed local area

networks. .

Sorting Files on Tape

There was a time whenit was usually faster to perform large externalsorts

on tape than on disk, but this is much less the case now. Nevertheless, tape
is still used in external sorting, and we would be remiss if we did not
consider sort merge algorithms designed for tape.

There are a large number of approachesto sorting files on tape. After

approximately one hundred pages of closely reasoned discussionofdiffer-
ent alternatives for tape sorting, Knuth (1998) summarizeshis analysis in

the following way:

Theorem A.Itis difficult to decide which mergepattern is best in a given
situation.

Because of the complexity and numberofalternative approaches and
because of the way that these alternatives depend so closely on the specif-

ic characteristics of the hardware at a particular computerinstallation, our
objective here is merely to communicate someof the fundamentalissues

associated with tape sorting and merging. For a more comprehensive
discussion of specific alternatives, we recommend the work of Knuth

(1998) as a starting point.

From a general perspective, the steps involved in sorting on tape
resemble those wediscussed with regard to sorting on disk:

https://hemanthrajhemu.github.io

346 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

1. Distribute the unsorted file into sorted runs, and

2. Merge the runs into a single sorted file.

Replacementselection is almost always a good choice as a methodfor

creating the initial runs during a tape sort. You will remember that the
problem with replacementselection when we are working on disk is that

the amountof seeking required during run creation more thanoffsets the
advantage of creating longer runs. This seeking problem disappears when
the inputis from tape.So,for a tape-to-tapesort, it is almost always advis-

able to take advantage of the longer runs created by replacementselection.

8.6.1 The Balanced Merge

Given that the question of how to create the initial runs has such a
straightforward answer,it is clear that it is in the merging process that we

encounterall of the choices and complexities implied by Knuth’s tongue-

in-cheek theorem. These choices include the question of how to distrib-
ute the initial runs on tape and questions about the process of merging
fromthis initial distribution. Let’s look at some examples to show what

we mean.
Suppose wehavea file that, after the sortphase, has been dividedinto

ten runs. We look at a numberofdifferent methods for merging these runs

on tape, assuming that our computersystem hasfour tape drives. Since the

initial, unsorted file is read from oneof the drives; we have the choice of

initially distributing the ten runs on twoorthree of the other drives. We

begin with a methodcalled two-way balanced merging, which requires that

the initial distribution be on two drives and that at each step of the merge
except thelast, the output be distributed on two drives. Balanced merging

‘is the simplest tape merging algorithm that welookat;it is also, as you will
_see, the slowest.

The balanced merge proceeds accordingto the pattern illustrated in
Fig. 8.28.

_ This balanced merge process is expressed in an alternate, more
compact form in Fig. 8.29 (page 348). The numbersinside the table are the

run lengths measured in terms of the numberofinitial runs included in
each merged run. For example;in step 1, all the input runs consist of a
single initial run. By step 2, the input runs each consist of a pair ofinitial

runs. At the startof step 3, tape drive T] contains one run consisting of

four initial runs followed by a run consisting of two initial runs. This
methodofillustration moreclearly shows the way someof the intermedi-

https://hemanthrajhemu.github.io

Sorting Files on Tape 347

Tape Contains runs

Tl RI R3 R5 R7 RI

Step1 T2 RQ R4 RG R8 RIO
T3 —
T4 _

Tl —

Step 2 T2 —

T3 RI-R2 R5—R6 R9-R10

T4 R3-R4 R7-R8 |

Tl R1-R4 R9-R10
Step3 2 ‘R5-R8

T3 —
T4 —

Tl —
Step4 2 —

T3 RI-R8
T4 -RO-R10

Tl Ri-R10

Step 5 T?2 —

T3 —

T4 —

Figure 8.28 Balanced four-tape mergeof ten runs.

ate runs combine and growinto runs of lengths 2, 4, and 8, whereas the

one run thatis copied again and again stays at length 2 until the end. The
form usedin thisillustration is used throughoutthe following discussions

on tape merging.

Since there is no seeking, the cost associated with balanced merging on

tape is measured in terms of how much timets spent transmitting the

data. In the example, we passed overall of the data four times during the

merge phase. Ingeneral, given some numberofinitial runs, how many
passes over the data will a two-way balanced merge take? Thatis, if we start

with N runs, how manypassés are required to reduce the numberof runs

to 1? Since each step combines two runs, the numberof runsafter each

https://hemanthrajhemu.github.io

348 © Chapter 8 Cosequential Processing and the Sorting of Large Files

Tl T2° T3 T4

Step 1 L111 Lilli —
Merge fen runs

Step 2 — —_ 222 22

Merge ten runs

Step 3 42 4 — _

Merge ten runs

Step 4 — — 8 2

Merge ten runs

Step 5 10 —_— ’ — —_

Figure 8.29 Balanced four-tape merge of ten runs expressed in a more

compacttable notation. |

step is half the numberfor the previousstep. If p is the numberofpasses,
then we can expressthis relationship as

(/:)P-> NS 1

from which it can be shown that

p= log, N|

In our simple example, N= 10, so four passes over the data were required.
Recall that for our partially sorted 800-megabytefile there were 200 runs,
so| log, 200| = 8 passes are required for a balanced merge. If reading and
writing overlap perfectly, each pass takes about 11 minutes,’ so the total
time is 1 hour, 28 minutes. This time is not competitive with our disk-

based merges, even when a single disk drive is used. The transmission
tumes far outweigh the savings in seek times.

8.6.2 The K-way Balanced Merge

If we want to improve on this approach,it is clear that we must find ways
to reduce the numberofpasses over the data..A quick look at the formula

tells us that we can reduce the numberofpasses by increasing the orderof
each merge. Suppose, for instance, that we have 20 tape drives, 10 for input

7. This assumes the 6250 bpitape used in the examples in Chapter3. If the transport speed is 200
inches per second,the transmission rate is 1250 kilobytes per second, assuming no blocking. At
this rate an 800-megabytefile takes 640 seconds, or 10 minutes 40 seconds to read.

https://hemanthrajhemu.github.io

Sorting Files on Tape 349

and 10 for output, at each step. Since each step combines 10 runs, the
numberof runsafter each step is one-tenth the numberfor the previous
step. Hence, we have

(Y)P* NS]

and

p= [logig N|

In general, a k-way balanced merge is one in which the order of the

merge at each step (except possibly the last) is k. Hence, thenumber of
passes required for a k-way balanced merge with N initial runsis

For a 10-way balanced merge of our 800-megabytefile with 200 runs,
log)g 200 = 3, so three passes are required. The best estimated time now ts
reduced to a more respectable 42 minutes. Of course, the cost is quite high:
we must keep 20 working tape drives on handfor the merge.

8.6.3 Multiphase Merges

The balanced merging algorithm has the advantage of being very simple;
it is easy to write a program to perform this algorithm. Unfortunately, one
reasonit is simpleis thatit is “dumb” and cannottake advantage of oppor-
tunities to save work. Let’s see how we can improveonit.

We can begin by noting that when we merge the extra run with empty
runs in steps 3 and 4, we don’t really accomplish anything. Figure 8.30

shows how we can dramatically reduce the amountof workthat has to be

done by simply not copying the extra run during step 3. Instead of merg-

ing this run with a dummyrun, we simply stop tape T3 whereit is. Tapes
Tl and T2 now each contain a single run made upoffourof the initial
runs. We rewindall the tapes but T3 and then perform a three-way merge
of the runs on tapes TI, T2, and T3, writing the final result on T4. Adding
this intelligence to the merging procedure reduces the numberofinitial
runs that must be read and written from forty down to twenty-eight.

The example in Fig. 8.30 clearly indicates that there are ways to

improve on the performance of balanced merging. It is important to be
able to state, in general terms, whatit is about this second merging pattern
that saves work: ”

m We use a higher-order merge. In place of two two-way merges, we use
one three-way merge.

https://hemanthrajhemu.github.io

350 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

Tl T2 T3 T4

Step | 11111 Pidil — —

Mergeten runs

Step 2 — — 222 22

Merge eight runs

Step 3 4 ‘4 , 2 —

, Mergeten runs
Step 4 — — — 10

a

Figure 8.30 Modification of balanced four-tape merge that doesnot rewind -

between steps 2 and 3.to avoid copying runs.

m We extend the merging of runs from one tape over several steps.

Specifically, we merge someof the runs from T3 in step 3 and somein

step 4. We could say that we merge the runs from T3in two phases,

These ideas, the use of higher-order merge patterns and the merging of
runs from a tape in phases, are the basis for two well-known approachesto
merging called polyphase merging and cascade merging. In general, these

merges share the following characteristics:

m Theinitial distribution of runsis such thatatleast the initial mergeis

a J-1-way merge, where J is the numberofavailable tape drives.

m The distribution of the runsacross the tapes is such that the tapes

often contain different numbersof runs.

Figure 8.31 illustrates how a polyphase merge can be used to merge
ten runs distributed on four tape drives. This merge pattern reduces the
numberofinitial runs that must be read and written from forty (for a

balanced two-way merge) to twenty-five. It is easy to see that this reduc-

-tion is a consequenceof the use of several three-way mergesin place of

two-way merges. It should also be clear that the ability to do these opera-

tions as three-way merges is related to the uneven nature oftheinitial

distribution. Consider, for example, what happensiftheinitial distribu-
tion of runs is 4-3—3 rather than 5-3-2. We can perform three three-way

merges to open up space on T3, butthisalso clears all the runsoff of T2

and leaves only a single run on Tl. Obviously, we are not able to perform

another three-way mergeas a secondstep.

Several questionsarise at this point:

1. How does one choosean initial distribution that leads readily to an

efficient merge pattern?

https://hemanthrajhemu.github.io

Sorting Files on Tape 351

Tl T2 T3 T4

Step 1 lididl 111 11 —
- Mergesix runs

Step 2 .. 11) al _— 33
Mergefive runs

Step 3. ... |] —_ 5 .3
Merge four runs

Step 4 tee all 4 5 —

Merge ten runs

Step 5 _— . — _— 10

Figure 8.31 Polyphase four-tape merge of ten runs.

2. Are there algorithmic descriptions of the merge patterns, given an

initial distribution?

3, Given Nruns and J tape drives, is there some way to computethe opti-

mal merging performance so we have a yardstick against which to
compare the performanceofanyspecific algorithm?

Precise answers to these questions are beyond the scopeofthis text; in

particular, the answerto the last question requires a more mathematical

approach to the problem than the one we have taken here. Readers want-

ing more than an intuitive understanding of howto set up initial distribu-
tions should consult Knuth (1998).

8.6.4 Tapes versus Disks for External Sorting

A decade ago 1 megabyte of memory was considered a substantial amount

of memoryto allocate to any single job, and extra disk drives were very
costly. This meant that many ofthe disk sorting techniques to decrease
seeking that we have seen were notavailable to us or were very limited.

Suppose,for instance, that we wantto sort our 8000-megabytefile and
there is only 1 megabyte ofmemoryavailable instead of 10 megabytes. The
approach that we used for allocating memoryfor replacementselection
would provide 250 kilobytes for buffering and 750 kilobytes for our selec-
tion tree. From this we can expect 5334 runs of 15 000 records each,versus
534 when there is a megabyte of memory. For a one-step merge, this

tenfold increase in the numberof runsresults in a hundredfold increase in

the number of seeks. What took three hours with 10 megabytes of mem-
ory now takes three hundred hours,just for the seeks! No wondertapes,
which are basically sequential and require no seeking, were preferred.

https://hemanthrajhemu.github.io

352

8.7

8.8

Chapter 8 Cosequential Processing and the Sorting of Large Files

But now memory is much morereadily available. Runs can be longer
and fewer, and seeks are muchless of a problem. Transmission timeis now

more important. The best way to decrease transmission time is to reduce
the numberof passes over the data, and we can dothis by increasing the
order of the merge. Since disks are random-access devices; very large-order

merges can be performed, even if there is only one drive. Tapes, however,

are not random-access devices; we needan extra tape drive for every extra

run we want to merge. Unless a large numberofdrivesis available, we can
perform only low-order merges, and that means large numbersof passes

~ overthe data. Disks are better.

Sort-Merge Packages

Manygoodutility programsare available for users who needto sortlarge
files. Often the programs have enoughintelligence to choose from one of
several strategies, depending on the natureof the data to be sorted and the
available system configuration. They also often allow users to exert some
control(if they wantit) over the organization of data andstrategies used.

Consequently, even if you are using a commercial sort package rather than
designing your ownsorting procedure,it helps to be familiar with thevari-

ety of different ways to design mergesorts.It is especially important to.
have a good general understanding of the most-important factors and
trade-offs influencing performance.

Sorting and Cosequential Processing in Unix |

Unix has a numberofutilities for performing cosequential processing.It

also has sorting routines, but nothing at the level of sophistication that you
find in production sort-merge packages. In the following discussion we

introduce someofthese utilities. For full details, consult the Unix docu-

mentation.

8.8.1 Sorting and Merging in Unix

Because Unix is not an environment in which one expects to do frequent

sorting oflarge files of the type we discuss in this chapter, sophisticated

https://hemanthrajhemu.github.io

Sorting and Cosequential Processing in Unix 353

sort-merge packages are not generally available on Unix systems.Still, the
sort routines you find in Unix are quick andflexible and quite adequate
for the types of applications that are commonin a Unix environment. We

can divide Unix sorting into two categories: (1) the sort command, and

(2) callable sorting routines.

The Unix sort Command

The sort command has manydifferent options, but the simplestoneis
to sort the lines in an ASCIIfile in ascending lexical order. (A'lineis any

sequence of characters ending with the new-line character,.) By default,
the sort -utility takes its input file name from the commandline and
writes the sorted file to standard output.If thefile to be sortedis too large
to fit in memory, sort performs a mergesort. If more than onefile is
named on the input line, sort sorts and mergesthefiles.

As a simple example, suppose we have an ASCIIfile called team with

names of-members of a basketball team, together with their classes and
their scoring averages:

Jean Smith Senior 8.8

Chris Mason Junior 9.6

Pat Jones Junior 3.2

Leslie Brown Sophomore 18.2

Pat Jones Freshman 11.4

To sort the file, enter

S$ sort team

Chris Mason Junior 9.6

Jean Smith Senior 8.8

Leslie Brown Sophomore 18.2

Pat Jones Freshman 11.4

Pat Jones Junior 3.2

Notice that by default sort considers an entire line as the sort key.
Hence, of the two players named PatJones,the freshman occursfirst in the

output because “Freshman”is lexically smaller than “Junior.” The assump-

tion that thte key is an entire line can be overridden bysorting on specified

key fields. For sort a key field is assumed to be any sequenceof charac-
ters delimited by spaces or tabs. You can indicate which keyfields to use for
sorting by giving their positions:

+posl [-pos2]

https://hemanthrajhemu.github.io

354 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

where pos1 tells how manyfields to skip before starting the key, and
pos2 tells which field to end with. If pos2 is omitted, the key extendsto

the end ofthe line. Hence, entering

S sort +1 -2 team

causes thefile team to be sorted according to last names. (There is also a
form of posi and pos2 thatallows you to specify the character within a

field to start a key with.)
The following options, among others, allow you to override the

default ASCII ordering used by sort:

-d Use “dictionary” ordering: only letters, digits, and blanks are signifi-

cant in comparisons.

-f “Fold” lowercase letters into uppercase. (This is the canonical form
that we defined in Chapter4.)

-r “Reverse” the sense of comparison: sort in descending ASCII order.

Notice that sort sorts lines, and within lines it compares groups of

characters delimited by white space. In the language of Chapter4, records
are lines, and fields are groups of characters delimited by white space. This
is consistent with the most common Unixviewoffields and records with-

in Unix textfiles.

The qsort Library Routine

The Unix library routine qsortis a general sorting routine. Given a table
of data, qsort sorts the elements in the table in place. A table could be

the contentsofa file, loaded into memory, where the elementsofthe table

are its records. In C, qsortis defined as follows:

qsort (char *base, int nel, int width, int (*compar()) }

The argument base is a pointer to the base of the data, nel is the

number of elements in the table, and widthis the size of each element.

The last argument, compar(), is the name of a user-supplied
comparison function that qsort uses to compare keys. compar must

have two parameters that are pointers to elements that are to be

compared. When qsort needsto compare two elements,it passes to

compar pointers to these elements, and compar compares them,
returning an integer that is less than, equal to, or greater than zero,
depending on whetherthefirst argumentis consideredless than, equal
to, or greater than the second argument.A full explanation of how to

https://hemanthrajhemu.github.io

‘Sorting and.Cosequential Processing in Unix 355

use qsort is beyond the scope of this text. Consult the Unix docu-
mentation for details.

8.8.2 Cosequential Processing Utilities in Unix

Unix provides a numberofutilities for cosequential processing. The sort
utility, when used to mergefiles, isone example. In this section weintro-

duce three others: diff, cmp, and comm.

cmp

Suppose you find in your computer that you have two team files, one
called team andthe other called myteam. You think that the twofiles
are the same, but you are not sure. You can use the command cmp to

find out.
cmp compares twofiles. If they differ, it prints the byte and line

number where they differ; otherwise it does nothing.If all of one file is
identicalto the first part of another, it reports that end-of-file was reached

on the shorterfile before any differences were found.
For example, supposethe file team and myt eam have the following

contents:

team myteam

Jean Smith Senior 8.8 Jean Smith Senior 8.8

Chris Mason Junior 9.6 Stacy Fox Senior 1.6

Pat Jones Junior 3.2 Chris Mason Junior 9.6

Leslie Brown Sophomore 18.2 Pat Jones Junior 5.2

Pat Jones Freshman 11.4 Leslie Brown Sophomore 18.2

Pat Jones Freshman 11.4

cmp tells you where theydiffer:

$ cmp team myteam
team myteam differ: char 23 ‘line 2

Since cmp simply comparesfiles on a byte-by-byte basis until it finds a
difference, it makes no assumptions aboutfields or records. It works with

both text and nontextfiles,

diff

cmp is useful if you want to knowif twofiles are different, but it doesn’t
tell you much about how they differ. The command diff gives fuller

https://hemanthrajhemu.github.io

356 Chapter 8 Cosequential Processing and the Sorting of Large Files

information. dif £ tells which lines must be changedin twofiles to bring

them into agreement. For example:

$ diff team myteam

la2

> Stacy Fox Senior 1.6

3c4

< Pat Jones Junior 3.2

> Pat Jones Junior 5.2

‘The 1a2 indicates that after line 1 in thefirst file, we need to addline 2

from the secondfile to make them agree. Thisis followed bytheline from
the second file that would need to be added. The 3c4 indicates that we
need to changeline3 in thefirst file to makeit looklike line 4 in the second
file. This is followed bya listing of the two differing lines, where the lead-
ing <indicates that the line is from the firstfile, and the >indicates that it

is from the secondfile.
One other indicator that could appear in diff output is d, meaning

that a line in thefirst file has been deleted in the secondfile. For example,

12d15 meansthatline 12 in thefirst file appears to have been deleted from
being right after line 15 in the secondfile. Notice that diff, like sort, is
designed to work with lines of text. It would not work well with non-

ASCItext files.

comm

Whereas diff tells whatis different about twofiles, comm compares two
files, which must be ordered in ASCII collating sequence, to see what they
have in common. The syntax for comm is the following:

comm [-123] filel file2

comm produces three columnsof output. Column lists the lines that are
in filel only; column 2 lists lines in file2 only, and column 3 lists

lines that are in both files. For example,

S sort team > ts

S$ sort myteam > ms

S$ comm ts ms

Chris Mason Junior 9.6

Jean Smith Senior 8.8

Leslie Brown .Sophomore 18.2

Pat Jones Freshman11.4

https://hemanthrajhemu.github.io

Summary 357

Pat Jones Junior 3.2

Pat Jones Junior 5.2

Stacy Fox Senior 1.6

Selecting anyoftheflags1, 2, or 3 allows you to print only those columns

you are interestedin.
The sort, diff, comm, and cmp commands (and the qgsort

function) are representative of whatis available in Unix for sorting and
cosequential processing. As we havesaid, they have many useful options
that.we don’t cover that you will be interested in reading about.

SUMMARY

In thefirst half of this chapter, we develop a cosequential processing model

and apply it to two common problems—updating a generalledger and
merge sorting. The modelis presented as a class hierarchy, using virtual
methodsto tailor the modelto particular typesoflists. In the second half
of the chapter we identify the most importantfactors influencing perfor-
mance in merge-sorting operations and suggest somestrategies for achiev-

ing good performance.

The cosequential processing model can be applied to problems that
involve operations such as matching and merging (and combinations of

these) on two or moresorted inputfiles. We beginthechapterbyillustrat-

ing the use of the model to perform a simple match of the elements
commonto twolists and a mergeof twolists. The procedures we develop
to perform these two operations embodyall the basic elements of the

model.
In its most complete form, the model depends on certain assumptions

about the data in the inputfiles. We enumerate these assumptionsin our

formal description of the model. Given these assumptions, we can describe
the processing components of the modelanddefine pure virtual functions

that represent those components.
Thereal value of the cosequential modelis that it can be adapted to

more substantial problems than simple matches or merges by extending

the class hierarchy. We illustrate this by using the modelto design a gener-

al ledger accounting program.

All of our early sample applications of the model involve only two
inputfiles. We next adapt the model to a multiway mergeto show howthe

model might be extended todeal with more than two inputlists. The
problem offinding the minimum key value during eachpass through the

https://hemanthrajhemu.github.io

358 Chapter 8 Cosequential Processing and the Sorting of Large Files

main loop becomes more complex as the numberofinputfiles increases.
Its solution involves replacing the three-way selection statement with
either a multiway selection or a procedure that keeps current keysin list

structure that can be processed more conveniently.

Wesee that the application of the model to k-way merging performs
wel] for small values of k, but that for values of k greater than 8 or so,it is

moreefficientto find the minimum keyvalue by meansofa selectiontree.
After discussing multiway merging, we shift our attention to a prob-

lem that we encountered in a previous chapter—howtosortlargefiles. We
begin with files that are small enough to fit into memory and introduce an
efficient sorting algorithm, heapsort, which makesit possible to overlap

I/O with the sorting process. |
The generally accepted solution when file is too large for in-memo-

ry sorts is some form of merge sort. A merge sort involves twosteps:

1. Break the file into two or more sorted subfiles, or-runs, using internal

sorting methods; and

2. Merge the runs.

Ideally, we would like to keep every run in a separate file so we can
perform the merge step with one pass through the runs. Unfortunately,

practical considerations sometimes makeit difficult to do this effectively.

Thecritical elements when merging manyfiles on disk are seek and
rotational delay times and transmission times. These times dependlargely

on two interrelated factors: the numberof different runs being merged
and the amountofinternal buffer space available to hold parts of the runs.

We can reduce seekand rotational delay times in two ways:

m Byperforming the merge in more than onestep; and/or

m Byincreasing thesizes ofthe initial sorted runs.

In both cases, the order of each merge step can be reduced,increasing
the sizes of the internal buffers and allowing more data to be processed

per seek. .

Looking at thefirst alternative,we see how performing the mergein
several steps can decrease the numberofseeks dramatically, though it also

means that we need to read through the data morethan once (increasing
total data transmission time).

The secondalternative is realized through use of an algorithm called
replacement selection. Replacementselection, which can be.implemented

using the selection tree mentionedearlier, involves selecting from memo-

ry:the key that has the lowest value, outputting that key, and replacingit
with a new key fromthe input list. .

https://hemanthrajhemu.github.io

Summary- 359

With randomly organizedfiles, replacementselection can be expect-
ed to produceruns twice as long as the numberof internal storage loca-

tions available for performing the algorithms. Although this represents a
major step toward decreasing the numberofruns that need to be merged,

it carries an additional cost. The need for a large buffer for performing

the replacementselection operation leavesrelatively little space for the
1/O buffer, which meansthat many more seeks are involved in forming

the runs than are needed whenthesort step uses an in-memorysort.If
we compare the total numberof seeks required by the two different
approaches, wefind that replacement selection can require more seeks;it
performssubstantially better only when there is a great deal of order in

the initialfile.
Next we turn ourattention to file sorting on tapes. Sincefile I/O with

tapes does not involve seeking, the problems andsolutionsassociated with

tape sorting can differ from those associated with disk sorting, although
thefundamental goal of working with fewer, longer runs remains. With

tape sorting, the primary measure of performance is the numberoftimes
each record must be transmitted. (Other factors, such as tape rewind time,

can also be important, but we do not consider them here.)
Since tapes do not require seeking, replacementselection is almost

always a good choice for creating initial runs. As the numberofdrives

available to hold run files is limited, the next question is how to distribute
the files on the tapes. In most cases,it 1s necessary to put several runs on
each of several tapes, reserving one or more other tapes for the results.
This generally leads to merges of several steps, with the total numberof

runs being decreased after each merge step. Two approachesto doingthis
are balanced merges and multiphase merges. In a k-way balanced merge,all
input tapes contain approximately the same numberofruns,there are the
same number ofoutput tapes as there are input tapes, and the input tapes
are read through entirely during each step. The number of runs is
decreased by a factor of k after each step.

A multiphase merge (such asa polyphase merge or a cascade merge)
requires that the runsinitially be distributed unevenly amongall but one
of the available tapes. This increases the order of the merge and as a result
can decrease the numberof times each record has to be read.It turns out

that the initial distribution of runs amongthefirst set of input tapes has a
major effect on the numberof times each record hasto be read,

Next, we discussbriefly the existence of sort-mergeutilities, which are

available on mostlargesystems and can be veryflexible and effective. We
conclude the chapter with a listing of Unix utilities used for sorting and

cosequential processing.

https://hemanthrajhemu.github.io

360 Chapter 8 Cosequential Processing and the Sorting of Large Files

KEYTERMS

Balanced merge. A multistep merging technique that uses the same
numberof input devices as output devices. A two-way balancedmerge
uses two input tapes, each with approximately the same numberof

runs on it, and produces two output tapes, each with approximately

half as many runs as the input tapes. A balanced mergeis suitable for
merge sorting with tapes, thoughit is not generally the best method

(see multiphase merging).

cmp. A Unix utility for determining whethertwofiles are identical. Given
twofiles, it reports the first byte wherethe twofiles differ, if they differ.

comm. A Unix utility for determining which lines two files have in

common. Given twofiles, it reports the lines they have in common,
the lines that are in thefirst file and not in the second, and the lines
that are in the second file and notin the first.

Cosequential operations. Operations applied to problemsthat involve the
performanceof union,intersection, and more complex set operations
on two or moresorted inputfiles to produce one or more outputfiles

built from some combination of the elements of the inputfiles.

Cosequential operations commonly occur in matching, merging, and
file-updating problems.

diff. A Unix utility for determiningall the lines thatdiffer between two
files. It reports the lines that need to be addedto thefirst file to make
it like the second, the lines that need to be deleted from the secondfile

to makeit like the first, and the lines that need to be changed in the
first file to makeit like the second.

Heapsort. A sorting algorithm especially well suited for sorting large files
that fit in memory because its execution can overlap with I/O, A vari-
ation of heapsort is used to obtain longer runs in the replacement
selection algorithm.

HighValue. A value used in the cosequentialmodel thatis greater than any
possible keyvalue. By assigning HighValueas the currentkey value for
files for which an end-of-file condition has been encountered, extra

logic for dealing with end-of-file conditions can be simplified.

k-way merge. A merge in which k inputfiles are merged to produce one

outputfile. .

LowValue. A value used in the cosequential model that is less than any
possible key value. By assigning LowValueas the previous key value

https://hemanthrajhemu.github.io

Key Terms 361

. duringinitialization, the need for certain other specialstart-up codeis

eliminated.

Match. The process of forming a sorted outputfile consisting ofall the
elements commonto two or moresorted inputfiles.

Merge. The process of forming a sorted outputfile that consists of the
unionofthe elements from two or moresorted inputfiles.

Multiphase merge. A multistep tape merge in which the initial distribu-

tion of runs is such that at least the initial mergeis a J-1-way merge (J

is thé numberofavailable tape drives) and in which thedistribution

of runs across the tapes is such that the merge performsefficiently at
every step. (See polyphase merge.)

Multistep merge. A merge in which not all runs are merged in onestep.

Rather, several sets of runs are merged separately, each set producing
one long run consisting of the records from allofits runs. These new,
longersets are then merged, either all together orin severalsets. After
each step, the numberof runs is decreased and the length of the runs

is increased. The outputof thefinal step is a single run consisting of
the entire file. (Be careful not to confuse ouruse of the term muitltistep
merge with multiphase merge.) Although a multistep mergeis theoret-

ically more time-consuming than a single-step merge,it can involve

muchless seeking when performed on disk, andit may be the only
reasonable way to perform a merge on tape if the numberof tape

drives is limited.

Order of a merge. The numberofdifferent files, or runs, being merged.
For example, 100 is the order of a 100-way merge.

Polyphase merge. A multiphase merge in which,ideally, the merge order

is maximizedat everystep.

qsort. A general-purpose Unix library routine for sorting files that
employs a user-defined comparison function.

Replacementselection. A method of creating initial runs based on the

idea of always selecting from memory the record whose key has the
lowest value, outputting that record, and then replacing it in memory

witha new record from the inputlist. When new recordsare brought
in with keys that are greater than those of the most recently output

records, they eventually becomepartof the run being created. When
new records have keys that are less than those of the most recently

outputrecords, they are held over forthe next run. Replacementselec-
tion generally produces runs thatare substantially longer than runs

https://hemanthrajhemu.github.io

362 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

that can be created by in-memorysorts and hence can help improve
performance in merge sorting. When using replacementselection with

mergesorts on disk, however, one mustbe careful that the extra seek-
ing required for replacementselection does not outweigh the benefits

of having longer runs to merge.

Run. A sorted subsetof file resulting from thesort step of a sort merge
or one ofthe steps of a multistep merge.

Selection tree. A binary tree in which each higher-level node represents
the winner of the comparison between the two descendentkeys. The
minimum (or maximum)value in selection tree is always at the root

node, making the selection tree a good data structure for merging

severallists. It is also a key structure in replacement selection algo-
rithms, which can be used for producing long runs for mergesorts.
(Tournamentsort, an internalsort, is also based on the useofa selec-

tion tree.)

Sequence checking. Checking that records in a file are in the expected

order. It is recommendedthatall files used in a cosequential operation

be sequence checked.

sort. A Unix utility for sorting and mergingfiles.

Synchronization loop. The main loop in the cosequential processing

model. A primary feature of the modelis to do all synchronization
within a single loop rather than in multiple nested loops. A second

objective is to keep the main synchronization loop as simpleas possi-
ble. This is done byrestricting the operations that occur within the
loop to those that involve current keys and by relegating as much

speciallogic as possible (such as error checking and end-of-file check-

ing) to subprocedures.

Theorem A (Knuth). It isdifficult to decide which merge pattern is best in

agiven situation.

FURTHER READINGS

The subject matter treated in this chapter can be dividedinto two separate
topics: the presentation of amodel for cosequential processing and discus-
sion of external merging procedures on tape and disk. Although mostfile

processing texts discuss cosequential processing, they usually do it in the

context of specific applications, rather thanpresenting a general model

https://hemanthrajhemu.github.io

Exercises 363

that can be adapted to a variety of applications. We found this useful and
flexible model through Dr. James VanDoren who developedthis form of

the model himself for presentation in the file structures course that he
teaches. We are not aware of any discussion of the cosequential modelelse-

where in the literature. .
Quite a bit of work has been done toward developing simple and

effective algorithmsto do sequential file updating, which is an important

instance of cosequential processing. The results deal with someof the

same problems the cosequential model deals with, and someofthe solu-
tions are similar. See Levy(1982) and Dwyer (1981) for more.

Unlike cosequential processing, external sorting is a topic that is

covered widely in the literature. The most complete discussion of the
subject, by far, is in Knuth (1998). Students interested in the topic of exter-

nal sorting must, at somepoint, familiarize themselves with Knuth’s defin-
itive summary of the subject. Knuth also describes replacementselection,

as evidenced by our quoting from his book in this chapter.
Salzberg (1990) describes an approach to external sorting that takes

advantage of replacementselection, parallelism, distributed computing,
and large amounts of memory. Cormen,Leiserson, and Rivest (1990) and

Loomis (1989) also have chapters on external sorting.

EXERCISES

1. Consider the cosequential Merge2Lists method ofFig. 8.5 and the
supporting methodsof classCosequent ialProcessin Appendix

H. Comment on howthey handle the following initial conditions. If

they do not correctly handle a situation, indicate how they might be
altered to do so.

a. List 1 empty and List 2 not empty

b. List 1 not empty and List 2 empty

c. List 1 empty and List 2 empty

2. Section 8.3.1 includes the body of a loop for doing a k-way merge,

assuming that there are no duplicate names. If duplicate names are
allowed, one could add to the procedure facility for keeping list of
subscripts of duplicate lowest names. Modify the body of the loop to
implement this. Describe the changes required to the supporting
methods. .

https://hemanthrajhemu.github.io

364 Chapter 8 Cosequential Processing and the Sorting of Large Files

In Section 8.3, two methods are presented for choosing the lowest of K
keys at each step in a K-way merge: a linear search and useofa selec-
tion tree. Compare the performancesof the two. approachesin terms
of numbers of comparisons for K= 2,4, 8, 16, 32, and 100. Why do
you think the linear approach is recommendedfor values of K less
than 8?

Suppose you have 80 megabytesof memory available for sorting the
8 000 000-record file described in Section 8.5.

a. How long doesit take to sort the file using the merge-sort algo-
rithm described in Section 8.5.1?

b. How long doesit take to sort thefile using the keysort algorithm
described in Chapter 6?

c. Why will keysort not work if there are ten megabytes of memory
available for the sorting phase?

. , How muchseektime is required to perform a one-step merge such as
the one described in Section 8.5 if the time for an average seekis 10
msec and the amountof available internal buffer space is 5000 K?

1000 K? , ,

Performancein sorting is often measured in terms of the numberof
comparisons. Explain why the number of comparisonsis not adequate

for measuring performancein sorting largefiles.

In our computations involving the merge sorts, we made the simplify-
ing assumption that only one seek and one rotational delay are
required for any single sequential access. If this were not the case, a
great deal more time would berequired to.perform I/O, For example,
for the 800-megabytefile used in the example in Section 8.5.1, for the
input step of the sort phase (“reading all records into memory for
sorting and forming runs”), each individual run could require many

accesses. Now let’s assumethat the extent size for our hypothetical
drive is 80 000 bytes (approximately one track) and thatall files are

stored in track-sized blocks that mustbe accessed separately (one seek
and onerotational delay per block).

a. How many seeks does step 1 now require?

b. How long dosteps 1, 2, 3, and 4 now take?

c. How doesincreasingthefile size by a factor of 10 nowaffect the

total time required for the mergesort?

8. Derive two formulas for the numberofseeks required to perform the
merge step of a one-step k-way sort merge ofa file with r records

https://hemanthrajhemu.github.io

Exercises 365

10.

ll.

12.

13.

‘divided into k runs, where the amountofavailable memory is equiv-
alent to M records. If aninternal sort is used for the sort phase, you

can assumethat the length of each run is M,but if replacementselec-

tion is used, you can assumethat the length of each runis about 2M.
Why?

Assume aquiet system with four separately addressable disk drives,
each of whichis able.to hold several gigabytes. Assumethat the 800-
megabytefile described in Section 8.5 is already on one of the drives.

Design a sorting procedurefor this sample file that uses the separate
drives to minimize the amountof seeking required. Assumethat the

final sorted file is written off to tape and that buffering for this tape
output is handled invisibly by the operating system. Is there any
advantage to be gained by using replacementselection?

Use replacementselection to produce runs from thefollowingfiles,
assuming P = 4.

a. 2329517955413313318241 147

b. 3591117182324293341475155

c. 5551474133292423181711953

Suppose you have a disk drive that has 10 read/write heads per
surface, so 10 cylinders may be accessed at any one time without
having to move the actuator arm.If you could control the physical

organization of runsstored on disk, how mightyou be able to exploit

this arrangementin performing a sort merge?

Assume we need to merge 14 runs on four tape drives. Develop merge
patterns starting from each of theseinitial distributions:

b. 7—4—3

c, 6—5—3

d. 5—5—4.

A four-tape polyphase mergeis to be performedto sortthelist 24 36
13 25 16 45 29 38 23 50 22 19 43 30 11 27 48. The originallist is on
‘tape 4. Initial runs are of length 1. After initial sorting, tapes 1, 2, and

3 contain the following runs(a slash separates runs):

Tape 1:24/ 36/13/25

Tape 2: 16/45 / 29/38/23 /50 Tape 3:22/19/43/30/11/27/47

a. Showthe contents oftape 4 after one merge phase.

b. Show the contents of all four tapes after the second and fourth
phases.

https://hemanthrajhemu.github.io

366 Chapter 8 Cosequential Processing and the Sorting of LargeFiles

c. Commentonthe appropriateness of the original 4—6—7distrib-
ution for performing apolyphase merge.

14. Obtain a copy of the manual for one or more commerciallyavailable

15.

sort-merge packages. Identify the different kinds of choices available

to users of the packages. Relate the options to the performanceissues

discussed in this chapter.

A join operation matches two files by matching field values in the two
files. In the ledger example, a join could be used to match master and

transaction records that have the same account numbers. Theledger
posting operation could be implemented witha sorted ledgerfile and -

an indexed, entry-sequenced transaction file by reading a master
record and then usingtheindexto find all corresponding transaction
records.

Comparethe speed ofthis join operation with the cosequential

processing method ofthis chapter. Don’t forget to include the cost of
sorting the transactionfile.

PROGRAMMING

16.

17,

18.

19.

Modify method LedgerProcess: : ProcessEndMasters0it

updates the ledgerfile with the new accountbalances for the month.

Implementthe k-way mergein class CosequentialProcessing

using an object of class Heap to perform the mergeselection.

Implement a k-way match in class CosequentialProcessing.

Implementthe sort merge operation using class Heap to perform

replacement selection to create the initial sorted runs and class

CosequentialProcessing to perform the merge phases.

https://hemanthrajhemu.github.io

Programming Project 367

PROGRAMMING PROJECT

Thisis the sixth part of the programming project. We develop applications

that produce student transcripts and student grade reports from informa-

tion containedin files produced by the programmingproject of Chapter4.

20. Use class CosequentialProcesses and

21.

MasterTransactionProcessto develop an application that

produces student transcripts. For each student record (master) print

the student information anda list of all courses (transaction) taken

by the student. As input, use a file of student records sorted by

student identifier and file of course registration records sorted by
student identifiers.

Use class CosequentialProcesses and

MasterTransactionProcessto develop an application that
produces student grade reports. As input,use a file of student records

sorted by student identifier and a file of course registrations with
grades for a single semester.

The next part of the programmingproject Is in Chapter 9.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

CHAPTER

Multilevel Indexing
ad B-Trees

 ©
)

CHAPTER OBJECTIVES

Place the developmentof B-trees in the historical context of the

problems they were designed to salve.

4% Look briefly at other tree structures that might be used on
secondary storage, such as paged AVLtrees.

“ Introduce multirecord and multilevel indexes and evaluate the

speed of the search operation.

“* Provide an understanding of the important properties possessed by

B-trees and show howthese properties are especially well suited to

secondary storage applications. |

s+ Present the object-oriented design of B-trees

- Define class BTreeNode, the in-memory representation of the
nodesof B-trees.

- Define class BTree,the full representation of B-trees includingall
operations.

«* Explain the implementation of the fundamental operations on

B-trees.

“> Introduce the notion of page buffering and virtual B-trees.

+ Describe variations of the fundamental B-tree algorithms, such as

those used to build B* trees and B-trees with variable-length

records.”

369https://hemanthrajhemu.github.io

370

9.1

Chapter 9 Multilevel Indexing and B-Trees

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

' 9,16

CHAPTER OUTLINE

Introduction: The Invention of the B-Tree

Statementof the Problem

Indexing with Binary Search Trees
9.3.1 AVL Trees

9.3.2 Paged Binary Trees

9.3.3 Problems with PagedTrees
Multilevel Indexing: A Better Approach to Tree Indexes

B-Trees: Working up from the Bottom

Example of Creating a B-Tree

An Object-Oriented Representation of B-Trees
9.7.1 Class BTreeNode: Representing B-Tree Nodes in Memory

9.7.2 Class BTree: Supporting Files of B-Tree Nodes
B-Tree Methods Search, Insert, and Others

9.8.1 Searching
9.8.2 Insertion .
9.8.3 Create, Open, and Close

9.8.4 Testing the B-Tree

B-Tree Nomenclature

Formal Definition of B-Tree Properties

Worst-Case Search Depth
Deletion, Merging, and Redistribution

9.12.1 Redistribution
Redistribution During Insertion: A Way to Improve Storage

Utilization

B* Trees

Buffering of.Pages: Virtual B-Trees

9.15.1 LRU Replacement
9.15.2 Replacement Based on Page Height
9.15.3 Importanceof Virtual B-Trees

Variable-Length Records and Keys

Introduction: The Invention of the B-Tree

Computerscience is a young discipline. As evidenceof this youth, consid-
er that at the start of 1970, after astronauts had twice traveled to the moon,

B-trees did notyetexist. Today, twenty-sevenyearslater,it is hard to think

of a major, general-purposefile system that is not built around a B-tree

design.

https://hemanthrajhemu.github.io

Introduction: The Invention of the B-Tree 371

Douglas Comer, in his excellent survey article, “The Ubiquitous B-
Tree” (1979), recounts the competition among computer manufacturers

and independent research groupsin the late 1960s. The goal was the

discovery of a general methodforstoring andretrieving data in largefile

systems that would provide rapid access to the data with minimal over-
head cost. Among the competitors were R. Bayer and E. McCreight, who

were working for Boeing Corporation. In 1972 they published anarticle,

“Organization and Maintenance of Large Ordered Indexes,” which an-

nounced B-trees to the world. By 1979, when Comerpublished his survey

article, B-trees had already becomeso widely used that Comer wasable to

state that “the B-treeis, de facto, the standard organization for indexes:in a

database system.”

We have reprinted the first few paragraphs of the 1972 Bayer and
McCreightarticle! because it so concisely describes the facets of the prob-
lem that B-trees were designed to solve: how toaccess andefficiently main-

tain an index thatis too large to hold in memory.You will rememberthat
this is the same problem thatis left unresolved in Chapter 7, on simple
index structures.It will be clear as you read Bayer and McCreight’s intro-
duction that their work goesstraight to the heart ofthe issues weraised in

the indexing chapter.

In this paper we consider the problem of organizing and maintaining an

index for a dynamically changing random accessfile. By an index we

mean a collection of index elements which are pairs (x, a) offixed size

physically adjacent dataitems, namely a key x and someassociated infor-
mation a. The key x identifies a unique elementin the index,the associ-

ated information is typically a pointer to a record or collection of

records ina random accessfile. For this paper the associated information

is of no furtherinterest. |
We assumethat the indexitself is so voluminousthat only rather

small parts of it can be kept in main store at one time. Thus thebulk of
the index must be kept on some backupstore. The class of backupstores
considered are pseudo random access devices which have rather long
access or wait time—as opposedto a true random access devicelike core
store—and a rather high data rate once the transmission of physically
sequential data has been initiated. Typical pseudo random access devices

are: fixed and moving head disks, drums,and datacells.
Since the datafile itself changes, it must be possible not only to

search the index andto retrieve elements, but also to delete andto insert

1. From Acta-Informatica, 1:173—-189, ©1972, Springer Verlag, New York. Reprinted with permission.

https://hemanthrajhemu.github.io

372

9.2

Chapter 9 Multilevel Indexing and B-Trees

keys—more accurately index elements—economically. The index orga-
nization described in this paperallowsretrieval, insertion, and deletion

of keys in time proportional to log, I or better, where J is the size of the
index, and k is a device dependent natural number which describes the
page size such that the performance of the maintenance andretrieval

scheme becomes near optimal.

Bayer and McCreight’s statement that they have developed a scheme

with retrieval time proportional to log, where kis related to the page

size, is very significant. As we will see, the use of a B-tree with a pagesize
of sixty-four to index an file with 1 million records results in being able to
find the key for any record in no more thanthreeseeksto the disk. A bina-
ry search on the samefile can require as many as twenty seeks. Moreover,
we are talking about getting this kind of performance from a system that

requires only minimal overhead as keys are inserted and deleted.
Before looking in detail at Bayer and McCreight’s solution,let’s first

return to a more careful look at the problem,picking up whereweleft off
in Chapter 7. We will also look at someof the data andfile structures that

were routinely used to attack the problem before the invention of B-trees.

Given this background, it will be easiér to appreciate the contribution
made by Bayer and McCreight’s work.

One last matter before we begin: why the name B-tree? Comer(1979)

provides this footnote:

The origin of “B-tree” has never been explained by [Bayer and

McCreight]. As we shall see, “balanced,” “broad,” or “bushy” might apply.
Others suggest that the “B” stands for Boeing. Because of his contribu-

tions, however, it seems appropriate to think of B-trees as “Bayer”-trees.

Statementofthe Problem

The fundamental problem with keeping an index on secondarystorageis,
of course, that accessing secondary storage is slow. This can be broken
downinto two morespecific problems:

m Searching the index must be faster than binary searching. Searching for.

a key on a disk often involves seeking to different disk tracks. Since
seeks are expensive, a search that has to look in more than three or

fourlocations before finding the key often requires more time thanis
desirable. Lf we are using a binary search,four seeks is enough onlyto
differentiate amongfifteen items. An.average of about 9.5 seeksis

https://hemanthrajhemu.github.io

9.3

Indexing with Binary Search Trees 373

required to finda key in an index of one thousand itemsusing a bina-
ry search. We needto find a way to homein on keyusing fewerseeks.

m= Insertion and deletion must be asfast as search. As we saw in Chapter 7,

if inserting a key into an index involves movinga large numberofthe

other keys in the index, index maintenance is very nearly impractical
on secondary storage for indexes consisting of only a few hundred

keys, much less thousands of keys. We need to find a way to make

insertions and deletions that have only local effects in the index rather
than requiring massive reorganization.

These were the twocritical problems that confronted Bayer and McCreight
in 1970. They serve as guideposts for steering our discussion of the use of
tree structures and multilevel indexes for secondary storage retrieval.

Indexing with Binary Search Trees

Let’s begin by addressing the second of these two problems: lookingat the

cost of keeping list in sorted order so we can perform binary searches.
Given the sortedlist in Fig. 9.1, we can express a binary search of thislist

as a binary search tree, as shownin Fig. 9.2. .
Using elementary data structure techniques,itis a simple matter to

create nodes that contain right andleft link fields so the binary searchtree

can be constructed as a linked structure. Figure 9.3 illustrates a linked
representation ofthe first two levels of the binary search tree showninFig.

9.2, In each node,the left and rightlinkspoint to the left and right children

of the node..
What is wrong with binary search trees? We have already said that

binary searchis notfast enoughfor disk resident indexing. Hence, a bina-
ry search tree cannot solve our problem asstated earlier. However,this is

not the only problem with binary search trees. Chief amongtheseis the
lack of an effective strategy of balancing the tree. That is, making sure that

the height of the leaves of the tree is uniform: no leaf is muchfarther from
the root than any otherleaf. Historically, a number of attempts were made

‘to solve these problems, and wewill look at two of them: AVL trees and
paged binarytrees.

AX CL DE FB FI HN JD KF NR PA RF SD TK WS YJ

Figure 9.1 Sortedlist of keys.

https://hemanthrajhemu.github.io

374 Chapter 9 Multilevel Indexing and 8-Trees

KF

aN
FB SD

a Nay ~ ™

S™ AN
FT yD

PA WS

AX DE NR —RF TK YJ

Figure 9.2 Binary search tree representation ofthelist of keys.

pes KE ey

af ts
NL

Figure 9.3 Linked representation of part of a binary searchtree,

~ However, to focus on the costs andnotthe advantagesis to miss the

important new capability that this tree structure gives us: we no longer

have to sort the file to perform a binary search. Note that the records in the
file illustrated in Fig. 9.4 appear in random rather than sorted order. The

sequenceof the recordsin the file has no necessary relation to the struc-
ture ofthe tree; all the information aboutthe logical structureis carried in

. the link fields. The very positive consequencethat follows from thisis that
if we add a newkey tothefile, such as LV, we need only link it to the
appropriate leaf node to create a tree that provides search performance
that is as good as we wouldget with a binary search on sortedlist. The

tree with LV added is illustrated in Fig. 9.5 (page 376).
Search performance onthis tree is still good because the tree is in a

balanced state. By balanced we meanthat the height ofthe shortest path to

a leaf does not differ from the height of the longest path by more than one

level. For the tree in Fig. 9.5, this difference of oneis as close as we can get

to complete balance, in whichall the paths from root to leaf are exactly the

samelength.

https://hemanthrajhemu.github.io

indexing with Binary Search Trees 375

Figure 9.4 ROOT -? 9

Record contents for a.
linked representation Left Right Left Right

of the binarytree in Key child child Key child child

Figure 9.2. 0| FB] 10 8 8;|HN{ 7 1

14 jo | 9 |KF; 0 3

2} RF 10 CL 4 12

3) sD] 6} 13 11 |NR

4| AX 12 |DE

5

|

YJ 13

|

Ws

|

14 5

6] PA 11 2 14 TK

7 Fr
Consider what happensif we go on to enter the following eight keysto

the tree in the sequence in which they appear:

NP MB TM LA UF ND TS NK

Just searching down throughthetree and adding eachkeyatits correct

position in the search tree results in the tree shownin Fig. 9.6.
Thetree is now outof balance. This is a typical result for trees that are

built by placing keys into the tree as they occur without rearrangement.
The resulting disparity betweenthe length of various search pathsis unde-
sirable in any binary searchtree, butit is especially troublesomeif the

nodesof the tree are being kept on secondarystorage. There are now keys

that require seven,eight, or nine seeks for retrieval. A binary search on a
sorted list of these twenty-four keys requires onlyfive seeks in the worst

case. Although theuseofa tree lets us avoid sorting, we are paying for this

convenience in terms of extra seeks at retrieval time. For trees with

hundredsofkeys, in which an out-of-balance search path mightextend to

thirty, forty, or more seeks, this price is too high.

If each nodeis treated as a fixed-length record in whichthelinkfields

contain relative record numbers (RRNs) pointing to other nodes, thenit is

possible to place such a tree structure on secondary storage. Figure 9.4

https://hemanthrajhemu.github.io

376 Chapter 9 Multilevel Indexing and B-Trees

Figure 9.5 Binary search tree with LV added.

FBao,aN aN,
CL HN PA

iL Ne wa \p wih Ne TK ¥J

A TM
/\ \

LA NP UF
/ /
MB TS
\
ND

\
NK

Figure 9.6 Binary search tree showingtheeffect of added keys.

illustrates the contents of the fifteen records that would be required to

form the binarytree depicted in Fig.9.2.

Note that more thanhalf of the link fields in the file are empty because
they are leaf nodes with no children. In practice, leaf nodes need to
contain somespecial character, such as —1, to indicate that the search
throughthe tree has reached the leaf level and that there are no more
nodes onthe search path, Weleave the fields blank in this figure to make
them morenoticeable,illustrating the potentially substantial cost in terms

of spaceutilization incurred by this kind oflinked representation ofa tree.

https://hemanthrajhemu.github.io

Indexing with Binary Search Trees 377

9.3.1 AVL Trees

Earlier we said that there is no necessary relationship between the orderin
which keys are entered and the structure of the tree. We stress the word

necessary becauseit is clear that order of entry is, in fact, important in

determining the structure of the sample tree illustrated in Fig. 9.6. The

reason for this sensitivity to the orderofentryis that, so far, we have just

been linking the newest nodesatthe leaf levels of the tree. This approach
can result in some very undesirable tree organizations. Suppose, for exam-
ple, that our keys consist of the letters A-G and that wereceive these keys
in alphabetical order. Linking the nodes as we receive themproduces a

degeneratetree thatis, in fact, nothing more than a linkedlist, as illustrat-
ed in Fig. 9.7.

The solution to this problem is somehow to reorganize the nodes of

the tree as we receive new keys, maintaining a near optimaltree structure.

One elegant method for handling such reorganization results in a class of
trees known as AVL trees, in honorof the pair of Russian mathematicians,
G. M. Adel’son-Vel’skii and E, M. Landis, whofirst defined them. An AVL
tree is a height-balanced tree. This meansthat thereis a limit placed on
the amountofdifference allowed between the heights of any two subtrees

sharing a common root. In an AVL tree the maximum allowable differ-
ence is one. An AVLtree is therefore called a height-balanced 1-tree or

-HB(1) tree. It is a member of a more general class of height-balanced

trees known as HB(k) trees, which are permitted to be k levels out of

balance.
Thetrees illustrated in Fig. 9.8 have the AVL, or HB(1) property. Note

that no two subtrees of any root differ by more than onelevel. Thetrees in
Fig. 9.9 are not AVLtrees. In each ofthese trees,the root of the subtree that

-is not in balance is marked with an xX.

Figure 9.7 \

A degeneratetree. B

https://hemanthrajhemu.github.io

378 Chapter9 Multilevel Indexing and B-Trees

3
e ° NSN

aN a oe - *
© e /N / e

i\ eee
e @ \

o

Figure 9.8 AVLtrees.

xX xX ~ e 6

o” \. o” 0” Ny A Ny
/\ / 4\ 7 / /

eo °@ @ e 8 @ e e

\ \ /
e e e

Figure 9.9 Trees that are not AVLtrees.

The two features that make AVLtrees important are

m By setting a maximum allowable difference in the height of any two:

subtrees, AVL trees guarantee a minimum level of performance in
searching; and

m -Maintaininga tree in AVLform as new nodesareinserted involves the

use of one ofa set of four possible rotations. Each of the rotationsis
confined to a single, local area of the tree. The most complex ofthe
rotations requires only five pointer reassignments.

AVLtrees are an importantclass of data structure. The operations
used to build and maintain AVL trees are described in Knuth (1998),

‘Standish (1980), andelsewhere. AVL trees are not themselves directly

applicable to mostfile structure problems because,like all strictly binary

trees, they have too many levels—they are too deep. However, in the
context of our generaldiscussion of the problem of accessing and main-
taining indexes that are too large to fit in memory, AVL treesare interest-
ing because they suggest that it is possible to define procedures that
maintain height balance.

The fact that an AVLtree is height-balanced guarantees that search

performance approximatesthat of a completely balanced tree. For example,
the completely balanced form of a tree made up from the inputkeys

BCGEFODA

https://hemanthrajhemu.github.io

Indexing with Binary Search Trees 379

aN a“N
Br F C F
S™ SN /™ XX

A Cc E G B D G

Figure 9.10 A

A completely balanced

search tree, Figure 9.11 A search tree-

constructed using AVL procedures.

is illustrated in Fig. 9.10, and the AVLtree resulting from the same input

keys, arriving in the same sequence,is illustrated in Fig. 9.11.

For a completely balanced tree, the worst-case search to find a key,

given N possible keys, looks at

log, (N+ 1)

levels of the tree. For an AVLtree, the worst-case search could look at

1.44 log, (N+ 2)

levels. So, given 1 000 000 keys, a completely balanced tree requires seeking

to 20 levels for someofthe keys, but never to 21 levels. If the tree is an AVL

tree, the maximum numberoflevels increases to only 29. This is a very
interesting result, given that the AVL procedures guarantee that a single
reorganization requires.no more than five pointer reassignments.
Empirical studies by VanDoren and Gray (1974), among others, have

shown that such local reorganizations are required for approximately
every other insertion into the tree and for approximately every fourth

deletion. So height balancing using AVL methods guarantees that we will

obtain a reasonable approximation of optimal binarytree performance at

a cost that is acceptable in most applications using primary, random-

access memory.
Whenweare using secondarystorage, a procedure that requires more

than five or six seeks to find a keyis less than desirable; twenty or twenty-
eight seeks is unacceptable. Returningto the two problemsthatwe identi-
fied earlier in this chapter, .

m Binary searching requires too manyseeks, and

m Keeping an index in sorted orderis expensive,

we can see that height-balanced trees provide an acceptable solution to the
second problem. Now weneedto turn ourattention to the first problem.

https://hemanthrajhemu.github.io

380 Chapter 9 Multilevel Indexing and B-Trees

9,3.2 Paged Binary Trees

Disk utilization of a binary search tree is extremely inefficient. Thatis,

when weread a node of a binary searchtree, there are only three useful
pieces of information—the key value and the addresses ofthe left and
right subtrees. Each disk read produces a minimum ofa single page—at
least 512 bytes. Reading a binary node wastes most of the data read from

the disk. Since this disk readis the critical factor in the cost of searching,

we cannot afford to waste the reads. It is imperative that we choose an
‘index record that usesall of the space read from thedisk.

The paged binary tree attempts to address the problem by locating

multiple binary nodes on the same disk page. In a paged system, you do
not incurthe cost of a disk seek just to get a few bytes. Instead, once you

have taken the time to seek to an area of the disk, you read in anentire
page from the file. This page might consist of a great many individual
records.If the nextbit of information you needfrom the diskis in the page
that was just read in, you have saved the cost of a disk access.

Paging, then,is a potential solution to the inefficient disk utilization

of binary searchtrees. By dividing a binary tree into pages and thenstor-

ing each page in a block of contiguouslocations on disk, we should be
able to reduce the number of seeks associated with any search. Figure
9.12 illustrates such a pagedtree. In this tree we are able to locate any one

Figure 9.12 Pagedbinarytree.

https://hemanthrajhemu.github.io

Indexing with Binary Search Trees 381

of the 63 nodes in the tree with no more than two disk accesses. Note

that every page holds 7 nodes and can branchto eight new pages. If we
extend the tree to one additionallevel of paging, we add sixty-four new

pages; we can thenfind any one of 511 nodesin only three seeks, Adding

yet anotherlevel of paginglets us find any one of 4095 nodes in only
four seeks. A binary search of a list of 4095 items can take as manyas
twelve seeks.

Clearly, breaking the tree into pages has the potentialto result in faster

searching on secondary storage, providing us with muchfasterretrieval
than any other form of keyed access that we have considered up to this
point. Moreover, our use of a page size of seven in Fig. 9.12 is dictated

morebythe constraints of the printed page than by anything having to do
with secondary storage devices. A more typical example of a pagesize

might be 8 kilobytes, capable of holding 511 key/reference field pairs.
Given this page size and assuming that each page contains a completely

balanced full tree and that the pages are organized as a completely

balanced full tree,it is then possible to find any one of 134 217 727 keys
with only three seeks. Thatis the kind of performance we are lookingfor.
Note that, while the numberof seeks required for a worst-case search of a

completely full, balanced binary tree ts

log, (N+ 1)

where Nis the number of keys in the tree, the numberof seeks required
for the paged versions of a completely full, balanced treeis

logi,, (N+ 1)

where N is, once again, the number of keys. The new variable, k, is the

numberofkeys held in a single page. The second formulais actually a

generalization ofthefirst, since the numberof keys in a page of a purely

binarytree is 1. It is the logarithmic effect of the page size that makes the

impact of paging so dramatic:

log, (134 217 727 + 1) = 27 seeks
Jogs:,4, (134 217 727 + 1) =3 seeks

The use of large pages does not comefree. Every access to a page
requires the transmission of a large amount of data, most of which is not

used. This extra transmission timeis well worth the cost, however, because

it saves so manyseeks, which are far more time-consuming than the extra

transmissions. A much moreserious problem,which welookat next, has

to do with keeping the paged tree organized.

https://hemanthrajhemu.github.io

382 Chapter 9 Multilevel Indexing and B-Trees

9.3.3 Problems with Paged Trees

The majorproblem with pagedtreesisstill inefficient disk usage. In the
example in Fig. 9.12, there are seven tree nodes per page. Of the fourteen
reference fields in a single page,six of them are reference nodes within the

page. That is, we are using fourteenreference fields to distinguish between
eight subtrees. We could represent the same information with seven key

fields and eight subtree references. A significant amountof the space in the

nodeis still being wasted.
Is there any advantage to storing a binarysearch tree within the page?

It’s true that in doing so we can perform binary search. However,if the

keys are stored in an array, we can still do our binary search. The only
problem hereis that insertion requires a linear numberof operations. We

have to remember, however, that the factor that determines the cost of

search is the number of disk accesses. We can do almost anything in

memoryin the timeit takes to read a page. The bottomlire is that there is

no compelling reason to produce tree inside the page.

The second problem,if we decide to implementa pagedtree,is howto
build it. If we have the entire set of keys in hand before thetree is built, the
-solution to the problem is relatively straightforward: we can sort the list of
keys and build the tree from this sorted list. Most important, if we plan to

start building the tree from the root, we know that the middle key in the

sorted list of keys should bethe root key within the root page ofthetree.In
short, we know where to beginand are assured that this beginning point

will divide the set of keys ina balanced manner.
Unfortunately, the problem is much more complicated if we are

receiving keys in random order andinserting them as soon as we receive

them. Assume that we must build a paged tree as wereceive the following

sequence of single-letter keys:

CSDTAMPIBWNGURKEHOLIYQ2ZFXV

Wewill build a paged binary tree that contains a maximumofthree
keys per page. As we insert the keys, we rotate them withina page as neces-
sary to keep each page as balanced as possible. The resultingtreeis illus-

trated in Fig. 9.13. Evaluated in terms of the depth of the tree (measured
in pages), this tree does not turn out too badly. (Consider, for example,

what happensif the keys arrive in alphabetical order.) |

Even thoughthis tree is not dramatically misshapen, it clearly illus-

trates the difficulties inherent in building a paged binarytree from the top
down. When youstart from the root, the initial keys must, of necessity, go

into the root. In this example at least two of these keys, C and D, are not

https://hemanthrajhemu.github.io

Indexing with Binary Search Trees 383

keys that we want there. They are adjacent in sequence and tend toward

the beginningofthetotal set of keys. Consequently, they force the tree out

of balance,

Once the wrong keys are placed in the root of the tree (or in the root
of any subtree farther down the tree), what can you do about it?

Unfortunately, there is no easy answer to this. We cannot simplyrotate
entire pages of the tree in the same waythatwe wouldrotate individual
keys in an unpagedtree.If we rotate the tree so the initial root page moves

down to theleft, moving the C and D keysinto a better position, then the

S keyis out of place. So we must break up the pages. This opens up a whole
world of possibilities and difficulties, Breaking up the pages implies rear-

ranging themto create new pages that are both internally balanced and
well arranged relative to other pages. Try creating a page rearrangement

algorithm for the simple, three-keys-per-page tree from Fig. 9.13. You will

find it very difficult to create an algorithm that has only localeffects, rear-

ranging just a few pages. The tendencyis for rearrangements and adjust-
ments to spread out through a large part of the tree. This situation grows

even more complex with larger page sizes.
So, although we have determined that collecting keys into pages is a

very good idea from the standpoint of reducing seeks to the disk, we have

Figure 9.13 Paged tree constructed fromkeysarriving in random input sequence..

https://hemanthrajhemu.github.io

384

9.4

Chapter 9 Multilevel Indexing and B-Trees

not yet found a wayto collect the right keys. Wearestill confronting at

least two unresolved questions:

m- How do weensurethat the keys in the root page turn outto be good

separator keys, dividing up theset of other keys more orless evenly?

mM =©How do we avoid grouping keys, such as C, D, and S in our example,
that should not share a page?

Thereis, in addition,a third questionthat we have notyet had to confront
because of the small page size of our sample tree:

m Howcan we guarantee that each of the pages contains at least some
minimum numberof keys? If we are working witha larger pagesize,
such as 8191 keys per page, we want to avoid situations in which a
large numberof pages each contains only a few dozen keys.

Bayer and McCreight’s 1972 B-tree article provides a solution directed

precisely at these questions.
A numberofthe elegant, powerful ideas used in computer science

have grown out of looking at a problem from adifferent viewpoint. B-
trees are an exampleofthis viewpoint-shift phenomenon.

The key insight required to make the leap from the kinds of trees we
have been considering to a new solution,B-trees, is that we can choose to
build trees upward from the bottom instead of downward fromthe top. So

far, we have assumedthenecessity of starting construction from the root
as a given. Then, as we found that we had the wrong keys inthe root, we
tried to find ways to repair the problem with rearrangementalgorithms.
Bayer and McCreight recognized that the decision to work down from the

root was,ofitself, the problem. Rather than finding ways to undo a bad
situation, they decided to avoid the difficulty altogether. With B-trees, you
allow the root to emerge, rather than set it up and then find ways to

changeit.

Multilevel Indexi::g: A Better Approach

to Tree Indexes

The previous section attempted to develop an ideal strategy for indexing

large files based on buildingsearch trees, but serious flaws were uncovered.

In this section wetake a different approach. Instead of basing our strategy

on binarytree searches, we start with the single record indexing strategy of

https://hemanthrajhemu.github.io

Multilevel Indexing: A Better Approach to Tree Indexes 385

Chapter 7. We extend this to multirecord indexes ind then multilevel

indexes. Ultimately, this approach,too,is flawed, butit is the source of the

primaryefficiency of searching andleadsus directly to B-trees.
In Chapter 7, we noted that a single record index puts a limit on the

numberof keys allowed andthat large files need multirecord indexes. A

multirecord index consists of a sequenceof simple index records. Thekeys

in one record in thelist are all smaller than the keys ofthe next record. A

binary searchis possible on file that consists of an ordered sequence of
index records, but we already know that binary search is too expensive.

To illustrate the benefits of an indexed approach, we usethe large

example file of Chapter 8, an 80-megabytefile of 8 000 000records, 100

bytes each, with 10-byte keys. An index ofthis file has 8 000 000 key-refer-
ence pairs divided among a sequenceof index records.Let’s suppose that
we can put 100 key-reference pairs in a single index record. Hence there

are 80 000 records in the index. In order to build the index, we need to
read the originalfile, extract thekey from each record, and sortthe keys.
Thestrategies outlined in Chapter 8 can be used for this sorting.The 100
largest keys are inserted into an index record, and that record is written to

the index file. The next largest 100 keys go into the next record of thefile,
and so on. This continues until we have 80 000 index records in the index
file. Although we have reduced the numberofrecords to be searched bya
factor of 100, we still must find a way to speed up the search ofthis 80 000-
recordfile.

Can we build an index of the indexfile, and how big will it be? Since
the index records form a sorted list of keys, we can choose oneofthe keys
(for example, the largest) in each index record as the key of that whole

record. These second-level keys can be used to build a second-level index
with 80 000keys, or 800 index records. In searching the second-level index
for a key k, we choose the smallest second-level key that is greater than or

equal to k. If kis in thefirst-level index, it mustbe in the block referenced
by that second-levelkey. .

Continuingto a third level, we need just 8 index records to index the
largest keys in the 800 second-level records. Finally, the fourth level

consists of a single index record with only 8 keys. These fourlevels togeth-

er form an indextree with a fan-out of 100 and canbestoredin a single
indexfile. Each nodeofthetree is an index record with 100 children. Each

of the children of a nodeis itself an index node, except at the leaves, The
children of the leaf nodes are data records.

A single index file containing the full four-level index-of 8 000 000

records requires 80 809 index records, each with 100 key-reference

https://hemanthrajhemu.github.io

386 Chapter 9 Multilevel Indexing and 8-Trees

pairs. The lowest level index is an index to the datafile, and its reference

fields are record addresses in the datafile. The other indexes use their

reference fields for index record addresses, that is, addresses within the
indexfile.

The costs associated with this multilevel index file are the space over-
head of maintainingthe extralevels, the search time, and the timeto insert
and delete elements. The space overhead is 809 more records than the

80 000 minimum for an index of the data file. This is just 1 percent,

Certainly this is not a burden.
The search timeis simple to calculate—it’s three disk reads! An analy-

sis of search time always has multiple parts: the minimum searchtime,the

maximum search time, and the average search timefor keys that are in the
index and for keys that are not in the index. For this multilevel index,all of
these cases require searching four index records. That is, each level of the

index must be searched. For a keythatis in the index, we need to searchall

the wayto the bottom levelto get the data record address. For a key notin

the index, we needto searchall the way to the bottom to determinethatit
is missing. The average, minimum, and maximum numberofindex blocks
to search are all four, thatiis, the numberoflevels in the index. Since there

‘is only one block at the top level, we can keep that block in memory.
Hence, a maximum ofthree disk accesses are required for any key search.
It might require fewer disk reads if any of the other index records are

already in memory.

Look howfar we’ve come:an arbitrary record in an 80-megabytefile

can be read with just four disk accesses—three to search the index and one
to read the data record. The total space overhead, including the primary
index, is well below 10 percent of the datafilesize. This tree is not full,
since the root node hasonly eight children and can accommodate one
hundred. This four-level tree will accommodate twelve times this many

data records, or a total of100 million recordsin file of 10. gigabytes. Any
one of these records can be found with only three disk accesses. This is
what we need to produceefficient indexed access!

Thefinal factor in the cost of multilevel indexes is the hardest one.

Howcan weinsert keys into the index? Recall that thefirst-level index is an
ordered sequence of records. Does this imply that the index file must be
sorted? The search strategy relies on indexes and record addresses, not on
record placementin the file. As with the simple indexes of Chapter 7, this

indexed search supports entry-sequenced records. As long as the location
of the highest level index record is known, the other records can be
anywherein the file. °

https://hemanthrajhemu.github.io

9.5

B-Trees: Working Up from the Bottom 387

Having an entry-sequenced indexfile does not eliminate the possibil-
ity of linear insertion time. For instance, suppose a new keyis added that

will be the smallestkey in the index. This key must beinserted into the
first record ofthefirst-level index. Since that record is already full with one

hundred elements,its largest key must be inserted into the second record,

and so on. Every record in the first-level index must be changed. This
requires 80 000 reads and writes. This is trulya fata! flaw in simple multi-

level indexing.

B-Trees: Working up from the Bottom

B-trees are multilevel indexes that solve the problem oflinear cost of inser-

tion and deletion. This is what makes B-trees so good, and whytheyare

now the standard wayto represent indexes. The solution is twofold. First,

don’t require that the index recordsbefull. Second, don’t shift the overflow
keys to the next record; instead split an overfull record into two records,

each half full. Deletion takes a similar strategy of merging two records into

a.single record when necessary.
Each nodeof a B-tree is an index record. Each of these records has the

same maximum numberofkey-reference pairs, called the order of the B-

tree. The records also have a minimum numberof key-reference pairs,

typically half of the order. A B-tree of order one hundred has a minimum

of fifty keys and a maximum ofone hundredkeys per record. The only
exception is the single root node, which can have a minimum oftwo keys.

An attemptto insert a new key into an index record thatis not full is
cheap. Simply update tue index record.If the new key is the new largest
key in the index record,it is the new higher-level key of that record, and

the next higher level of the index must be updated. The cost is bounded by

the heightof thetree.
Wheninsertion into an index record causes it to be overfull, it is split

into two records, each with half of the keys. Since a new index node has

been created atthis level, the largest key in this new node mustbe inserted
into the next higher level node. Wecall this the promotion of the key. This
promotion may cause’an overflow at that level. This in turn causes that

nodeto be split, and a key promotedto the next level. This continuesas far

as necessary. If theindex record at the highestlevel overflows, it must be

split. This causes another level to be added to the multilevel index.In this
way, a B-tree grows up from the leaves. Again the cost of insertion is
boundedbythe height of thetree.

https://hemanthrajhemu.github.io

388

9.6

Chapter9 Multilevel Indexing and B-Trees

Therest of the secrets of B-trees arejust working outthe details. How

to split nodes, how.to promotekeys, howto increasethe height ofthetree,

and how to delete keys.

Example of Creating a B-Tree

Let’s see how a B-tree grows given the key sequence that produces the
paged binarytreeillustrated in Fig. 9.13. The sequenceis

CSDTAMPIBWNGURKEHOLJYQZFXV

Weuse an order four B-tree (maximum offour key-reference pairs per

node). Using such a small nodesize has the advantageof causing pages to

split more frequently, providing us with more examples of splitting. We

omit explicit indication of the reference fields so we canfit a larger tree on
the printed page.

Figure 9.14 illustrates the growth of the tree up to the point whereitis
about to split the root for the second time. Thetree starts with a single
empty record. In Fig. 9.14(a), the first four keys are inserted into that record.
Whenthefifth key, A, is added in Fig. 9.14(b), the original nodeis split and
the tree grows by onelevel as a new rootis created. The keys in the root are
the largest key in theleft leaf, D, and the largest key in the rightleaf, T.

The keys M,P, and J all belongin the rightmostleaf node,since they are

larger than the largest key in the right node. However, inserting I makes the
rightmostleaf node overfull, and it must be split, as shown in Fig. 9.14(c).

The largest key in the new node, P,is inserted into the root. This process

continues in Figs. 9.14(d) and (e), where B, W, N, G, and U are inserted.

In the tree of Fig. 9.14(e), the next keyin thelist, R, should be put into

the rightmost leaf node,sinceit is greater than thelargest key in the previ-

ous node, P, and less than or equal to the largest key in that node, W.
However, the rightmostleaf nodeis full, and sois the root. Splitting that
leaf node will overfill the root node. At this point a new root must be

created, and the heightofthe tree increased to three.

Figure 9.15 showsthe tree as it grows to height three. Thefigure also.
shows how the tree continues to grow as the remaining keys in the
sequence are added. Figure 9.15(b) stops after Z is added. The next key in
the sequence,F, requires splitting the second-leaf node, as shownin Fig.

9.15(c). Althoughtheleaf level of the tree is not shownin a singleline,it is

still a single level. Insertions of X and V causes the rightmost leaf to be

https://hemanthrajhemu.github.io

Example of Creating a B-Tree 389

a) Insertions of C, 5, D, T

into the initial node. |[ec][po][s][ti

b) Insertion of A causes node to split
and the largest key in each leaf node

(D and T) to be placed in the root

node.

c) M and P are inserted into the

rightmost leaf node, then insertion

of Icausesit to split.

tsiTelttt

d) Insertions of B, W, N, and G into

leaf nodes causes another split and

the root is now full.

e) Insertion of U proceeds without

incident, but R would have to be

inserted into the rightmostleaf,

whichis full.

[fst [el fel fo} Liesl til i} tT | LNTdetTE | Cost drt fet J)

Figure 9.14 Growthof a B-tree, part 1. The tree grows to a point at which the root needs
to be split the second time. .

https://hemanthrajhemu.github.io

390 Chapter 9 Multilevel Indexing and B-Trees

a) Insertion of R causes the rightmost [[pe]wl[7[4
leaf node to split, insertion into the

root to split and the tree grows to .me Poo PED

TalaTe} RCT PTC

IR]Istitt|

 level three.

b) Insertions of K, E, H, 0, L, J, ¥, Q,

and Z. continue with another node

split.

 : ¥

Je]|e][al[1]

c) Insertions of F, X, and Vfinish the

insertion of the alphabet.

, \
) CelaCeoeceoo Cece

Figure 9.15 Growth of a B-tree, part 2. The rootsplits to level three; remaining keys are
inserted.

https://hemanthrajhemu.github.io

9.7

An Object-Oriented Representation of B-Trees 397

overfull and split. The rightmost leaf of the middle level is also overfull
and is split. All twenty-six letters are inserted into a tree of height three and

order four.
Note that the numberof nodesaffected by anyinsertion is never more

than two nodes perlevel (one changedanda newonecreated bya split),
so theinsertion costis strictly linear in the heightofthetree.

An Object-Oriented Representation of B-Trees

9.7.1 Class BTreeNode: Representing B-Tree Nodes

in Memory

As we have seen, a B-treeis an indexfile associated with a datafile. Most

ofthe operations on B-trees, including insertion and deletion, are

appliedto theB-tree nodes in memory. The B-treefile simply stores the

nodes whenthey are not in memory. Hence, we needa class to represent
the memory resident B-tree nodes. Class BTreeNode,given in Fig.
9.16 and in file btnode.hof Appendix I, is a template class based on
the SimpleTndex template class that was described in Section 7.4.3.
Note that a BTreeNode object has methodsto insert and remove a key
and to split and merge nodes. There are also protected membersthat
store the file address of the node and the minimum and maximum
numberof keys. You may notice that there is no search method defined

in the class. The search method ofthe base class Simpl eIndex works

perfectly well.

It is important to note that not every data member of a BTreeNode
has to be stored when the objectis not in memory. Thedifference between
the memory and the disk representations of BTreeNode objects is
managed by the pack and unpack operations.

Class BTreeNode is designed to support some optimizationsofthe

in-memory operations. For example, the numberofkeys is actually one

more than the orderofthe tree, as shownin the constructor. Thecall to
the SimpleIndex constructor creates an index record with

maxKeys+1 elements:

template <class keyType>

BTreeNode<keyType>: :BTreeNode(int maxKeys, int unique)

: SimpleIndex<keyType> (maxKeys+1, unique)

{ Init ();}

https://hemanthrajhemu.github.io

392 . Chapter9 MultilevelIndexing and B-Trees

template <class keyType>

class BTreeNode: public SimpleIndex <keyType>

// this 1s the in-memory version of the BTreeNode '

{public: |

BTreeNode (int maxKeys, int unique = 1);

int Insert (const keyType key, int recAddr);

int Remove (const keyType key, int recAddr = -1);

int LargestKey (); // returns value of Largest key

int Split (BTreeNode<keyType>*newNode) ;//move into newNode

int Pack (I0OBuffer& buffer) const;

int Unpack (IOBuffer& buffer);

protected:

int MaxBKeys; // maximum number of keys in a node

int Init (); |
friend class BTree<keyType>;

};

Figure 9.16 The main members and methodsofclass BTreeNode: templateclass for
B-tree node in memory.

‘For this class, the order of the B-tree node (member MaxBKeys) is one

less than the value of MaxKeys, which is a memberof the base class

SimpleIndex. Making the index record larger allows the Insert
method to create an overfull node. The caller of BTreeNode: : Insert

needs to respondto the overflow in an appropriate fashion. Similarly, the
Remove method can create an underfull node.

Method Insertsimply calls SimpleIndex: : Insert and then
checks for overflow. The value returned is 1 for success, 0 for failure, and

—1 for overflow:

template <class keyType>

int BTreeNode<keyType>::Insert (const keyType key, int recAddr)

{ .
int result = SimpleIndex<keyType>::Insert (key; recAddr) ;

if (!result) return 0; // insert failed

if (NumKeys > MaxBKeys) return -1; // node overflow

return 1;

https://hemanthrajhemu.github.io

An Object-Oriented Representation of B-Trees 393

9.7;2 Class BTree: Supporting Files of B-Tree Nodes

We now lookat class BTree which uses in-memory BTreeNodeobjects,

addsthefile access portion, and enforces the consistentsize of the nodes.

Figure 9.17 and file bbree.h of Appendix I contain the definition of
class BTree. Here are methods to create, open, and close a B-tree and to
search;insert, and remove key-reference pairs. In the protectedarea of the
_class, we find methods to transfer nodes from disk to memory (Fetch)

and back to disk (Store). There are members that hold the root nodein

memory and represent the height ofthe tree and thefile of index records.

Member Nodesis used to keep a collection oftree nodes in memory and
reduce disk accesses, as will be explainedlater.

template <class keyType>

class BTree

{public:

BTree(int order, int keySize=sizeof(keyType), int unique=1);

int Open (char * name, int mode);

int Create (char * name, int mode);

int Close (f

int Remove (const keyType key, const int recAddr = -1);

)

int Insert {const keyType key, const int recAddr) ;

{

(const keyType key, const int recAddrint Search ll I
b
k

protected:

};

typedef BTreeNode<keyType> BTNode; // necessary shorthand

BTNode * FindLeaf (const keyType key) ;

// load a branch into memory down to the leaf with key

BTNode * Fetch(const int recaddr);//load node into memory.

int Store (BTNode *);// store node into file

BTNode Root;

int Height; // height of tree

int Order; // order of tree

BITNode ** Nodes; // storage for a branch

// Nodes{1lj] is level 1, etc. (see FindLeaf)

// Nodes [Height-1] is leaf

RecordFile<BTNode> BTreeFile; .

Figure 9.17 Main members and methodsofclass BTree: whole B-tree implementation—
including methodsCreate, Open,Search, Insert, and Remove.

https://hemanthrajhemu.github.io

394

9.8

Chapter 9 Multilevel indexing and B-Trees

B-Tree MethodsSearch, Insert, and Others

Nowthat we haveseen the principles of B-tree operations and we have the

class definitions and the single node operations, we are ready to consider

the details of the B-tree methods.

9.8.1 Searching

The first B-tree method we examine is a tree-searching procedure..

Searching is a goodplace to begin becauseit is relatively simple, yetit still

illustrates the characteristic aspects of most B-tree algorithms:

m@ Theyare iterative, and

m@ They work in twostages, operating alternatively on entire pages (class

BTree) and then within pages (class BTreeNode). .

The searching procedureis iterative, loading a page into memoryand
then searching through the page, lookingfor the key at successively lower

levels of the tree until it reaches theleaf level. Figure 9.18 contains the code

for method Searchand the protected method FindLeaf that does.
almostall of the work. Let’s workthrough the methodsby hand,searching

for the key L in thetree illustrated in Fig. 9.15(a). For an object btree of
type BTree<char> and an integer recAddr, the following codefinds

that there is no data file record with key L:

recAddr = btree.Search ('L');

Method SearchGalls method FindLeaf,which searches down a
branchofthe tree, beginning at the root, whichis referencedbythe point-

er value Nodes [0]. In thefirst iteration, with level = 1, theline

recAddr = Nodes {level-1]->Search(key,-1,0);

is an inexact search and finds that L is less than P, the first key in the
record. Hence, recAdadris set to the first reference in the root node,

whichis the index file address of the first node in the secondlevel of the

tree of Fig. 9.15(a). The line

Nodes [level]=Fetch(recAddr) :

reads that second-level node into a new BTreeNode object and makes
Nodes [1} pointto this new object. The seconditeration, with level =

2, searchesfor L in this node.Since L is less than M, the second keyin the

https://hemanthrajhemu.github.io

B-Tree MethodsSearch,Insert, and Others 395

template <class keyType>

int BTree<keyType>::Search (const keyType key, const int recAddr)

{
BTreeNode<keyType>.* leafNode;

leafNode = FindLeaf (key);

return leafNode -> Search (key, recAddr) ;

}

template <class keyType>

BTreeNode<keyType> * BTree<keyType>::FindLeaf (const keyType key)

// load a branch into memory down to the leaf with key

{
int recAddr, level;

for (level 1; level < Height; level++)

{

It

'recAddr = Nodes[level-1]->Search(key,~1,0);//inexact search

Nodes {level]=Fetch(recAddr) ;

}

return Nodes[level-1];

}

Figure 9.18 Method BTree::Search and BTree:-FindLeaf.

record, the second reference is selected, and the second nodein theleaf

level of the tree is loaded into Nodes [2]. After the for loop increments

level, the iteration stops, and FindLeaf returns the address ofthis
leaf node. At the end of this method, the array Nodes contains pointers to
the complete branch ofthetree.

| After FindLeaf returns, method Search uses an exactsearchof

the leaf node to find that there is no data record that has key L. Thevalue
returned is — 1.

Nowlet’s use method Searchto look for G, which ts in the tree of
Fig. 9.15(a). It follows the same downward path thatit did for L, but this

time the exact search in method Searchfinds G in position 1. of the
second-leaf node.It returns thefirst reference field in the node, whichts

the data file address of the record with key G.

9.8.2 Insertion

There are two important observations we can make abouttheinsertion,
splitting, and promotion process:

https://hemanthrajhemu.github.io

396 Chapter 9 Multilevel Indexing and B-Trees

mw it begins with a search that proceeds all the way downto theleaflevel,
and

m After finding the insertion location atthe leaflevel, the work of inser-

tion, overflow detection, and splitting proceeds upward from the

bottom. .

Consequently, we can conceive of ouriterative procedure as having three
phases:

t

d. Search to the leaf level, using method FindLeaf, before the

iteration;

2. Insertion, overflow detection, and splitting on the upward path;

3. Creation of a new root node, if the current root wassplit.

Let’s use the example of inserting R andits data record address (called
recAddr)into thetree of Fig. 9.14(e) so we can watch the insertion proce-

dure work through these phases. Theresult of this insertion is shownin Fig.
9,15(a). Method Insertis the most complicated of the methods included

in file bbree.tc in Appendix I. We will look at someofits code here.

Thefirst operation in method Insert1s to searchto the root for key

R using FindLeaf:

thisNode = FindLeaf (key);

As described above, FindLeaf loads a complete branch into memory.In
this case, Nodes [0] is the root node, and Nodes [1] is the rightmost

leaf node (containingS, T, U, and W). .
The nextstep is to insert R into the leaf node

result = thisNode -> Insert (key, recAddr);

The result here is that an overflowis detected. The object thisNode now

has five keys. The node mustbe split into two nodes, using the following
code:

newNode = NewNode();

thisNode -> Split (newNode) ;

Store (thisNode); Store (newNode} ;

Now the two nodes, on: vith keys R, S, and T, and one with U and W,have

been stored back in the file. We are done with theleaf level and are ready

to move upthetree.

The next step is to update the parent node. Since the largest key in

thisNode has changed, method UpdateKeyis used to record the

change (largestKey has been set to the previous largest key in

thisNode): —

https://hemanthrajhemu.github.io

B-Tree Methods Search,Insert, and Others 397

parentNode->UpdateKey (largestKey, thisNode->LargestKey ())};

Hencethe value W in the root.is changed to T. Then the largest value in the

new nodeis inserted into the root ofthe tree:

parentNode->Insert (newNode->Largestkey(), newNode->RecAddr) ;

ThevalueW is inserted into the root. This is often called promoting the key

W.This causes the root to overflow with five keys. Again, the nodeis split,
resulting in a node with keys D, M, and P, and one with T and W.

There is no higherlevel of the tree, so a new root nodeis created, and
the keys P and W areinsertedintoit. Thisis accomplished by the follow-
ing code:

int newAddr = BtreeFile.Append(Root);//put previous root into file

// insert 2 keys in new root node ,

Root.Keys [0] =thisNode->LargestKey (};

Root .RecAddrs [0] =newAddr;
Root .Keys [1] =newNode->LargestKey () ;

Root .RecAddrs [1] =newNode->RecAddr;

Root .NumKeys=2;

Height++;

It begins by appendingthe old root node into the B-treefile. The veryfirst
index recordin thefile is always the root node,so the old root node, which

is no longer the root, must be put somewhereelse. Then the insertionsare
performed.Finally the heightofthetree is increased by one.

Insert uses a numberof support functions. The most obvious one
is method BTreeNode: : Split which distributes the keys between the
original page and the newpage. Figure 9.19 contains an implementation

of this method. Someadditional error checking is included in the full

implementation in Appendix I. Method Split simply removes some of
the keys and references from the overfull node and puts them into the
new node. .

The full implementation of BTree::Insert in Appendix |
includes code to handle the special case of the insertion of a new largest
key in the tree. This is the only case where an insertion adds a newlargest

key to a node. This can beverified by looking at method FindLeaf,
which is used to determine the leaf node to be used in insertion.
FindLeaf always chooses a node whose largest key is greater than or

equal to the search key. Hence, the only case where FindLeaft returns a

leaf node in which the search key is greater than thelargest key is where

that leaf nodeis the rightmost nodein the tree and the search key is
greater than any key in thetree. In this case, the insertion of the new key

https://hemanthrajhemu.github.io

398 Chapter 9 Multilevel indexing and B-Trees

template <class keyType>

int BTreeNode<keyType>::Split (BTreeNode<keyType> * newNode)

{

}

// find the first Key to be moved into the new node

int midpt = (NumKeys+1)/2;

int numNewKeys = NumKeys - midpt;

// move the keys and recaddrs from this to newNode

for (int 1 = midpt; i< NumKeys; i++)

{
newNode->Keys[i-midpt] = Keys[i];

newNode->RecAddrs{i-midpt]) = RecAddrs[il];

}
// set number of keys in the two Nodes

newNode->NumKkeys = numNewKeys; .

NumKeys = midpt;

return 1;

Figure 9.19 Method Split of class BTreeNode.

requires changing the largest key in the rightmost nodein every level of

the index. The code to handle this special case is included in

BTree::iInsert.

9.8.3 Create, Open,and Close

We need methodsto create, open,and close B-tree files. Our object-orient-

ed design and the use of objects from previous classes have made these
methods quite simple, as you can see in file btree.tc of Appendix I.
‘Method Create has to write the empty root node into the file
BTreeFile sothatits first recordis reserved for that root node. Method
Open has to open BTreeFileand load the root node into memory

from the first record in thefile. Method Close simplystores the root
node into BTreeFile and closesit.

9.8.4 Testing the B-Tree

Thefile tstbt ree. cpp in AppendixI hasthefull code of a program to
test creation and insertion of a B-tree. Figure 9.20 contains most ofthe
code. As you cansee, this program uses a single character key (class

https://hemanthrajhemu.github.io

9.9

B-Tree Nomenclature 399

const char * keys="CSDTAMPIBWNGURKEHOLJIYOZFXV";

const int BTreeSize = 4;

main (int argc, chat * argv)

{

int result, i;

BTree <char> bt (BTreeSize);

result = bt.Create ("testbt.dat”,ios::inlios::out);

for (i = 0; i<26; i++)

{

cout<<"Inserting “<<keys[i]<<endl;

result = bt.Insert (keys[i},1);

bt. Print (cout); // print after each insert

}

return 1;

}.

. Figure 9.20 Program tstbtree.cpp.

BTree<char>) and inserts the alphabet in the same orderas in Fig. 9.14
and 9.15. The tree that is created is identical in form to those pictured in

the figures.

‘B-Tree Nomenclature

Before moving on to discuss B-tree performance and variations on the
basic B-tree algorithms, we need to formalize our B-tree terminology.
Providing careful definitions of terms such as order and leafenables us to
state precisely the properties that must be present for a data structure to
qualify as a B-tree.

This definition of B-tree properties, in turn, informs ourdiscussion of

matters such as the procedurefor deleting keys from a B-tree.

Unfortunately, the literature on B-trees is not uniform in its use of

terms. Reading thatliterature and keeping up with new developments

therefore require someflexibility and some background:the reader needs
to be awareofthe different uses of some of the fundamental terms.

For example, Bayer and McCreight (1972), Comer (1979), and a few

others refer to the order of a B-tree as the minimum numberof keys that

can be in a pageofa tree. So, our initial sample B-tree (Fig. 9.14), which

https://hemanthrajhemu.github.io

400 Chapter 9 Multilevel Indexing and 8-Trees

can hold a maximum of four keys per page, has an order of two, using
Bayer and McCreight’s terminology. The problem with this definition of
orderis that it becomes clumsy when youtry to account for pages that

hold an odd, maximum numberofkeys. For example,considerthe follow-
ing question: Within the Bayer and McCreight framework,is the page of

an order three B-tree full when it contains six keys or when it contains

seven keys?

Knuth (1998) and others have addressed the odd/even confusion by

defining the order of a B-tree to be the maximum numberof descendants

that a page can have. Thisis the definition of order that we usein this text.
Notethatthis definition differs from Bayer and McCreight’s in two ways:

it references a maximum, not a minimum, and it counts descendants rather

than keys. .
When you split the page of a B-tree, the descendantsare divided as

evenly as possible between the new page andthe old page. Consequently,

every page except the root and the leaves has at least m/2 descendants.

Expressed in termsofa ceiling function, we can say that the minimum
number of descendantsism2

Another term thatis used differently by different authorsis leaf. Bayer
and McCreightrefer to the lowest level of keys in a B-tree as the leaf level.
This is consistent with the nomenclature we have usedin this text. Other

authors, including Knuth, consider the leaves of a B-tree to be onelevel
below the lowestlevel of keys. In other words, they consider the leaves to be

the actual data records that might be pointedto by the lowestlevel of keys
in the tree. We do not usethis definition; instead westick with the notion

of leaf as the lowest level of B-tree nodes.
Finally, many authors call our definition of B-tree a Bt tree. The term

B-tree is often used for a version of the B-tree that has data record refer-
encesin all of the nodes, instead of only in the leaf nodes. A major differ-

ence is that our version has thefull index in the leaf nodes and uses the

interior nodes as higherlevel indexes. This results in a duplication of keys,
since each keyin an interior nodeis duplicated at each lowerlevel. The
other version eliminates this duplication of key values, and instead

includes data record references in interior nodes. While it seemsthat this

will save space and reduce search times, in fact it often does neither. The

major deficiency of this version is that the size of the interior nodesis
much larger for the same order B-tree. Another way to look at the differ-

ence is that for the same amount ofspacein the interior nodes,by elimi-

nating the data references, we could significantly increase the order of the
tree, resulting in shallower trees. Of course, the shallower the tree, the

shorter the search.

https://hemanthrajhemu.github.io

Worst-Case Search Depth AO1

In this book, we use the term Bt tree to refer to a somewhat more
_ complex situation in which the data file is not entry sequenced butis orga-
nized into a linkedlist of sorted blocks of records. The datafile is orga-

nized in much the same way as the leaf nodesof a B-tree. The great
advantage of the B+ tree organization is that both indexed access and

sequential access are optimized. This techniqueis explainedindetail in the
next chapter.

You may have recognized thatthe largest key in each interior B-tree
node is not needed in the searching. Thatis, in method FindLeaf,

whenever the search key is bigger than any key in the node,the search

proceedsto the rightmostchild.It is possible and common to implement
B-trees with oneless key than reference in each interior node. However,
the insertion method is made more complicated by this optimization,so it

has been omitted in the B-tree classes and is included as a programming
exercise.

9.10 Formal Definition of B-Tree Properties

Given these definitions of order andleaf, we-can formulatea precise state-

mentof the properties of a B-tree of order m:

m Every page has a maximum of m descendants.

m Every page, except for the root and theleaves, has at least | m/2|
descendants.

m= The root has at least two descendants (unlessit is a leaf).

m@ All the leaves appear on the samelevel.

m Theleaf level forms a complete, ordered index of the associated data

file.

Lean ‘

9.11 Worst-Case Search Depth

It is important to have a quantitative understanding ofthe relationship
between the page size of a B-tree, the numberofkeys to be stored in the

tree, and the numberoflevels that the tree can extend. For example, you

might know that you needto store 1 000 000 keys and that, given the
nature of your storage hardware and thesize ofyourkeys,it is reasonable

https://hemanthrajhemu.github.io

402 Chapter 9 Multilevel Indexing and B-Trees

to consider using a B-tree of order 512 (maximum of 511 keys perpage).

Given these two facts, you need to be able to answer the question: In the
worst case, what will be the maximum numberofdisk accesses required

to locate a key in the tree? This is the same as asking how deep the tree

will be.
We can answerthis question by noting that every key appears in the

leaf level. Hence, we need to calculate the maximum heightof a tree with

1 000 000 keys in the leaves.

Next we need to observe that wecan use the formal definition of B-
tree properties to calculate the minimum numberof descendants that can

extend from any level of a B-tree of some given order. This is of interest
because we are interested in the worst-case depth of the tree. The worst

case occurs when every pageofthe tree has only the minimum numberof

descendants. In such a case the keys are spread over a maximal height for

the tree and a minimal breadth.
For a B-tree of order m, the minimum numberof descendants from

the rootpage is 2, so the second level of the tree contains only 2 pages.

Each ofthese pages,in turn, hasatleast | 1/2| descendants. Thethirdlevel,

then, contains

2x{ m/2|

pages. Since each of these pages, once again, has a minimum of [m/2'|
descendants, the general pattern of the relation between depth andthe

minimum numberof descendants takes the following form:

Level Minimum numberof descendants

1 (root}- 2

2 2x]m/2]
3 2 x[m/2|x[m/2] or 2 xPm2b

4 axPmizp

d 2x/ m/2147)

So, in general, for any level d of a B-tree, the minimum numberof descen-
dants extending from thatlevelis

2x]m/2\d-2

For a tree withN keys in its leaves, we Can express the relationship

between keys and the minimumheight das

N>2x]m/2|4-1

https://hemanthrajhemu.github.io

9.12

Deletion, Merging, and Redistribution 403

Solving for d, we arrive at the following expression:

AS1 + loglmo] (N/2).

This expression gives us an upper bound for the depth of a B-tree with

N keys. Let’s find the upper bound for the hypothetical tree that we
describe at the start of this section: a tree of order 512 that contains
1 000 000 keys. Substituting these specific numbersinto the expression, we

find that . .

d<1+ logs. 500 000

or
d= 3.37

So we can saythat given 1 000 000 keys, a B-tree of order 512 has a,depth

of no more thanthreelevels.

Deletion, Merging, and Redistribution

Indexing 1 000 000 keys in no morethanthreelevels of a tree is precisely
the kind of performance weare looking for. As we have just seen, this

performanceis predicated on the B-tree properties we described earlier. In
particular, the ability to guarantee that B-trees are broad:and shallow

rather than narrow and deep is coupled with the rules that. state the

following:

“im Every page exceptforthe root andtheleaves hasat least| m/2| descen-

dants.

m A pagecontainsat least!m/2|keys and no morethan m keys.

Wehavealreadyseen that the process of page splitting guarantees that

these properties are maintained when new keysare inserted into thetree.
We need to develop some kind of equally reliable guarantee that these

properties are maintained when keysare deleted from thetree.
Working through some simple deletion situations by hand helps us

demonstrate that the deletion of a key canresult in several different situa-

tions. Westart with the B-tree of Fig. 9.15(c) that containsall the letters of
the alphabet. Consider what happens when wetry to delete someofits
keys. |

The simplest situation is illustrated in the result of deleting key C in
Fig. 9.21(a). Deleting the key from thefirst leaf node does not cause an

https://hemanthrajhemu.github.io

404 Chapter 9 Multilevel Indexing and B-Trees

a) Removal of keyC from Fig. 9.1Sc. |[i][ef[iz][]
Change occurs only in leaf node

(bl Iel ETT ICMP). CeCeere

CACELEED) (CCE Roe cerkcso | CeCe

 CECE CECECCCO CNoeoCrOO Cece

b) Result of deleting P fromFig.

9.15c. P changes to O in the second

level and the root. :

Ci tol TTT] Corlixt (2)

al [a] [el o}) (CKee CleRO)

|

CRC

EDIFLIeELICCRC «GCeocooo Choe

c) Result of deleting H from Fig. [{il[Pl[zi[
9.15c. Removal of H caused an

underflow, and two leaf nodes were

merged. = [Jo] [aLa COee

CECB) COCR CECH CeCe SC CLEC

CET CRETECellC

Figure 9.21 Three situations that can occur during deletions.

https://hemanthrajhemu.github.io

Deletion, Merging, and Redistribution 405

underflow in the node and does not changeits largest value. Consequently,

deletion involves nothing more than removing the key from the node.

Deleting the P in Fig. 9.21({b) is more complicated. Removal of P from

the second leaf node does not cause underflow, but it does change the
largest key in the node. Hence, the second-level node must be modified to
reflect this change. The key to the second leaf node becomes O, and the

second-level node must be modified so that it contains O insteadofP.

Since P wasthelargest key in the second nodein the second level, the root
node mustalso have key P replaced by O.

Deleting the Hin Fig 9.21(c) causes an underflowin the third leaf

node, After H is deleted, the last remaining key in the node,I, is inserted

into the neighbor node, andthethird leaf node is deleted. Since the second
leaf node has onlythree keys,there is room for the key J in that node. This

illustrates a more general merge operation. After the merge, the second-
level node is modified to reflect the current status of the leaf nodes.

Merging and other modifications can propagate to the root of the B-
tree. If the root ends up with only one key and onechild,it can be elimi-
nated.Its sole child node becomes the new root ofthe tree andthetree
gets shorter by onelevel.

The rules for deleting a key k from a nodenin a B-tree are as follows:

1. If has more than the minimum numberofkeys and the is not the
largest in 1, simply delete k from 1.

2. Ifm has more than the minimum numberof keys and the is the
Jargest in n, delete k and modify the higher level indexesto reflect the
new largest key in 7.

3. Ifnhas exactly the minimum numberof keys and one of thesiblings
of n has few enough keys, merge n with its sibling and delete a key
from the parent node.

4, If mn has exactly the minimum numberofkeys and one ofthe siblings
of n has extra keys, redistribute by moving some keys froma sibling to
n, and modify the higher level indexes to reflect the new largest keysin
the affected nodes.

Rules 3 and 4 include references to “few enough keys”to allow merg-
ing and “extra keys” to allow redistribution. These are not exclusive rules,
and the implementation of delete is allowed to choosewhich rule to use
whenthey are both applicable. Look at the example of an orderfivetree in
Fig. 9.22, and consider deleting keys C, M, and W.Since three is the mini-

mum numberofkeys, deleting any of these keys requires some adjustment

of the leaf nodes.In the case of deleting C, the only sibling nodehasthree

https://hemanthrajhemu.github.io

406 Chapter9 Multilevel Indexing and B-Trees

A

e
o

CECIC
LO

/ \N
a
s

ZITT
T)

CkDM
ETT

TT) =eTest rT)

Figure pe Example of order five B-tree. Consider delete of keys C,M,and W.

(b

keys. After deleting C, there are five keys in the two sibling nodes, so a
merge is allowed. No redistribution is possible because the sibling node

has the minimum numberof keys. In thecase of deleting W,the only

sibling has five keys, so one or two of the keys can be moved to the under-
full node. No mergeis possible here, since there are seven keys rernaining
in the two sibling nodes—too manyfora single node.In the caseofdelet-
ing M,there are two options: merge with theleft sibling or redistribute

keys in the right siblirig. |

9.12.1 Redistribution

Unhke merge, whichis a kindof reverse split, redistribution is a new idea.
Ourinsertion algorithm does not require operations analogousto redis-

tribution.
Redistribution differs from bothsplitting and merging in thatit never

causes the collection of nodesin the tree to change.It is guaranteed to have
strictly local effects, Note that the term sibling implies that the pages have

the same parentpage. If there are two nodesattheleaf level that are logi-
‘cally adjacent but do not have the same parent—for example, HI and
JKLM in the tree of Fig. 9.22(a)—these nodes are not siblings.

Redistribution algorithms are generally written so they do not consider

moving keys between nodesthat are notsiblings, even whentheyare logi-

cally adjacent. Can yousee the reasoning behindthisrestriction?
Another difference between redistribution on the one hand and merg-

ing and splitting on the otheristhat there is no necessary, fixed prescrip-
tion for how the keys should be rearranged. A single deletion in a properly
formed B-tree cannot cause an underflow of more than onekey.

Therefore,redistribution can restore the B-tree properties by moving only

one key from a sibling into the page that has underflowed, even if the

https://hemanthrajhemu.github.io

9.13

Redistribution During Insertion; A Way to {mprove Storage Utilization 407

distribution of the keys between the pages is very uneven. Suppose, for
example, that we are managing a B-tree of order 101. The minimum
numberof keys that can be in a page is 50; the maximum is 100. Suppose
we have one page that contains the minimum and sibling that contains

the maximum.If a key is deleted from the page containing 50 keys, an

underflow condition occurs. We can correct the condition throughredis-
tribution by moving onekey, 50 keys, or any numberof keys between 1
and 50. The usual strategy is to divide the keys as evenly as possible
between the pages. In this instance that means moving 25 keys.

Redistribution During Insertion: A Way to
Improve Storage Utilization

As you mayrecall, B-tree insertion does not require an operation analo-

gous to redistribution; splitting is able to accountfor all instances of over-
flow. This does not mean, however, that it is not desirable to use

redistribution during insertion as an option, particularly since a set of

B-tree maintenance algorithms must already include a redistribution

procedure to support deletion. Given that a redistribution procedureis
already present, what advantage might wegain byusingit as an alternative

to nodesplitting?

Redistribution during insertion is a way of avoiding,or at least post-
poning, the creation of new pages. Rather than splitting a full page and
creating two approximately half-full pages, redistribution lets us place

someof the overflowing keys into another page. Theuse ofredistribution
in place of splitting should therefore tend to make a B-tree moreefficient

in its utilization of space.
It is possible to quantify this efficiency of space usage by viewing the

amount of space used to store informationas a percentage ofthe total
amountof space required to holdthe B-tree. After a nodesplits, each of

the two resulting pages is about half full. So, in the worst case, space

utilization in a B-tree using two-way splitting is around 50 percent. Of
course, the actual degree of space utilization is better than this worst-case

figure. Yao (1978) has shownthat, for large treesof relatively large order,
space utilization approaches a theoretical average of about 69 percentif
insertion is handledthrough two-waysplitting.

The idea of using redistribution as an alternative to splitting when

possible, splitting a page only when both of its siblings are full, is

https://hemanthrajhemu.github.io

408

9.14

Chapter 9 Multilevel Indexing and 8-Trees

introduced in Bayer and McCreight’s original paper (1972): The paper

includes some experimental results that show that two-way splitting

results in a space utilization of 67 percent for a tree of order 121 after five
thousand random insertions. When the experiment was repeated, using

redistribution when possible, space utilization increased to over 86
percent. Subsequent empirical testing by students at OklahomaState

University using B-trees of order 49 and 303 also resulted in space utiliza-

tion exceeding 85 percent when redistribution was used. These findings

and others suggest that any serious application of B-trees to even moder-

ately large files should implementinsertion procedures that handle over-

flow throughredistribution when possible.

B* Trees

In his review and amplification of work on B-trees in 1973, Knuth (1998)

extends the notion ofredistribution during insertion to include newrules
for splitting. Hecalls the resulting variation on the fundamental B-tree

form a B*tree. |
Consider a system in which we are postponing splitting throughredis-

tribution, as outlined in the preceding section. If we are considering any
page other than theroot, we know that whenitis finally time to split, the
page hasat least onesibling that is also full. This opens up the possibility

of a two-to-three split rather than the usual one-to-two or two-waysplit.
The important aspect of this two-to-three split is that it results in

pages that are each about two-thirds full rather than just half full. This

makesit possible to define a new kind of B-tree, called a B* tree, which has

the following properties:

1, Every page has a maximum of m descendants.

2. Every page exceptfor the roothasat least/(2m — 1)/3| descendants.

3. The root hasat least two descendants (unlessit is a leaf).

4, All the leaves appear on the samelevel.

The critical changes between this set of properties and the set we
define for a conventions! B-tree are in rule 2: a B* tree has pages that

contain a minimum |(2m — 1)/3| keys. This new property, of course,

affects procedures for deletion and redistribution. __

To implement B*tree procedures, one must also deal with the ques-
tion of splitting the root, which, by definition, never has a sibling. If there

https://hemanthrajhemu.github.io

9.15

Buffering of Pages: Virtual B-Trees 409

is no sibling, no two-to-threesplit is possible. Knuth suggests allowingthe
root to grow to a size larger than the other pages so, whenit doessplit,it

can produce two pages that are each about two-thirdsfull. This has the
advantage of ensuring that all pages belowthe rootlevel adhere to B* tree
characteristics. However, it has the disadvantage of requiring that the

procedures be able to handle a page that is larger than all the others.

Anothersolution is to handle the splitting of the root as a conventional

one-to-two split. This second solution avoids any special page-handling

logic. On the other hand, it complicates deletion,redistribution, and other

procedures that must be sensitive to the minimum numberofkeys
allowed in a page. Such procedures would have to be able to recognize that
pages descending from the root mightlegally be only half full.

Buffering of Pages: Virtual B-Trees

Wehave seen that the B-tree can be a veryefficient, flexible storage struc-

ture that maintains its balanced properties after repeated deletions and
insertions and that provides access to any key with just a few disk accesses.

However, focusing on just the structural aspects, as we have so far, can
cause us inadvertently to overlook ways of using this structure to full
advantage. For example, the fact that a B-tree has a depth of three levels
does notat all mean that we need to do three disk accesses to retrieve keys
from pagesat the leaf level. We can do much better than that.

Obtaining better performance from B-trees involves looking in a
precise way at ouroriginal problem. We neededto find a way to makeeffi-

cient use of indexesthat are too large to be held entirely in memory. Upto
this point we have approached this problem in an all-or-nothing way:-an
index has been held entirely in memory, organized as list or binarytree,
or accessed entirely on secondarystore, using a B-tree structure. But, stat-

ing that we cannothold all of an index in memory doesnot imply that we
cannot hold someofit there. In fact, our implementation of class BTree
is already keeping the root in memoryat all times and keeping a full

branch in memoryduringinsertion and deletion.
For example, assume that we have an index containing | megabyte of

records and that we cannot reasonably use more than 256 kilobytes of
memory for index storage at any given time. Given a pagesize of4 kilo-

bytes, holding around 64 keys per page, our B-tree can be contained in

three levels. We can reach any one ofour keys in no more than twodisk

https://hemanthrajhemu.github.io

410 Chapter 9 Multilevel Indexing and B-Trees

accesses. Thatis certainly acceptable, but whyshouldwesettle for this kind
of performance? Whynottry to find a wayto bring the average numberof
disk accesses per search downto onedisk access orless?

If we're thinking of the problem strictly in terms of physical storage
structures, retrieval averaging one disk access or less sounds impossible.
But remember, our objective wasto find a way to manage our megabyte of

index within 256 kilobytes of memory, not within the 4 kilobytes required

to hold a single page of ourtree.
The simple, keep-the-root strategy we have been using suggests an

important, more general approach: rather than just holding the root page

in memory, wecan create a page buffer to hold some numberofB-tree
pages, perhapsfive, ten, or more. As we read pages in from the disk in
response to user requests, we fill up the buffer. Then, when a pageis

requested, we access it from memoryif we can, thereby avoiding a disk

access. If the page is not in memory, then wereadit into the buffer from
secondary storage, replacing one of the pages that was previously there. A
B-tree that uses a memorybuffer in this way is sometimesreferred to as a
virtual B-tree.

Por our implementation, we can use the Nodes member and the
Fetch and Store methods to manage this page buffer. Fetch and
Store can keep track of which nodes are in memoryand avoidthe disk

-Tead or write whenever possible. This modification is included as an

exercise.

9.15.1 LRU Replacement

Clearly, such a buffering scheme works only if we are morelikely to
request a page thatis in the buffer than onethat is not. The process of

accessing the disk to bring in a page that is not already in the buffer is
called a page fault, Theré are two causes ofpage faults:

1, We have never used the page.

2. It was once in the buffer but has since been replaced with a new page.

Thefirst cause of page faults is unavoidable: if we have not yet read in and
used a page, there is no wayit can alreadybe in the buffer. But the second

cause is one we cantry to minimize through buffer management. Thecrit-
ical managementdecision arises when we need to read a new page into a

buffer that is already full: which page do we decide to replace?
One commonapproachis to replace the page that wasleast recently

used; this is called ‘LRU replacement. Note that this is different from

https://hemanthrajhemu.github.io

Buffering of Pages: Virtual B-Trees 411

replacing the page that was read into the buffer least recently. Instead, the
LRU method keeps track of the requests for pages. The page to be replaced
is the one that has gonethe longest time without a request for use.

Someresearch by Webster (1980) showsthe effect of increasing the

numberof pages that can be held in thebuffer area under an LRU replace-
mentstrategy. Table 9.1 summarizes a small but representative portion of

Webster’s results. It lists the average numberof disk accesses per search
given different numbers of page buffers. These results are obtained using a
simple LRU replacement strategy without accounting for page height.

Keeping less than 15 percentof the tree in memory(20 pages outofthetotal

140) reduces the average numberofaccesses per search to less than one.
Note that the decision to use LRU replacement is based on the

assumption that we are morelikely to need a page that we have used
recently than we are to need a page that we have never used or one that we

used sometimeago.If this assumptionis notvalid, then thereis absolute-

ly rio reason to retain preferentially pages that were used recently. The term

for this kind of.assumption is ternporallocality. We are assumingthat there
is a kind of clustering of the use of certain pages over time. The hierarchi-
cal nature of a B-tree makesthis kind of assumption reasonable.

For example, during redistribution after overflow or underflow, we
access a page and then accessits sibling. Because B-trees are hierarchical,
accessing a set of sibling pages involves repeated access to the parent page

in rapid succession. This is an instance of temporallocality;it is easy to see

howit is related to the tree’s hierarchy.

9.15.2 Replacement Based on Page Height

There is another, more direct way to use the hierarchical nature of theB-

tree to guide decisions about page replacementin the buffers. Our simple,
keep-the-root strategy exemplifies this alternative: always retain the pages
that occur at the highestlevels of the tree. Given a larger amount ofbuffer

Table 9.1 Effect of using more buffers with a simple LRU replacementstrategy.

Buffer Count] 5 10 20

Average Accesses-per Search 3.00 1.71 1.42 0.97

Numberof keys = 2400

Total pages = 140

Tree height = 3 levels

https://hemanthrajhemu.github.io

412 Chapter 9 Multilevel Indexing and B-Trees

space, it might be possible to retain not only the root, but also all of the

pages at the secondlevel ofa tree.

Let’s explore this notion by returning to a previous example in which
we have access to 256 kilobytes of memory and a 1-megabyte index. Since
our pagesizeis 4 kilobytes, we could build a bufferarea that holds 64 pages
within the memoryarea. Assume that our | megabyte worth of index
requires around 1.2 megabytes of storage on disk (storage utilization = 83
percent). Given the 4-kilobyte pagesize, this 1.2 megabytes requires slight-
ly more than 300 pages. We assume that, on the average, each of our pages
has around 30 descendants.It follows that our three-level tree has, of

course, a Single page at the root level, followed by 9 or 10 pages at the
second level, with all the remaining pagesat theleaf level. Using a page
replacementstrategy that always retains the higher-level pages,itis clear
that our 64-page buffer eventually containsthe root page andall the pages

at the second level. The approximately 50 remaining buffer slots are used
‘to hold leaf-level pages. Decisions about which of these pages to replace
can be handled through an LRUstrategy. It is easy to see how, given a

sizable buffer, it is possible to bring the average numberof disk accesses

per search down to a numberthatis less than one. .
Webster’s research (1980) also investigates the effect of taking page

height into account, giving preference to pages that are higherin the tree
when it comes time to decide which pages to keep in the buffers.

Augmenting the LRU strategy with a weighting factor that accounts for
page height reduces the average number of accesses, given a 10-page

buffer, from 1.42 accesses per search down to 1.12 accesses per search.

9.15.3 Importanceof Virtual B-Trees

It is difficult to overemphasize the importance of including a page buffer-
ing scheme with any implementation of a B-tree index structure. Because.
the B-tree structureis so interesting and powerful,it is easy to fall into the

trap of thinking that the B-tree organizationis itself a sufficient solution
to the problem of accessing large indexes that must be maintained on

secondary storage. As we have emphasized,to fall into thattrapis to lose

sight of the original problem: to find a way to reduce the amount of
memory required to handle large indexes. We did not, however, need to

reduce the amount of memory to the amount required for-a single index
page. It is usually possible to find enough memoryto hold a numberof

pages. Doing so can dramatically increase system performance.

https://hemanthrajhemu.github.io

9.16

Variable-Length Records and Keys 413

Variable-Length Records and Keys

In many applications the information associated with a key varies in

length. Secondary indexes that reference inverted lists are an excellent
example ofthis. One way to handle this variability is to place the associat-

ed information in a separate, variable-lerigth record file; the B-tree would
containa reference to the informationin this otherfile. Another approach

is to allow a variable numberof keys and recordsin a B-tree page.

Upto this point we have regarded B-trees as being of some order m.

Each page has a fixed maximum and minimum numberofkeysthatit can
legally hold. The notion of a variable-length record and,therefore,a vari-
able numberof keys per page is a significant departure from the point of

view we have developed sofar. A B-tree with a variable numberof keys per
pageclearly has no single,fixed order.

‘The variability in length can also extend to the keys as well as to entire
records. For example,in a file in which people’s namesare the keys, we

might chooseto use only as much space as required for a namerather than
allocate a fixed-size field for each key. As we saw in earlier chapters, imple-

menting a structure with variable-length fields can allow us to put many
more names in a given amountofspace sinceit eliminates internal frag-

mentation. If we can put morekeys in a page, then we have a larger number
of descendants from a page and very probablya tree with fewerlevels.

Accommodatingthis variability in length meansusing a different kind

of page structure. We lookat page structures appropriate for use with vari-
able-length keys in detail in the next chapter. We also need a different

criterion for deciding when a pageis full and whenit is in an underflow
condition. Ratherthan use a maximum and minimum numberofkeys per
page, we need to use a maximum and minimum .numberofbytes.

Once the fundamental mechanismsfor handling variable-length keys
or recordsare in place, interesting new possibilities emerge. For example,

we might consider the notion ofbiasing the splitting and redistribution
methodsso that the shortest variable-length keys are promoted upward

in preference to longer keys. The idea is that we want to have pages with
the largest numbers of descendants up highin the tree, rather than at the

leaf level. Branching out as broadly as possible as high as possible in the
tree tends to reduce the overall height of the tree. McCreight (1977)
explores this notion in the article, “Pagination of B* Trees with Variable-
Length Records.”

https://hemanthrajhemu.github.io

414 Chapter 9 Multilevel Indexing and B-Trees

The principal point we want to make with these examplesof varia-

tions on B-tree structures is that this chapter introduces only the most
basic formsof this very useful; flexible file structure. Implementations of

B-trees do notslavishly follow the textbook form of B-trees. Instead, they

use many of the other organizational techniques we study in this book,
suchas variable-length record structures in combination with the funda-
mental B-tree organization to make new,special-purposefile structures

uniquely suited to the problemsat hand.

SUMMARY

Webegin this chapter by picking up the problem weleft unsolved at the
end of Chapter 7: simple, linear indexes work well if they are held in
memory, but they are expensive to maintain andsearchif they are so big

that they must be held on secondary storage. The expense of using

secondary storage is most evidentin two areas:

m Sorting of the index; and

M@~ Searching, since even binary searching requires more than two or

three disk accesses.

Wefirst address the question ofstructuring an indexso it can bekept

in order without sorting. We use tree structuresto do this, discovering that

we need a balanced tree to ensure that the tree does not become overly

deep after repeated random insertions. We see that AVL trees provide a
wayof balancing a binarytree with only a small amountof overhead.

Next we turn to the problem of reducing the numberofdisk accesses

required to search a tree. The solution to this problem involves dividing
the tree into pages so a substantial portionofthe tree.can be retrieved with
a single disk access. Paged indexes let us search through very large

numbers of keys with only a fewdisk accesses.
Unfortunately, wefind thatit is difficult to combinethe idea ofpaging

of tree structures with the balancing of these trees by AVL methods. The
most obvious evidence ofthis difficulty is associated with the problem of
selecting the membersofthe root page ofa tree or subtree whenthetreeis
built in the conventional top-down manner.Thissets the stage for intro-
ducing Bayer and McCreight’s work on B-trees, which solves the paging

and balancing dilemmabystarting from the leaf level, promoting keys

upward as the tree grows.

https://hemanthrajhemu.github.io

Summary 415

Ourdiscussion of B-trees begins by emphasizing the multilevel index
approach, We include a full implementation of insertion and searching

and examples of searching, insertion, overflow detection, and splitting to

show how B-trees grow while maintaining balance in a paged structure.

Next we formalize our description of B-trees. This formal definition
permits us to develop a formula for estimating worst-case B-tree depth.

The formal description also motivates our work on developing deletion

procedures that maintain the B-tree properties when keys are removed

from tree.
Once the fundamental structure andprocedures for B-trees are in

place, we begin refining and improving on these ideas. The first set of

improvements involves increasing the storage utilization within B-trees.

Of course, increasing storage utilization can also result in a decrease in the

height of the tree and therefore in improvements in performance. We

sometimes find that by redistributing keys during insertion rather than
splitting pages,we can improve stor2geutilization in B-trees so it averages

around 85 percent. Carrying oursearchfor increased storage efficiency
even further, we find that we can combineredistribution during insertion
with a different kind of splitting to ensure that the pages are about two-

thirds full rather than only half full after the split. Trees using this comb1-

nation of redistribution and two-to-three splitting are called B* trees.

Next we turn to the matter of buffering pages, creating a virtual B-tree.
Wenote that the use of memoryis not an all-or-nothing choice: indexes
that are too large to fit into memory do not haveto be accessed entirely
from secondarystorage. If we hold pages that are likely to be reused in
memory, then we can save the expenseof reading these pages in from the
disk again. We develop two methods of guessing which pages are to be

reused. One method usesthe height of the pagein the tree to decide which
pages to keep. Keeping the root has the highest priority, the root’s descen-

dants have the next priority, and so on. The second methodforselecting

pages to keep in memoryis based on recentness of use: we always replace
the least recently used (LRU) page andretain the pages used most recent-
ly. We see that it is possible to combine these methods and that doing so

can result in the ability to find keys while using an averageofless than one
disk access per search.

We close the chapter with a brief look at the use of variable-length

records within the pages of a B-tree, noting that significant savings in

space and consequent reduction in the heightofthe tree can result from

the use of variable-length records. The modification of the basic textbook
B-tree definition to include the use of variable-length recordsis just one

https://hemanthrajhemu.github.io

416 Chapter 9 Multilevel Indexing and B-Trees

example of the many variations on B-trees. that are used in real-world

implementations,

KEY TERMS

AVL tree. A height-balanced (HB(1)) binary tree in which insertions and

deletions can be performed with minimalaccessesto local nodes. AVL
trees are interesting because they keep branches from getting overly

long after many randominsertions.

B-tree of order m. A multilevel index tree with these properties:

Q Every node has a maximum of m descendants.
1 Every nodeexcept the root hasat least| m/2| descendants.

2 The root has at least two descendants (unlessit is a leaf).

3 All of the leaves appear on the same level.

B-trees are built upward from theleaf level, so creation of new pages

always starts at the leaf level. |
The powerof B-treeslies in the facts that they are balanced (no

overly long branches); they are shallow (requiring few seeks); they

accommodate random deletions andinsertions ata relatively low cost
while remaining in balance; and they guarantee at least 50 percent
storage utilization.

B* tree. A special B-tree in which each nodeis at least two-thirdsfull.

B* trees generally provide better storage utilizationthan B-trees.

Height-balancedtree. A tree structure with a special property: for each
nodethereis a limit to the amountofdifference that is allowed among

the heights of any of the node’s subtrees. An HB(k) tree allows
subtrees to be k levels out of balance. (See AVL tree.)

Leaf of a B-tree. A page at the lowest level in a B-tree. All leaves in a B-tree

occur at the samelevel.

Merging. When a B-tree node underflows (becomes less than 50 percent

full), it sometimes becomes necessary to combine the node with an

adjacent node, thus decreasing the total number of nodesin thetree.
Since merging involves a change in the numberof nodesin thetree,its
effects can require reorganization at manylevels of thetree.

Order of a B-tree. The maximum numberof descendants that a node in
the B-tree can have.

https://hemanthrajhemu.github.io

Further Readings 417

Paged index. An index thatis divided into blocks, or pages, each of which

can hold many keys. The use of paged indexesallows us to search

through very large numbers of keys with only a few disk accesses.

Redistribution. When a B-tree node underflows (becomesless than 50

“percentfull), it may be possible to movekeys into the node from an

adjacent node with the same parent. This helps ensure that the 50
percent-full property is maintained. When keys are redistributed,it
becomes necessary to alter the contents of the parent as well.

Redistribution, as opposed to merging, does not involve creation or

deletion of nodes—its effects are entirely local. Often redistribution
can also be used as an alternativeto splitting.

Splitting. Creation of two nodes out. of one when the original node

becomes overfull. Splitting results in the need to promote a key to a
higher-level node to provide an index separating the two new nodes.

Virtual B-tree. A B-tree index in which several pages are kept in memory
in anticipation of the possibility that one or more of them will be

needed bya later access. Many different strategies can be applied to
replacing pages in memory whenvirtual B-trees are used, including
the least-recently-used strategy and height-weightedstrategies.

FURTHER READINGS

Currently available textbooks on file and data structures contain surpris-
ingly brief discussions on B-trees, These discussions do not, in general,
add substantially to the information presented in this chapter and the
following chapter. Consequently, readers interested in more information

about B-trees must turn to the articles that have appeared in journals over

the past 15 years.
The article that introduced B-trees to the world is Bayer and

McCreight’s “Organization and Maintenance of Large Ordered Indexes”
(1972). It describes the theoretical properties of B-trees and includes
empirical results concerning, amongotherthings, the effect of using redis-
tribution in addition to splitting during insertion. Readers should be

aware that the notation and terminology used in this article differ from

those used in this text in a numberof importantrespects.
Comer’s (1979) survey article, “The Ubiquitous B-tree,” provides an

excellent overview of some importantvariations on the basic B-tree form.

Knuth’s (1998) discussion of B-trees, although brief, is an important

https://hemanthrajhemu.github.io

418° Chapter 9 Multilevel Indexing and B-Trees

resource in part because manyof the variant forms such as B* trees were
first collected together in Knuth’s discussion. McCreight (1977) looks
specifically at operations ontrees that use variable-length records and that

are therefore of variable order. Although this article speaks specifically
about B* trees, the consideration of variable-length records canbe applied
to manyother B-tree forms. In “Time and Space Optimality on B-trees,”
Rosenberg and Snyder (1981) analyze the effects of initializing B-trees
with the minimum numberof nodes. In “Analysis of Design Alternatives
for Virtual Memory Indexes,” Murayama and Smith (1977) look at three
factors that affect the costof retrieval: choice of search strategy, whether

pages in the index are structured, and whetherkeys are compressed. Gray

and Reuter (1993) provide an analysis of issues in B-tree implementation.

Zoellick (1986) discusses the use of B-tree—like structures on optical

discs.
_ Since B-trees in various forms have becomea standard file organiza-

tion for databases, a good dealofinteresting material on applications ofB-
trees can be foundin the databaseliterature. Held and Stonebraker(1978),

Snyder (1978), Kroenke (1998), and Elmasri and Navathe (1994) discuss

the use of B-trees in database systems generally. Ullman (1986) covers the

problem of dealing with applications in which several programs have
access to the same database concurrently and identifies literature

concerned with concurrent access to B-tree.
Uses of B-trees for secondary key access are covered in manyofthe

previously cited references. There is also a growing literature on multidi-
mensional dynamic indexes, including variants of the B-tree, k-d B-tree

and R trees. K-d B-trees are described in papers by Ouskel and

Scheuermann (1981) and Robinson (1981). R trees support multidimen-

sional queries, so-called range queries, and were first described in Guttman
(1984) and further extendedin Sellis et al (1987), Beckmannetal (1990),

and Kamel and Floutsos (1992). Shaffer (1997) and Standish (1995)

include extensive coverage ofa variety oftree structures. Other approach-
es to secondary indexing includetheuseoftries and grid files. Tries are

covered in manytexts on files and data structures, including Knuth (1998)
and Loomis (1989). Grid files are covered thoroughly in Nievergelt etal.

(1984).
An interesting early paper on the use of dynamictree structures for

processing files is “The Use of Tree Structures for Processing Files,” by

Sussenguth (1963). Wagner (1973) and Keehn and Lacy (1974) examine

the index design considerations that led to. the development of VSAM.
VSAM usesan index structure verysimilar to a B-tree but appears to have

https://hemanthrajhemu.github.io

Exercises°°. | °° 419

been developedindependently of Bayer and McCreight’s work. Readers
interested in learning more about AVLtrees should read Knuth (1998),
whotakes a more rigorous,mathematical look at AVL tree operations and

properties.

1.

EXERCISES

Balanced binary trees can be effective index structures for memory-
based indexing, but they have several drawbacks when they becomeso

large that part or all of them must be kept on secondary storage. The

following questions should help bring these drawbacks into focus and

thus reinforce the need for an alternative structure such as the B-tree.

a. There are two major problemswith using binary search to search a
simple sorted index on secondary storage: the number ofdisk
accesses is larger than we would like, and the time it takes to keep

the index sortedis substantial. Which of the problemsdoesa bina-
ry search tree alleviate?

b, Whyis it important to keep search trees balanced?

c. In what way is an AVLtree better than a simple binary search tree?

d. Suppose you havea file with 1 000 000 keys stored on disk in a

completely full, balanced binary searchtree.If the tree is not paged,

whatis the maximum numberofaccesses requiredto find a key? If

the tree is paged in the mannerillustrated in Fig. 9.12, but with
each page able to hold 15 keys and to branch to 16 new pages, what

is the maximum numberofaccesses required to find a key? If the

page size is increased to hold 511 keys with branches to 512 nodes,
how does the maximum numberofaccesses change? .

e. Consider the problem of balancing the three-key-per-pagetree in
Fig. 9.13 by rearranging thepages. Whyisit difficult to create a tree-

balancing algorithm that has only local effects? When the pagesize
increases to a morelikely size (such as 512 keys), why doesit
become difficult to guarantee that each of the pages contains at
least some minimum numberofkeys?

f. Explain the following statement: B-trees are built upward from the

bottom, whereasbinary trees are built downward from thetop.

g. Although B-trees are generally considered superiorto binary search
trees for external searching, binarytreesarestill commonly used for

internal searching. Whyis this so?

https://hemanthrajhemu.github.io

420 Chapter 9 Multilevel Indexing and B-Trees

Showthe B-trees of order four that result from loading the following
sets of keys in order:

a. CGJX

b CGJXNSUOAEBHI

c. CGJXNSUOAEBHIF
d.CGJXNSUOAEBHIFKLQRTVUWZ

Given a B-tree of order 256,

a. Whatis the maximum numberof descendants from a page?

b. Whatis the minimum numberof descendants froma page (exclud-
ing the root and leaves)?

c. What is the minimum numberof descendants from the root?

d. Whatis the maximum depth of thetree if it contains 100 000 keys?

Using a methodsimilar to that used to derive the formula for worst-
case depth, derive a formula for best-case, or minimum,depth for an

order m B-tree with N keys. What is the minimum depth ofthe tree

described in the preceding question?

Suppose you have a B-tree index for an unsorted file containing N
data records, where each key has stored with it the RRN ofthe corre-
spondingrecord. The depth ofthe B-tree is d. What are the maximum

and minimum numbersof disk accesses required to

a. Retrieve a record?

b, Add a record?

c. Delete a record?

d. Retrieve all records from thefile in sorted order?

Assumethat page buffering is not used. In each case, indicate how you.
arrived at your answer.

Showthetrees that result after each of the keys N, P, Q, and is delet-

ed from the B-tree of Figure 9.15(c).

A common belief about B-trees is that a B-tree cannot grow deeper
unless it is 100 percentfull. Discuss this.°

Suppose you wantto delete a key from a nodein a B-tree. You lookat
the right sibling and findthat redistribution does not work; merging
would be necessary. You look to the left and see that redistribution is

an option here. Do you choose to mergeorredistribute?

https://hemanthrajhemu.github.io

ProgrammingExercises 421

9,

10.

11.

12,

Whatis the difference between a B* tree and a B-tree? What improve-
ment does a B* tree offer over a B-tree, and what complications does
it introduce? How does the minimum depth of an order m B*tree
compare with that of an order im B-tree?

Whatis a virtual B-tree? How can it be possible to average fewer than
one_access per key whenretrieving keys from a three-level virtual B-
tree? Write a description for an LRUreplacement schemefora ten-
page buffer used in implementing a virtual B-tree.

Discuss the trade-offs between storing the information indexed by
the keys in a B-tree with the key and storing the informationin a
separatefile.

We notedthat,given variable-lengthkeys, it is possible to optimize a

tree by building in a bias toward promoting shorter keys. Withfixed-
order trees we promote the middle key. In a variable-order,variable-

length key tree, what is the meaning of “middle key”? What are the

trade-offs associated with building in a bias toward shorter keys in
this selection of a key for promotion? Outline an implementation for
this selection and promotion process.

PROGRAMMINGEXERCISES

13.

14.

15.

16.

18.

Implement the Delete methodof class BTree.

Modify classes BTreeNode and BTreeto have one morereference

than key in each interior mode. .

Write an interactive program that allowsa userto find,insert, and
delete keys from a B-tree.

Write a B-tree program that uses keys that are strings rather than

single characters.

Write a program that builds a B-tree index for a data file in which

records contain more information than just a key. Use the Person,

Recording, Ledger, or Transaction files from previous

chapters.

Implement B* trees by modifying class BTree.

https://hemanthrajhemu.github.io

422, °° Chapter 9 Multilevel Indexing and B-Trées-

This is the seventhpart of theprogrammingproject. We add B-tree index-
es to the data files created bythe third part of the project in Chapter4.

19. Use class BTree to create a B-tree index of a studentrecord file with

the studentidentifier as key. Write a driver program to create a B-tree

file from an existing student recordfile.

20. Use class BTree to create a B-tree index of a course registration

record file with the student identifier as key. Write a driver program,

to create a B-treefile from an existing course registration recordfile.

21. Write a program that opens a B-tree indexed studentfile and a B-tree
indexed course registration file and retrieves information on

demand. Prompta user for a studentidentifier, and printall objects

that matchit.

The nextpart of the programming project is in Chapter 10.

https://hemanthrajhemu.github.io

