Or
Visit : https://hemanthrajhemu.github.io

to All Study Materials according to VTU,
— Computer Science En

— Information Science E
ctronics and Communica
& MORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU TELEGRAM

Contact: MAIL: futurevisionbie@wgmail.com

INSTAGRAM: www.instagram.com/hemanthraj hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

I
File Structures

An Object-Oriented
Approach with C++

Michael J.Folk

University of Illinois

Bill Zoellick
CAP Ventures

Greg Riccardi
Florida State University

A
vy ADDISON-WESLEY

Addison-Wesley is an imprint of Addison Wesley Longman, Inc. .

Reading, Massachusetts + Harlow, England -+ Menlo Park, California
Berkeley, California + Don Mills, Ontario * Sydney
Bonn * Amsterdam * Tokyo * Mexico City

heé¢eps://hemanthrajhemu.github.io

Contents Xvi

Chapter 7 Indexing 247

7.1
7.2
7.3
7.4

7.5
7.6
7.7

7.8

7.9

What Is an Index? 248

A Simple Index for Entry-Sequenced Files 249

Using Template Classes in C++ for Object /O 253
Object-Oriented Support for Indexed, Entry-Sequenced Files
of Data Objects 255 .

7.4.1 Operations Required to Maintain an Indexed File 256
7.4.2 Class TextIndexedFile 260

7.4.3 Enhancements to Class TextindexedFile 261

Indexes That Are Too Large to Hold in Memory 264
Indexing to Provide Access by Multiple Keys 265

Retrieval Using Combinations of Secondary Keys 270
Improving the Secondary Index Structure: Inverted Lists 272
7.8.1 A First Attempt at a Solution™ 272

7.8.2 A Better Solution: Linking the List of References 274
Selective Indexes 278

7.10 Binding 279 ‘
Summary 280 KeyTerms 282 Further Readings 283 Exercises 284
Programming and Design Exercises 285 Programming Project 286

Chapter 8 Cosequential Processing and the Sorting
of Large Files 289

8.1

8.2

8.3

8.4

8.5

An Object-Oriented Model for Implementing Cosequential
Processes 291

8.1.1 Matching Names in Two Lists 292

8.1.2 Merging Two Lists 297

8.1.3 Summary of the Cosequential Processing Model 299
Application of the Model to a General Ledger Program 301
8.2.1 The Problem 301

8.2.2 Application of the Model to the Ledger Program 304
Extension of the Model to Include Multiway Merging 309
8.3.1 A K-way Merge Algorithm 309

8.3.2 A Selective Tree for Merging Large Numbers of Lists ~ 310
A Second Look at Sorting in Memory 311

'8.4.1 Overlapping Processing and I/0: Heapsort 312

8.4.2 Building the Heap while Reading the File 313
8.4.3 Sorting While Writing to the File 316

Mergingas a Way of Sorting Large Files on Disk 318
8.5.1 How Much Time Does a Merge Sort Take? 320
8.5.2 Sorting a File That Is Ten Times Larger 324

heé¢eps://hemanthrajhemu.github.io

XViil Contents

8.5.3 The Cost of Increasing the File Size 326
8.5.4 Hardware-Based Improvements 327
8.5.5 Decreasing the Number of Seeks Using Multiple-Step Merges 329
8.5.6 Increasing Run Lengths Using Replacement Selection 332
8.5.7 Replacement Selection Plus Multistep Merging 338
8.5.8 Using Two Disk Drives with Replacement Selection 341
" 8.5.9 More Drives? More Processors? 343
. 8.5.10 Effects of Multiprogramming 344
8.5.11 A Conceptual Toolkit for External Sorting 344
8.6 Sorting FilesonTape 345
8.6.1 The Balanced Merge 346
8.6.2 The K-way Balanced Merge 348
8.6.3 Multiphase Merges 349
8.6.4 Tapes versus Disks for External Sorting 351
8.7 Sort-Merge Packages 35
8.8 Sorting and Cosequential Processing in Unix 352
8.8.1 Sorting and Merging in Unix 352
8.8.2 Cosequential Processing Utilities in Unix 355
Summary 357 KeyTerms 360 Further Readings 362 Exercises 363
Programming Exercises 366 Programming Project 367

Chapter 9 Multilevel Indexing and B-Trees 369

9.1 Introduction:The Invention of the B-Tree 370
9.2 Statementof the Problem 372
9.3 Indexing with Binary Search Trees 373
9.3.1 AVLTrees 377
9.3.2 Paged Binary Trees 380
9.3.3 Problems with Paged Trees 382
9.4 Multilevel Indexing, a Better Approach to Tree Indexes 384
9.5 B-trees:Working up from the Bottom 387
9.6 - Example of Creating a B-Tree 388
9.7 An Object-Oriented Representation of B-Trees 391
9.7.1 Class BTreeNode: representing B-Tree Nodes in Memory 397
9.7.2 Class BTree: Supporting Files of B-Tree Nodes 393
9.8 B-Tree Methods Search, Insert,and Others 394
9.8.1 Searching 394
9.8.2 Insertion 395
9.8.3 Create, Open,and Close 398
9.8.4 Testing the 8-Tree 398
9.9 B-Tree Nomenclature 399
9.10 Formal Definition of B-Tree Properties 401

heé¢eps://hemanthrajhemu.github.io

Contents Xix

9.11 Worst-Case Search Depth 401
9.12 Deletion, Merging, and Redistribution 403
9.12.1 Redistribution 406
9.13 Redistribution During Insertion: AWay to Improve Storage
Utilization 407 :
9.14 B*Trees 408
9.15 Buffering of Pages: Virtual B-Trees 409
9.15.1 LRU Replacement 410
9.15.2 Replacement Based on Page Height 411
9.15.3 Importance of Virtual B-Trees 412
9.16 Variable-Length Records and Keys 413
Summary 414 KeyTerms 416 Further Readings 417 Exercises 419
Programming Exercises 421 Programming Project 422

Chapter 10 Indexed Sequential File Access and Prefix B+ Trees 423

10.17 Indexed Sequential Access 424
10.2 Maintaining a Sequence Set 425
10.2.1 The Use of Blocks 425
10.2.2 Choice of Block Size 428
10.3 Adding a Simple Index to the Sequence Set 430
10.4 The Content of the Index:'Separators Instead of Keys 432
10.5 TheSimple Prefix B*Tree 434 :
10.6 Simple Prefix B* Tree Maintenance 435
10.6.1 Changes Localized to Single Blocks in the Sequence Set 435
10.6.2 Changes Involving Multiple Blocks in the Sequence Set 436
10.7 IndexSetBlock Size. 439
10.8 Internal Structure of Index Set Blocks: A Variable-Order
B-Tree 440
10.9 Loading a Simple Prefix B* Tree 443
10.10° B*Trees 447
10.11 B-Trees, B* Trees, and Simple Prefix B+ Trees in Perspective 449
Summary 452 KeyTerms 455 Further Readings 456 Exercises 457
Programming Exercises 460 Programming Project 461

Chapter 11 Hashing ~ 463

11.1 Introduction 464
11.1.1 What Is Hashing? 465
11.1.2 Collisions 466
11.2 A Simple Hashing Algorithm 468

heé¢eps://hemanthrajhemu.github.io

CHAPTER

Cosequential
Processing and the
Sorting of Large Files

CHAPTER OBJECTIVES

+ Describe a class of frequently used processing activities known as
cosequential processes.

% Provide a general object-oriented model for implementing all
varieties of cosequential processes.

% lllustrate the use of the model to solve a number of different kinds
of cosequential processing problems, including problems other
than simple merges and matches.

«» Introduce heapsort as an approach to overlapping I/0 with sorting
in memory.

% Show how merging provides the basis for sorting very large files.

+» Examine the costs of K-way merges on disk and find ways to reduce
those costs.

+»+ Introduce the nation of replacement selection.

++ Examine some of the fundamental concerns associated with sorting
large files using tapes rather than disks.

% Introduce Unix utilities for sorting, merging, and cosequential
processing.

hettps:/hemanthrajhemu.github:io

290 Chapter 8 Cosequential Processing and the Sorting of Large Files

CHAPTER OUTLINE

8.1 An Object-Oriented Model for Implementing Cosequential
Processes
8.1.1 Matching Names in Two Lists
8.1.2 Merging Two Lists
8.1.3 Summary of the Cosequential Processing Model
8.2 Application of the Model to a General Ledger Program
8.2.1 The Problem '
8.2.2 Application of the Model to the Ledger Program
8.3 Extension of the Model to Include Multiway Merging
8.3.1 A K-way Merge Algorithm
8.3.2 A Selection Tree for Merging Large Numbers of Lists
8.4 A Second Look at Sorting in Memory
8.4.1 Overlapping Processing and I/0: Heapsort
8.4.2 Building the Heap While Reading the File -
8.4.3 Sorting While Writing to the File
8.5 Merging as a Way of Sorting Large Files on Disk
8.5.1 How Much Time Does a Merge Sort Take?
8.5.2 Sorting a File That Is Ten Times Larger
8.5.3 The Cost of Increasing the File Size
8.5.4 Hardware-Based Improvements
8.5.5 Decreasing the Number of Seeks Using Multiple-Step Merges
8.5.6 Increasing Run Lengths Using Replacement Selection
. 8.5.7 Replacement Selection Plus Multistep Merging
8.5.8 Using Two Disk Drives with Replacement Selection
8.5.9 More Drives? More Processors?
8.5.10 Effects of Multiprogramming
. 8.5.11 A Conceptual Toolkit for External Sorting
8.6 Sorting Files on Tape
8.6.1 The Balanced Merge
8.6.2 The K-way Balanced Merge
8.6.3 Multiphase Merges
8.6.4 Tapes versus Disks for External Sorting
8.7 Sort-Merge Packages ,
8.8 Sorting and Cosequential Processing in Unix
8.8.1 Sorting and Merging in Unix
8.8.2 Cosequential Processing Utilities in Unix

heé¢eps://hemanthrajhemu.github.io

An Object-Oriented Model for Implementing Cosequential Processes 291

Cosequential operations involve the coordinated processing of two or more
sequential lists to produce a single output list. Sometimes the processing
’ results in a merging, or union, of the items in the input lists; sometimes the
goal is a matching, or intersection, of the items in the lists; and other times
the operation is a2 combination of matching and merging. These kinds of
operations on sequential lists are the basis of a great deal of file processing.
In the first half of this chapter we develop a general object-oriented
model for performing cosequential operations, illustrate its use for simple
"matching and merging operations, then apply it to the development of a
more complex general ledger program. Next we apply the mode] to multi-
way merging, which is an essential component of external sort-merge
operations. We conclude the chapter with a discussion of external sort-
merge procedures, strategies, and trade-offs, paying special attention to

performance considerations.

8.1 An Object-Oriented Model for Implementing
Cosequential Processes

Cosequential operatiohs usually appear to be simple to construct; given
the information that we provide in this chapter, this appearance of
simplicity can be turned into reality. However, it is also true that approach-
es to cosequential processing are often confused, poorly organized, and
incorrect. These examples of bad practice are by no means limited to
student programs: the problems also arise in commercial programs and
textbooks. The difficulty with these incorrect programs is usually that they
are not organized around a single, clear model for cosequential processing.
Instead, they seem to deal with the various exception conditions and prob-
lems of a cosequential process in an ad hoc rather than systematic way.

This section addresses such lack of organization head on. We present
a single, simple model that can be the basis for the construction of any
kind of cosequential process. By understanding and adhering to the design
principles inherent in the model, you will be able to write cosequential
procedures that are simple, short, and robust.

We present this model by defining a class CosequentialProcess
that supports processing of any type of list, in the same way that class
IOBuffer supports buffer operations on any type of buffer. Class
CosequentialProcess includes operations to match and merge lists.
It defines the list processing operations required for cosequential processing

heé¢eps://hemanthrajhemu.github.io

292 Chapter 8 Cosequential Processing and the Sorting of Large Files

as virtual methods. We will then define new subclasses that include the
methods for accessing the elements of particular types of lists.

8.1.1 Matching Na:v=s5in Two Lists

Suppose we want to output the names common to the two lists shown in
Fig. 8.1. This operation is usually called a match operation, or an intersec-
tion. We assume, for the moment, that we will not allow duplicate names
within a list and that the lists are sorted in ascending order.

We begin by reading in the initial item from each list, and we find that
they match. We output this first item as a member of the match set, or
intersection set. We then read in the next item from each list. This time the

List 1 List 2
ADAMS ADAMS
CARTER ANDERSON
CHIN ANDREWS
DAVIS BECH
FOSTER BURNS
GARWICK CARTER
JAMES DAVIS
JOHNSON DEMPSEY
KARNS GRAY
LAMBERT JAMES
MILLER JOHNSON
PETERS KATZ
RESTON PETERS
ROSEWALD 'ROSEWALD
TURNER SCHMIDT
THAYER
WALKER
WILLIS

Figure 8.1 Sample input lists for cosequential operations. ‘

heé¢eps://hemanthrajhemu.github.io

An Object-Oriented Model for Implementing Cosequential Processes 293

item in List 2 is less than the item in List 1. When we are processing these
lists visually as we are now, we remember that we are trying to match the
item CARTER from List 1 and scan down List 2 until we either find it or
jump beyond it. In this case, we eventually find a match for CARTER, so
we output it, read in the next item from each list, and continue the process.
Eventually we come to the end of one of the lists. Since we are looking for
items common to both lists, we know we can stop at this point.

Although the match procedure appears to be quite simple, there are
a number of matters that have to be dealt with to make it work reason-
ably well.

W [nitializing: we need to arrange things in such a way that the procedure
‘gets going properly.

B Getting and accessing the next list item: we need simple methods that
support getting the next list element and accessing it.

B Synchronizing: we have to make sure that the current item from one
list is never so far ahead of the current item on the other list that a’
match will be missed. Sometimes this means getting the next item
from List 1, sometimes from List 2, sometimes from both lists.

M Handling end-of-file conditions: when we get to the end of either List 1
or List 2, we need to halt the program.

M Recognizing errors: when an error occurs in the data (for example,
duplicate items or items out of sequence), we want to detect it and
take some action.

Finally, we would like our algorithm to be reasonably efficient, simple,
and easy to alter to accommodate different kinds of data. The key to
accomplishing these objectives in the model we are about to present lies in
the way we deal with the third item in our list—synchronizing.

At each step in the processing of the two lists, we can assume that we
have two items to compare: a current item from List 1 and a current item
from List 2. Let’s call these two current items Item(1) and Item(2).
We can compare the two items to determine whether Item (1) is less
than, equal to, or greater than Ttem(2):

M IfTtem(1l) islessthan Item(2), we get the next item from List 1;

'@ IfTtem (1) is greater than Ttem(2), we get the next item from List
2;and ‘

M If the items are the same, we output the item and get the next items
from the two lists.

heé¢eps://hemanthrajhemu.github.io

294 Chapter 8 Cosequential Processing and the Sorting of Large Files

It turns out that this can be handled very cleanly with a single loop
containing one three-way conditional statement, as illustrated in the algo-
rithm of Fig. 8.2. The key feature of this algorithm is that control always
returns to the head of the main loop after every step of the operation. This
means that no extra logic is required within the loop to handle the case
when List 1 gets ahead of List 2, or List 2 gets ahead of List 1, or the end-
of-file condition is reached on one list before it is on the other. Since each
.pass through the main loop looks at the next pair of items, the fact that
one list may be longer than the other does not require any special logic.
Nor does the end-of-file condition—each operation to get a new item
resets the MoreNames flag that records whether items are available in
both lists. The while statement simply checks the value of the flag
MoreNames on every cycle.

int Match (char * ListlName, char * List2Name,
char * OutputListName)

{
int MoreItems;// true if items remain in both of the lists
// initialize input and output lists
InitializeList (1, ListlName);// initialize List 1
InitializelList (2, List2Name);// initialize List 2
InitializeOutput (OutputListName) ;
// get first item from both lists
MoreItems = NextItemInList(1l) && NextItemInList (2);
while (MoreItems){// loop until no items in one of the lists
if (Item(l) < Item(2))
MoreItems = NextItemInList(1l); .
else if (Item(l) == Item(2)) // Iteml == Item2
{
ProcessItem (1); // match found .
Moreltems = NextItemInList (1) && NextItemInList (2);
} :
else // Item(l) > Item(2)
Moreltems = NextItemInList({2);
) .
FinishUp();
return 1;
}

Figure 8.2 Cosequential match function based on a single loop.

heé¢eps://hemanthrajhemu.github.io

An Object-Oriented Model for Impiementing Cosequential Processes 295

The logic inside the loop is equally simple. Only three possible condi-
tions can exist after reading an item: the if-then-else logic handles all of
them. Because we are implementing a match process here, output occurs
only when the items are the same.

Note that the main program does not concern itself with such matters
as getting the next item, sequence checking, and end-of-file detection.
Since their presence in the main loop would only obscure the main
synchronization logic, they have been relegated to supporting methods. It
is also the case that these methods are specific to the particular type of lists
being used and must be different for different applications.

Method Next ItemInList has a single parameter that identifies
which list is to be manipulated. Its responsibility is to read the next name
from the file, store it somewhere, and return true if it was able to read
another name and false otherwise. It can also check the condition that the
list must be in ascending order with no duplicate entries.

' Method Match must be supported by defining methods
InitializeList, InitializeOutput, NextItemInList,
Item, ProcessItem, and FinishUp. The Match method is
perfectly general and is not dependent on the type of the items nor on
the way the lists are represented. These details are provided by the
supporting methods that need to ve defined for the specific needs of
particular applications. What follows is a description of a class
CosequentialProcessing that supports method Match and a
class StringListProcess that defines the supporting operations for
the lists like those of Figure 8.1.

Class CosequentialProcessing, as given in Fig. 8.3 and in file
coseqg.h and coseq.cpp of Appendix H, encapsulates the ideas of
cosequential processing that were described in the earlier example of list
matching. Note that this is an abstract class, since it does not contain defi-
nitions of the supporting methods. This is a template class sa the opera-
tions that compare list items can be different for different applications.
The code of method Match in Fig. 8.2 is exactly that of method
Match2Lists of this class, as you can see in file coseq. cpp.

In order to use class CosequentialProcess for the application
described earlier, we need to create a subclass StringListProcess
that defines the specific supporting methods. Figure 8.4 (and file
strlist.h of Appendix H) shows the definition of class
StringListProcess. The implementations of the methods are given

in file strlist.cpp of Appendix H. The class definition allows any
number of input lists. Protected members are included for the input and

heé¢eps://hemanthrajhemu.github.io

296 Chapter 8 Cosequential Processing and the Sorting of Large Files

template <class ItemType>
class CosequentialProcess
// base class for cosequential processing
{public:
// The following methods provide basic list processing
// These must be defined in subclasses
virtual int InitializeList (int ListNumber, char * ListName)=0;
virtual int InitializeOutput.(char * QutputListName)=0;
virtual int NextItemInList (int ListNumber)=0;
//advance to next item in this list
-virtual ItemType Item (int ListNumber) = 0;°
// return current item from this list
virtual int ProcessItem (int ListNumber)=0;
// process the item in this list
virtual int FinishUp()=0; // complete the processing

// 2-way cosequential match method
virtual int Match2Lists
(char * ListlName, char * List2Name, char * QutputListName) ;

};

Figure 8.3 Main members and methods of a general class for cosequential processing.

output files and for the values of the current item of each list. Member
LowValue is a value that is smaller than any value that can appear in a
Jist—in this case, the null string (" "). LowValue is used so that method
NextItemInList does not have to get the first item in any special way.
Member HighValue has a similar use, as we will see in the next section.

Given these classes, you should be able to work through the two lists
provided in Fig. 8.1, following the code, and demonstrate to yourself that
these simple procedures can handle the various resynchronization prob-
lems that these sample lists present. A main program (file match. cpp)
to process the lists stored in files list1.txt and list2.txt is

#include "coseqg.h"
int main ()

{ .
StringListProcess ListProcess({2);// process with 2 lists

ListProcess.Match2Lists {("listl.txt","list2.txt","match.txt");

heé¢eps://hemanthrajhemu.github.io

An Object-Oriented Model for Implementing Cosequential Processes 297

class StrinQListProcess: public CosequentialProcess<String&>
// Class to process lists that ‘are files of strings, one per line
{
public:
StringListProcess (int NumberOfLists); // constructor

// Basic list processing methods
int InitializelList {(int ListNumber, char * ListlName);
int InitializeOutput (char * Output;iétName);
‘int NextItemInList {int ListNumber); //get next
String& Item (int ListNumber);//return current
int ProcessItem (int ListNumber); // process the item
int FinishUp({); // complete the processing

protected:
ifstream * Lists; // array of list files
String * Items; // array of current Item from each list
ofstream OutputList;
static const char * LowValue;
static const char * HighValue;

}i

Figure 8.4 A subclass to support lists that are files of strings, one per line.

8.1.2 Merging Two Lists

The three-way-test, single-loop model for cosequential processing can
easily be modified to handle merging of lists simply by producing output
for every case of the if-then-else construction since a merge is a union of
the list contents.

An important difference between matching and merging is that with
merging we must read completely through each of the lists. This necessi-
tates a change in how MoreNames is set. We need to keep this flag set to
TRUE as long as there are records in either list. At the same time, we must
recognize that one of the lists has been read completely, and we should
avoid trying to read from it again. Both of these goals can be achieved if
we introduce two MoreNames variables, one for each list, and set the
stored ITtem value for the cbmpleted list to some value (we call it
HighValue) that

B Cannot possibly occur as a legal input value, and

heé¢eps://hemanthrajhemu.github.io

298 Chapter 8 Cosequential Processing and the Sorting of Large Files

B Has a higher collating sequence value than any possible legal input
value. In other words, this special value would come after all legal
input values in the file’s ordered sequence.

For HighValue, we use the string “ \xFF” which is a string of only one
character and that character has the hex value FE which is the largest char-
acter value. ,

Method Merge2Lists is given in Fig. 8.5 and in file coseq. cpp
of Appendix- H. This method has been added to class
CosequentialProcess. No modifications are required to class
StringListProcess.

template <class ItemType>
int CosequentialProcess<ItemType>: :Merge2lLists
(char * ListlName, char * List2Name, char * OutputListName)
{ ,
int MoreItemsl, Moreltems2; // true if more items in list
InitializeList (1, ListlName);
InitializeList (2, List2Name);
InitializeOutput (OutputListName);
MoreItemsl = NextItemInList(1l);
Moreltems?2 NextItemInList (2);

while (Moreltemsl || MoreItems2){// if either file has more

if (Item(l) < Item(2))

{// list 1 has next item to be processed
ProcessItem (1);
Moreltemsl = NextItemInList (1);

)

else if (Item(l) ‘== Item(2)) _

{// lists have the same item, process from list 1
ProcessItem (1);
Moreltemsl NextItemInList (1) ;
Moreltems2 NextItemInList (27 ;

}

else // Item(l) > Item(2)

{// list 2 has next item to be processed.
ProcessItem (2);
Moreltems2 = NextItemInList(2);

}
}
FinishUp() ;
return 1;

}

Figure 8.5 Cosequential merge procedure based on a single loop: '

heé¢eps://hemanthrajhemu.github.io

An Object-Oriented Model for Implementing Cosequential Processes 299

Once again, you should use this logic to work, step by step, through
the lists provided in Fig. 8.1 to see how the resynchronization is handled
and how the use of the HighValue forces the procedure to finish both

* lists before terminating.

With these two examples, we have covered all of the pieces of our

model. Now let us summarize the model before adapting it to a more

complex problem..

8.1.3 Summary of the Cosequential Processing Model

Generally speaking, the model can be applied to problems that involve the
performance of set operations (union, intersection, and more complex
processes) on two or more sorted input files to produce one or more
output files. In this summary of the cosequential processing model, we
assumme that there are only two input files and one output file. It is impor-
tant to understand that the model makes certain general assumptions
about the nature of the data and type of problem to be solved. Following
is a list of the assumptions, together with clarifying comments.

Assumptions Comments

Two or more input files are to be processed In some cases an output file may be the

in a parallel fashion to produce one or more
output files.

Each file is sorted on one or more key fields,
and all files are ordered in the same ways on
the same fields.

In some cases, there must exist a high-key
value that is greater than any legitimate
record key and a low-key value that is less
than any legitimate record key..

Records are to be processed in logical sorted
order.

same file as one of the input files.

It is not necessary that all files have the
same record structures.

The use of a high-key value and a low-key
value is not absolutely necessary, but it can
help avoid the need to deal with beginning-
of-file and end-of-file conditions as special
cases, hence decreasing complexity.

The physical ordering of records is irrele-
vant to the model, but in practice it may be
important to the way the model is imple-
mented. Physical ordering can have a large
impact on processing efficiency

heé¢eps://hemanthrajhemu.github.io

300 Chapter 8 Cosequential Processing and the Sorting of Large Files

Assumptions (cont.) Comiments (cont,)

For each file there is only one current The model does not prohibit looking ahead
record. This is the record whose key is or looking back at records, but such opera-
accessible within the main synchronization tions should be restricted to subclasses and
loop. should not be allowed to affect the structure

of the main synchronization loop.

Records can be manipulated only in internal A program cannot alter a record in place on’
memory. secondary storage.-

- Given these assﬁmptions, the essential components of the model are:

1. Initialization. Previous item values for all files are set to the low value;
then current records for all files are read from the first logical records
in the respective files.

2. One main synchronization loop is used, and the loop continues as
long as relevant records remain. ,

3. Within the body of the main synchronization loop is a selection based
on comparison of the record keys from respective input file records. If
there are two input files, the selection takes the form given in function
Match of Fig. 8.2,

4. Input files and output files are sequence checked by comparing the
previous item value with the new item value when a record is read.
After a successful sequence check, the previous item value is set to the
new item value to prepare for the next input operation on the corre-
sponding file.

5. High values are substituted for actual key values when end-of-file
occurs. The main processing loop terminates when high values have
occurred for all relevant input files. The use of high values eliminates
the need to add special code to deal with each end-of-file condition.
(This step is not needed in a pure match procedure because a match
procedure halts when the first end-of-file condition is encountered.)

6. All possible I/O and error detection activities are to be relegated to
supporting methods so the details of these activities do not obscure
the principal processing logic. |

This three-way-test, single-loop model for creating cosequential
processes is both simple and robust. You will find very few applications
requiring the coordinated sequential processing of two files that cannot be

handled neatly and efficiently with the model. We now look at a problem
that is much more complex than a simple match or merge but that never-
theless lends itself nicely to solution by means of the model.

heé¢eps://hemanthrajhemu.github.io

Application of the Model to a General Ledger Program 301

8.2 Application of the Model to a General
Ledger Program

8.2.1 The Problem

Suppose we are given the problem of designing a general ledger posting
program as part of an accounting system. The system includes a journal
file and a ledger file. The ledger contains month-by-month summaries of
the values associated with each of the bookkeeping accounts. A sample
portion of the ledger, containing only checking and expense accounts, is
illustrated in Fig. 8.6. |

The journal file contains the monthly transactions that are ultimately
to be posted to the ledger file. Figure 8.7 shows these journal transactions.
Note that the entries in the journal file are paired. This is because every
check involves both subtracting an amount from the checking account
balance and adding an amount to at least one expense account. The
accounting-program package needs procedures for creating this journal
file interactively, probably outputting records to the file as checks are keyed
in anfd then printed. |

Acct.No. Account title | Jan Feb " Mar Apr
101 Checking account #1 1032.57 2114.56 5219.23
102 Checking account #2 543.78 3094.17 1321.20
505 - Advertising expense 25.00 25.00 25.00
510 Auto expenses 195.40 307.92. 501.12
515 Bank charges 0.00 0.00 0.00
520 Books and publications 27.95 27.95 87.40
525 Interest expense 103.50 255.20 380.27
535 Miscellaneous expense 12.45 17.87 23.87
540 Office expense 57.50 105.25 138.37
545 Postage and shipping 21,00 27.63 '57.45

550 Rent 500.00 1000.00 1500.00
555 Supplies 11200 16750 2441.80

Figure 8.6 Sample ledger fragment containing checking and expense accounts.

heé¢eps://hemanthrajhemu.github.io

302 Chapter 8 'Cosequential Processing and the Sorting of Large Files

Acct.No CheckNo. Date Description Debit/ credit

101 1271 04/02/86 Auto expense -78.70
510 1271 04/02/97 Tune-up and minor repair 78.70
101 1272 04/02/97 Rent -500.00
550 1272 04/02/97 Rent for April 500.00
101 1273 04/04/97 Advertising -87.50
505 1273 04/04/97 Newspaper.ad re: new product 87.50
102 670 04/02/97 Office expense -32.78
540 670 04/02/97 Printer cartridge 32.78
101 1274 04/02/97 Auto expense -31.83

510 1274 04/09/97 Oil change 31.83

Figure 8.7 Sample journal entries.

Once the journal file is complete for a given month, meaning that it
contains all of the transactions for that month, the journal must be posted
to the ledger. Posting involves associating each transaction with its account.
in the ledger. For example, the printed output produced for accounts 101,
102, 505, and 510 during the posting operation, given the journal entries
in Fig. 8.7, might look like the output illustrated in Fig. 8.8.

101 Checking account #1

1271 04/02/86 Auto expense -78.70
1272 04/02/97 Rent . -500.00
1273 04/04/97 Advertising -87.50
1274 04/02/97 Auto expense -31.83
' Prev. bal: 521%.23 New bal: 4521.20
102 Checking account #2 ‘
670 04/02/97 Office expense -32.78
- Prev. bal: 1321.20 New bal: 1288.42
505 Advertising expense
1273 04/04/97 Newspaper ad re: new product 87.50
Prev. bal: 25.370 New bal: 112.50
510 Auto expenses ‘
1271 04/02/97 Tune-up and minor repair 78.70
1274 04/09/97 0il change 31.83

Prev. bal: 501.12 New bal: 611.65

Figure 8.8 Sample ledger printout showing the effect of pdsting from the journal.

heé¢eps://hemanthrajhemu.github.io

Application of the Model to a General Ledger Program 303

How is the posting process implemented? Clearly, it uses the account
number as'a key to relate the journal transactions to the ledger records.
One possible solution involves building an index for the ledger so we can
work through the journal transactions using the account number in each
journal entry to look up the correct ledger record. But this solution
involves seeking back and forth across the ledger file as we work through
the journal. Moreover, this solution does not really address the issue of
creating the output list, in which all the journal entries relating to an
account are collected together. Before we could print the ledger balances
and collect journal entries for even the first account, 101, we would have to
proceed all the way through the journal list. Where would we save the
transactions for account 101 as we collect them during this complete pass
through the journal?

A much better solution is to begin by collecting all the journal trans-
actions that relate to a given account. This involves sorting the journal
transactions by account number, producing a list ordered as in Fig. 8.9.

Now we can create our output list by working through both the ledger
and the sorted journal cosequentially, meaning that we process the two lists
sequentially and in parallel. This concept is illustrated in Fig. 8.10. As we
start working through the two lists, we note that we have an initial match
on account number. We know that multiple entries are possible in the
journal file but not in the ledger, so we move ahead to the next entry in the

Acct.No CheckNo. Date Description Debit/ credit
101 1271 04/02/86 . Auto expense -78.70
101 1272 04/02/97 Rent -500.00
101 1273 04/04/97 Advertising -87.50
101 1274 04/02/97 Auto expense -31.83
102 670 04/02/97 Office expense -32.78
505 1273 04/04/97 Newspaper ad re: new product 87.50
510‘ 1271 04/02/97 Tune-up and minor repair 78.70
510 1274 04/09/97 Oil change 31.83
540 670 04/02/97 Printer cartridge 32.78
550 1272 04/02/97 Rent for April 500.00

Figure 8.9 List of journal transactions sorted by account number.

heé¢eps://hemanthrajhemu.github.io

304 Chapter 8 Cosequential Processing and the Sorting of Large Files

journal. The account numbers still match. We continue doing this until the
account numbers no longer match. We then resynchronize the cosequential
action by moving ahead in the ledger list. This process is often referred to
as a master-transaction process. In this case the ledger entry is the master
record and the journal catry is the transaction entry.

This matching process seems simple, as in fact it is, as long as every
account in one file also appears in another. But there will be ledger
accounts for which there is no journal entry, and there can be typograph-

_ical errors that create journal account numbers that do not exist in the
ledger. Such situations can make resynchronization more complicated and
can result in erroneous output or infinite loops if the programming is
done in an ad hoc way. By using the cosequential processing model, we can
guard against these problems. Let us now apply the model to our ledger
problem.

8.2.2 Application of the Model to the Ledger Program

The monthly ledger posting program must perform two tasks:

B It needs to update the ledger file with the correct balance for each
account for the current month.

M [t must produce a printed version of the ledger that not only shows the
beginning and current balance for each account but also lists all the
journal transactions for the month.

Ledger List Journal List

101 Checking account #1 101 1271 Auto expense
101 1272 Rent
101 1273 Advertising
101 1274 Auto expense

102 Checking account #2 102 670 Office expense’
505 Advertising expense 505 1273 Newspaper ad re: new product
510 Auto expenses 510 1271 Tune-up and minor repair

510 1274 Oil change

Figure 8.10 Conceptual view of cosequential matching of the ledger and journal files.

heé¢eps://hemanthrajhemu.github.io

Application of the Model to a General Ledger Program 305

We focus on the second task as it is the more difficult. Let’s look again
at the form of the printed output, this time extending the output to
include a few more accounts as shown in Fig. 8.11. As you can see, the
printed output from the monthly ledger posting program shows the
balances of all ledger accounts, whether or not there were transactions for
the account. From the point of view of the ledger accounts, the process is
a merge, since even unmatched ledger accounts appear in the output.

What about unmatched journal accounts? The ledger accounts and
journal accounts are not equal in authority. The ledger file defines the set
of legal accounts; the journal file contains entries that are to be posted to
the accounts listed in the ledger. The existence of a journal account that
does not match a ledger account indicates an error. From the point of view
of the journal accounts, the posting process is strictly one of matching.
Our post method needs to implement a kind of combined merging/
matching algorithm while simultaneously handling the chores of printing
account title lines, individual transactions, and summary balances.

101 Checking account #1

1271 04/02/86 Autc expense -78.70
1272 04/02/97 Rent -500.00
1274 04/02/97 Auto expense -31.83
1273 04/04/97 Advertising -87.50
Prev. bal: ©5219.23 New bal: 4521.20
102 Checking account #2
670 04/02/97 Office expense -32.78

Prev. bal: 1321.20 New bal: 1288.42
505 Advertising expense

1273 04/04/97 Newspaper ad re: new. product 87.50
. Prev. bal: 25.00 New bal: 112.50
510 Auto expenses
1271 04/02/97 Tune-up and minor repair 78.70
1274 04/09/97 0il change 31.83
Prev. bal: 501.12 New bal: 611.65
515 Bank charges
Prev. bal: 0.00 New bal: 0.00
520 Books and publications ,
Prev. pal: 87.40 New bal: 87.40

Figure 8.11 Sample ledger printout for the ﬁrst six accounts.

heé¢eps://hemanthrajhemu.github.io

306 Chapter 8 Cosequential Processing and the Sorting of Large Files

In summary, there are three different steps in processing the ledger
entries:

1. Immediately after reading a new ledger object, we need to print the
header line and initialize the balance for the next month from the
previous month’s balance.

2. For each transaction object that matches, we need to update the
account balance.

3. After the last transaction for the account, the balance line should be
printed. This is the place where a new ledger record could be written
to create a new ledger file.

This posting operation is encapsulated by defining subclass
MasterTransactionProcess of CosequentialProcess and
defining three new pure virtual methods, one for each of the steps in
processing ledger entries. Then we can give the full implementation of the
posting operation as a method of this class. Figure 8.12 shows the defini-
tion of this class. Figure 8.13 has the code for the three-way-test loop of
method Post Transactions. The new methods of the class are used
for processing the master records (in this case the ledger entries). The
transaction records (journal entries) can be processed by the
ProcessItem method that is in the base class.

The reasoning behind the three-way test is as follows:

1. If the ledger (master) account number (Item[1]) is less than the
journal (transaction) account number (ITtem(2]), then there are no
more transactions to add to the ledger account this month (perhaps
there were none at all), so we print the ledger account balances
(ProcessEndMaster) and read in the next ledger account
(NextItemInList (1)). If the account exists (MoreMasters
is true), we print the title line for the new account
(ProcessNewMaster).

2. If the account numbers match, then we have a journal transaction that
is to be posted to the current ledger account. We add the transaction
amount to the account balance for the new month
(ProcessCurrentMaster), print the description of the transac-
tion (ProcessItem(2)), then read the next journal entry
(NextItemInList (1)). Note that unlike the match case in either
the matching or merging algorithms, we do not read a new entry from
both accounts. This is a reflection of our acceptance of more than one
journal entry for a single ledger account.

heé¢eps://hemanthrajhemu.github.io

Application of the Model to a General Ledger Program 307

-template <class ItemType>
class MasterTranséctionProcess:
public CosequentialProcess<ItemType>
// a cosequential process that supports
// master/transaction processing
{public: '
MasterTransactionProcess ()://constructor
virtual int ProcessNewMaster ()=0;
// processing when new master read
virtual int ProcessCurrentMaster ()=0;
// processing for each transaction for a master
virtual int ProcessEndMaster ()=0;
// processing after all transactions for a master
virtual int ProcessTransactionError ()=0;
-// no master for transaction

// cosequential processing of master and transaction records
int PostTransactiOns.(char * MasterFileName,
char * TransactionFileName, char * OutputListName) ;
}; ‘

Figure 8.12. Class MasterTransactionProcess.

while (MoreMasters || MoreTransactions)
if (Item(l) < Item(2)){// finish this master record
ProcessEndMaster () ;
MoreMasters = NextItemInList (1);
if (MoreMasters) ProcessNewMaster();
. ’
else if (Item(l) == Item(2)){ // transaction matches master
ProcessCurrentMaster(); // another transaction for master
ProcessItem (2);// output transaction record
MoreTransactions = NextItemInList(2);
) ,
else { // Item(l) > Item(2) transaction with no master
ProcessTransactionError () ; '
MoreTransactions = NextItemInList (2);

}

Figure 8.13 Three-way-test loop for method PostTransactions of class
MasterTransactionProcess.

heé¢eps://hemanthrajhemu.github.io

308 Chapter 8 Cosequential Processing and the Sortihg of Large Files

3. If the journal account is less thdn the ledger account, then it is an
unmatched journal account, perhaps due to-an input error. We print
an error message (ProcessTransactionError) and continue
with the next transaction.

In order to complete our implementation of the ledger posting appli-
cation, we need to create a subclass LedgerProcess that includes
implementation of the Next ItemInList, Item, and ProcessItem
methods and the methods for the three steps of master record processing.
This new class is given in files ledgpost .h and ledgpost .cpp of
Appendix H. The master processing methods are all very simple, as shown
in Fig. 8.14.

The remainder of the code for the ledger posting program, including
the simple main program, is given in files 1edger .h, ledger . CPD,
and post . cpp in Appendix H. This includes the ost ream formatting
that produced Figs. 8.8 and 8.11. The classes Ledger and Journal
make extensive use of the TOBuf fer and RecordFile classes for their
file operations.

The development of this ledger posting procedure from our ‘basic
cosequential processing model illustrates how the simplicity of the model
contributes to its adaptability. We can also generalize the model in an
entirely different direction, extending it to enable cosequential processing

int LedgerProcess: :ProcessNewMaster ()
{//>print the header and setup last month’s balance
ledger .PrintHeader (CutputList) ;
ledger .Balances [MonthNumber] = ledger.Balances[MonthNumber-1];

int LedgerProcess: :ProcessCurrentMaster ()
{// add the transaction amount to the balance for this month
ledger.Balances {MonthNumber] += journal.Amount;

int LedgerProcess::ProcesskEndMaster ()
{// print the balances line to output
PrintBalances (OutputList,
ledger .Balances [MonthNumber-1], ledger .Balances [MonthNumber]) ;

}

Figure 8.14 Master record processing for ledger objects,

heé¢eps://hemanthrajhemu.github.io

Extension of the Model to Include Multiway Merging 309

of more than two input files at once. To illustrate this, we now extend the
model to include multiway merging.

8.3 Extension of the Model to Include Multiway
Merging

The most common application of cosequential processes requiring more
than two input files is a K-way merge, in which we want to merge K input
lists to create a single, sequentially ordered output list. K is often referred
to as the order of a K-way merge. ‘

8.3.1 A K-way Merge Algorithm

Recall the synchronizing loop we use to handle a two-way merge of two
lists of names. This merging operation can be viewed as a process of decid-
ing which of two input items has the minimum value, outputting that
itemn, then moving ahead in the list from which that item is taken. In the
event of duplicate input items, we move ahead in each list.

Suppose we keep an array of lists and array of the items (or keys) that
are being used from each list in the cosequential process:

list[0], list({1l], 1list(2],... list[k-1]
Item([0], Item{l], Item[3],... Item(k-1]

The main loop for the merge processing requires a call to a Min/ndex func-
tion to find the index of item with the minimum collating sequence value
and an inner loop that finds all lists that are using that item:

‘int minItem = MinIndex(Item,k); // find an index of minimum item
ProcessItem{minItem); // Item(minItem) is the next output
for (i = 0; i<k; i++) // look at each list
if (Item(minItem) == Item(i)) // advance list i
Moreltems(i] = NextItemInList({i);

Clearly, the expensive parts of this procedure are finding the minimum
and testing to see in which lists the item occurs and which files therefore
need to be read. Note that because the item can occur in several lists,
every one of these if tests must be executed on every cycle through the
loop. However, it is often possible to guarantee that a single item, or key,
occurs in only one list. In this case, the procedure becomes simpler and
more efficient.

heé¢eps://hemanthrajhemu.github.io

310 Chapter 8 Cosequential Processing and the Sorting of Large Files

int minI = minIndex(Item,k); // find index of minimum item
ProcessItem(minI); // Item[minI] is the next output
MoreItems[minI]=NextItemInList (minI);

The resulting merge procedure clearly differs in many ways from our
initial three-way-test, single-loop merge for two lists. But, even so, the
single-loop parentage is still evident: there is no looping within a list. We
determine which lists have the key with the lowest value, output that key,
move ahead one key in each of those lists, and Joop again. The procedure
is as simple as it is powerful. |

8.3.2 A Selection Tree for Merging Large Numbers of Lists

The K-way merge described earlier works nicely if Kis no larger than 8 or
so. When we begin merging a larger number of lists, the set of sequential
‘comparisons to find the key with the minimum value becomes noticeably
expensive. We see later that for practical reasons it is rare to want to
merge more than eight files at one time, so the use of sequential compar-
isons is normally a good strategy. If there is a need to merge considerably
more than eight lists, we could replace the loop of comparisons with a
selection tree. ,

The use of a selection tree is an example of the classic time-versus-
space trade-off we so oftenencounter in computer science. We reduce the
time required to find the key with the lowest value by using a data struc-
ture to save information about the relative key values across cycles of the
procedure’s main loop. The concept underlying a selection tree can be
readily communicated through a diagram such as that in Fig. 8.15. Here
we have used lists in which the keys are numbers rather than strings.

The selection tree is a kind of tournament tree in which each higher-
level node represents the “winner” (in this case the minimum key value) of

* the comparison between the two descendent keys. The minimum value is
always at the root node of the tree. If each key has an associated reference
to the list from which it came, it is a simple matter to take the key at the
root, read the next element from the associated list, then run the tourna-
ment again. Since the tournament tree is a binary tree, its depth is

I-log2 4

for a merge of K lists. The number of comparisons required to establish a
new tournament winner is, of course, related to this depth rather than
being a linear function of K. '

heé¢eps://hemanthrajhemu.github.io

A Second Look at Sorting in Memory 311

7,10,17 . . . List 0

=
/ T g, 19,23. .. List1
7
\ 11, 13,32 . . . List 2
n="
T8, 22,24. .. List3
< Input 5)
' 12, 14,21 . . . List 4
vs/ s
/ T~ 5, 6,25.. . Lists
5
15, 20,30 . . . List 6
\ B/ y
\

8,16,29 . . . List 7

Figure 8.15 Use of a selection tree to assist in the selection of a key with
minimum value in a K-way merge.

8.4 A Second Look at Sorting in Memory

In Chapter 6 we considered the problem of sorting a disk file that is small
enough to fit in memory. The operation we described involves three sepa-
rate steps: '

1. Read the entire file from disk into memory:.
2. Sort the records using a standard sorting procedure, such as shellsort.
. 3. Write the file back to disk.

The total time taken to sort the file is the sum of the times for the three
steps. We see that this procedure is much faster than sorting the file in
place, on the disk, because both reading and writing are sequential and
each record is read once and written once.

Can we improve on the time that it takes for this memory sort? If we
assume that we are reading and writing the file as efficiently as possible
and we have chosen the best internal sorting routine available, it would
seem not. Fortunately, there is one way that we might speed up an algo-
rithm that has several parts, and that is to perform some of those parts in
parallel.

Of the three operations involved in sorting a file that is small enough
to fit into memory, is there any way to perform some of them in parallel?
If we have only one disk drive, clearly we cannot overlap the reading and
writing operations, but how about doing either the reading or writing (or
both) at the same time that we sort the file?

heé¢eps://hemanthrajhemu.github.io

312 Chapter 8 Cosequential Processing and the Sorting of Large Files

8.4.1 Overlapping Processing and I/0: Heapsort

Most of the time when we use an internal sort, ‘we have to wait until we
have the whole file in memory before we can start sorting. Is there an
internal sorting algorithm that is reasonably fast and that can begin sort-
ing numbers immediately as they are read rather than waiting for the
whole file to be in memory? In fact there is, and we have already seen part
of it in this chapter. It is called heapsort, and it is loosely based on the same
principle as the selection tree.

Recall that the selection tree compares keys as it encounters them.
Each time a new key arrives, it is compared with the others; and if it is the
smallest key, it goes to the root of the tree. This is very useful for our
purposes because it means that we can begin sorting keys as they arrive in
memory rather than waiting until the entire file is loaded before we start
sorting. That is, sorting can occur in parallel with reading.

Unfortunately, in the case of the selection tree, each time a new small-
est key is found, it is output to the file. We cannot allow this to happen if
we want to sort the whole file because we cannot begin outputting records
until we know which one comes first, second, and so on, and we won't
know this until we have seen all of the keys.

Heapsort solves this problem by keeping all of the keys in a structure_
called a heap A heap is a binary tree with the foHowmg properties:

1. Eachnodehasa smgle key, and that key is greater than or equal to the
key at its parent node.

2. Itisa complete binary tree, which means that all of its leaves are on no
more than two levels and that all of the keys on the lower level are in’
the leftmost position.

3. Because of properties 1 and 2, storage for the tree can be allocated
sequentially as an array in such a way that the root node is index 1 and

. the indexes of the left and right children of node i are 2i and 2i +'1,
respectively. Conver cly, the index of the parent of node j is Ljr2l.

Figure 8.16 shows a heap in both its tree form and as it would be
stored in an array. Note that this is only one of many possible heaps for the
given set of keys. In practice, each key has an associated record that. is
either stored in the array with the key or pointed to by a pointer stored
with the key.

Property 3 is very useful for our purposes because it means that a heap .
is just an array of keys in which the positions of the keys in the array are
'sufﬁaent to impose an ordering on the entire set of keys. There is no need

heé¢eps://hemanthrajhemu.github.io

A Second Look at Sorting in Memory 313

E/'B\H /'\D als|lc|lelulz|ple]rF
N

Figt.iré 8.16 Aheapin bothits tree form and as it would be stored in an array.

for pointers or other dynamic data structuring overhead to create and
maintain the heap. (As we pointed out earlier, there may be pointers asso-
ciating each key with its corresponding record, but this has nothing to do
with maintaining the heap.)

8.4.2 Building the Heap While Reading the File

The algorithm for heapsort has two parts. First we build the heap; then we
output the keys in sorted order. The first stage can occur at virtually the
same time that we read the data, so in terms of elapsed time it comes
essentially free. The main members of a simple class Heap and its
Insert method that adds a string to the heap is shown in Fig. 8.17. A full
implementation of this class and a test program are in file.
heapsort.cpp in Appendix H. Figure 8.18 contains a sample applica-
tion of this algorithm. .

This shows how to build the heap, but it doesn’t tell how to make the
input overlap with the heap-building procedure. To solve that problem, we
need to look at how we perform the read operation. For starters, we are
not going to do a seek every time we want a new record. Instead, we read a
block of records at a time into an input buffer and then operate on all of
the records in the block before going on to the next block. In terms of
memory storage, the input buffer for each new block of keys can be part of
the memory area that is set up for the heap. Each time we read a new
block, we just append it to the end of the heap (that is, the input buffer
“moves” as the heap gets larger). The first new record is then at the end of
the heap array, as required by the Insert function (Fig. 8.17). Once that
record is absorbed into the heap, the next new record is at the end of the

heap array, ready to be absorbed into the heap, and so forth.

heé¢eps://hemanthrajhemu.github.io

314 Chapter 8 Cosequential Processing and the Sorting of Large Files

class Heap
{public:
Heap{int maxElements) ;
int Insert (char * newKey);
char * Remove();
protected:
int MaxElements; int NumElements; :
char ** HeapArray;
void Exchange({int i, int j); // exchange element i and j
int Compare (int i, int j) // compare element i and j
{return strcmp(HeapArray[i],HeapArray[j]);}
Y
int Heap::Insert {char * newKey)
{
if (NumElements == MaxElements) return FALSE;
NumElements++; // add the new key at the last position
HeapArray [NumElements] = newKey;
// re-order the heap A
int k = NumElements; int parent;
‘while (k > 1) // k has a parent
{
parent = k / 2;
if (Compare(k, parent) >= 0) break;
// HeapArray[k] is in the right place-
// else exchange k and parent
Exchange (k, parent);
k = parent;
}
return TRUE;
}

Figure 8.17 Class Heap and method Insert.

Use'of an input buffer avoids an excessive_number of seeks, but. it
still doesnt let input occur at the same time that we build the heap. We
saw in Chapter 3 that the way to make processing overlap with /0 is to
use more than one buffer. With multiple buffering, as we process the
keys in one block from the file, we can simultaneously read later blocks
from the file. If we use multiple buffers, how many should we use, and
where should we put them? We already answered these questions when

we decided to put each new block at the end of the array. Each time we

heé¢eps://hemanthrajhemu.github.io

A Second Look at Sorting’in Memory 315

FDCGHIBEA
New key to Heap, after insertion Selected heaps
be inserted of the new key in tree form
F 1234567839
F
D 1234567828
DF
of
c 1234567829 O
CFED —» F D
G 1234567879
CFDG
H 123456789 PN
CFDGH /1:'\ D
1 123456789/G H I
CFDGAHTI
B
s iragsenes y N
B
WA AN
E 123456783
BECFHIDG
A
A 123456789 5 e
ABCEHIDGF e —p /NN 7N\,

BRI

E
¢’ Nr

Figure 8.18 Sample application of the heap-building algorithm.The keys F,
D,C,G,H,1,B,E,and A are added to the heap in the order shown.

add a new block, the array gets bigger by the size of that block, in effect
creating a-new input buffer for each block in the file. So the number of
buffers is the number of blocks_m the : file, and they are located in
sequence in the array. ' o

Figure 8.19 illustrates the technique that we have just described, in
which we append each new block of records to the end of the heap, there-
by employing a memory-sized set of input buffers. Now we read new
blocks as fast as we can, never having to wait for processing before reading
a new block. On the other hand, processing (heap building) cannot occur
on a given block until the block to be processed is read, so there may be
some delay in processing if processing speeds are faster than reading
speeds.

heé¢eps://hemanthrajhemu.github.io

316 Chapter 8 Cosequential Processing and the Sorting of Large Files

i‘—— Total RAM area allocated for heap ———
A T

First input buffer. First part of heap is built here. The first record is
added to the heap, then the second record is added, and so forth.

L LTI [1

Second input buffer. This buffer is being
filled while heap is being built in first buffer.

Second part of heap is built here. The first record is
added to the heap, then the second record, etc.

I LTI] ‘

Third input buffer. This buffer is filled
.while heap is being built in second buffer.

;——Third part of heap is built here.
I I 1111

Fourth input buffer is filled while
beap is being built in third buffer.

Figure 8.19 lllustration of the technique described-in the text for overlap-
ping input with heap building in memory. First read in a block into the first
part of memory.The first record is the first record in the heap.Then extend
the heap to include the second record, and incorporate that record into the
heap, and so forth.While the first block is being processed, read in the second
block.When the first block is a heap, extend it to include the first record in the
second block, incorporate that record into the heap, and go on to the next
record. Continue until all blocks are read in and the heap is completed.

8.4.3 Sorting While Writing to the File

The second and final step involves writing the heap in sorted order. Again,
itis p0551b1e to overlap 1/O (in this case writing) with processmg First, let’s
look at how to output the sorted keys. Retrieving the keys in order is
simply a repetition of the following steps:

1. Determine the value of the key in the first position of the heap. This is
the smallest value in the heap.

heé¢eps://hemanthrajhemu.github.io

A Second Look at Sorting in Memory 317

2. - Move the largest value in the heap into the first position, and decrease
the number of elements by one. The heap is now out of order at its
root.

3. Reorder the heap by exchanging the largest element with the smaller
of its children and moving down the tree to the new position of the
largest element until the heap is back in order.

Each time these three steps are executed, the smallest value is retrieved and
removed from the heap. Figure 8.20 contains the code for method
Remove that implements these steps. Method Compare simply
compares two heap elements and returns —1 if the left element is smaller.

Again, there is nothing inherent in this algorithm that lets it overlap
with I/O, but we can take advantage of certain features of the algorithm to

char * Heap::Remove()

{// remove the smallest element, reorder the heap,

-// and return the smallest element
// put the smallest value into 'val' for use in return
char * val = HeapArray(1l];

// put largest value into root
HeapArray[(1l] = HeapArray [NumElements];
// decrease the number of elements
NumElements—;

// reorder the heap by exchanging and moving down
int k = 1; // node of heap that .contains the largest value
int newK; // node to exchange with largest value
while (2*k <= NumElements)// k has at least one child
{ // set newK to the index of smallest child of k
if (Compare(2*k, 2*k+1)<0) newK = 2*k;
else newK = 2*k+1;
// done if k and newK are in order
if (Compare(k, newK) < 0) break; //in order
Exchange (k, newK); // k and newK out of order
k = newK; // continue down the tree
}
return val;
}

Figure 8.20 MethodRemove of class Heap removes the smallest element and reorders
the heap.

heé¢eps://hemanthrajhemu.github.io

318 Chapter 8 Cosequential Processing and the Sorting of Large Files

make overlapping happen. First, we see that we know immediately which
record will be written first in the sorted file; next, we know what will come
second; and so forth. So as soon as we have identified a block of records,
we can write that block, and while we are writing that block, we can iden-
tify the next block, and so forth.

Furthermore, each time we identify a block to write, we make the heap
smaller by exactly the size of a block, freeing that space for a new output
buffer. So just as was the case when building the heap, we can have as many
output buffers as there are blocks in the file. Again, a little coordination is
required between processing and output, but the conditions exist for the
two to overlap almost completely.

A final point worth making about this algorithm is that all I/O it
performs is essentially sequential. All records are read in the order in
which they occur in the file to be sorted, and all records are written in sort-
ed order. The technique could work equally well if the file were kept on
tape or disk. More important, since all /O is sequential, we know that it
can be done with a minimum amount of seeking.

8.5 Merging as a Way of Sorting Large Files on Disk

In Chapter 6 we ran into problems when we needed to sort files that were
too large to be wholly contained in memory. The chapter offered a
partial, but ultimately unsatisfactory, solution to this problem in the
form of a keysort, in which we needed to hold only the keys in memory,
along with pointers to each key’s corresponding record. Keysort had two
shortcomings:

1. Once the keys were sorted, we then had to bear the substantial cost of
- seeking to each record in sorted order, reading each record in and then
writing it into the new, sorted file.

2. With keysorting, the size of the file that can be sorted is limited by the
number of key/pointer pairs that can be contained in memory.
Consequently, we still cannot sort really large files.

As an example of the kind of file we cannot sort with either a memo-
ry sort or a keysort, suppose we have a file with 8 000 000 records, each of
which is 100 bytes long and contains a key field that is 10 bytes long. The
total length of this file is about 800 megabytes. Let us further suppose that
we have 10 megabytes of memory available as a work area, not counting

heé¢eps://hemanthrajhemu.github.io

Merging as a Way of Sorting Large Files on Disk 319

memory used to hold the program, operating system, I/O buffers, and so
forth. Clearly, we cannot sort the whole file in memory. We canndt even
sort all the keys in memory, because it would require 80 megabytes.

The multiway merge algorithm discussed in Section 8.3 provides the
beginning of an attractive solution to the problem of sorting large files
such as this one. Since memory-sorting algorithms such as heapsort can
work in place, using only a small amount of overhead for maintaining
pointers and some temporary variables, we can create a sorted subset of
our full file by reading records irito memory until the memory work area
is almost full, sorting the records in this work area, then writing the sorted
records back to disk as a sorted subfile. We call such a sorted subfile a run.
Given the memory constraints and record size in our example, a run could

_contain approximately

10 000 000 bytes of memory

=100 000 d
100 bytes per record recoras

Once we create the first run, we then read a new set of records, once again
filling memory, and create another run of 100 000 records. In our exam-
ple, we repeat this process until we have created eighty runs, with each run
containing 100 000 sorted records. :

Once we have the eighty runs in eighty separate files on disk, we can
perform an eighty-way merge of these runs, using the multiway merge
logic outlined in Section 8.3, to create a completely sorted file containing
all the original records. A schematic view of this run creation and merging
process is provided in Fig. 8.21.

This solution to our sorting problem has the following features:

B Itcan,in fact, sort large files and can be extended to files of any size.

B Reading of the input file during the run-creation step is sequential and
hence is much faster than input that requires seeking for every record
individually (as in a keysort). ' ‘

@ Reading through each run during merging and writing the sorted
records is also sequential. Random accesses are required only as we
switch from run to run during the merge operation. '

W Ifaheapsort is used for the in-memory part of the merge, as described
in Section 8.4, we can overlap these operations with I/O so the in-
memory part does not add appreciably to the total time for the merge.

W Since I/O is largely sequential, tapes can be used if necessary for both
input and output operations.

heé¢eps://hemanthrajhemu.github.io

320 Chapter 8 Cosequential Processing and the Sorting of Large Files

l(— 800 000 unsorted records — f{

! 80 internal sor’fs
80 runs, each containing 10 000 sorted records
' J, vy

[— 800 000 records in sorted order){

Figure 8.21 Sorting through the creation of runs (sorted subﬁles) and subsequent
merging of runs.

8.5.1 How Much Time Does a Merge Sort Take?

This general approach to the problem of sorting large files looks promis-
ing. To compare this approach with others, we now look at how much
time it takes. We do this by taking our 8 million record files and seeing
how long it takes to do a merge sort on the Seagate Cheetah 9 disk drive
whose specifications are listed in Table 3.1. You might recall that this was
the fastest disk available for PCs in early 1997. Please note that our inten-
tion here is not to derive time estimates that mean anything in any envi-
ronment other than the hypothetical environment we have posited. Nor

do we want to overwhelm you with numbers or provide you with magic
formulas for determining how long a particular sort on a real system will

really take. Rather, our goal in this section is to derive some benchmarks
that we can use to compare several variations on the basic merge sort
approach to sorting external files.

heé¢eps://hemanthrajhemu.github.io

Merging as a Way of Sorting Large Files on Disk 321

‘We can simpli& matters by making the following simplifying assump-
tions about the computing environment:

E Entire files are always stored in contiguous areas on disk (extents), and
a single cylinder-to-cylinder seek takes no time. Hence, only one seek is
required for any single sequential access.

m Extents that span more than one track are physically staggered in such
a way that only one rotational delay is required per access.

We see in Fig. 8.21 that there are four times when 1/O is performed.
During the sort phase: |

M Reading all records into memory for sorting and forming runs, and
W Writing sorted runs to disk.

During the merge phase:

M Readingsorted runs into memory for merging, and
B Writing sorted file to disk.

Let’s look at each of these in order.

Step 1: Reading Records into Memory for Sorting and Forming Runs

Since we sort the file in 10-megabyte chunks, we read 10 megabytes at a
time from the file. In a sense, memory is a 10-megabyte input buffer that
we fill up eighty times to form the eighty runs. In computing the total time
to input each run, we need to include the amount of time it takes to access
each block (seek time + rotational delay), plus the amount of time it takes
to transfer each block. We keep these two times separate because, as we see
later in our calculations, the role that each plays can vary significantly
depending on the approach used. ' .

From Table 3.1 we see that seek and rotational delay times are 8 msec!
and 3 msec, respectively, so total time per seek is 11 msec.2 The transmis-
sion rate is approximately 14 500 bytes per msec. Total input time for the
sort phase consists of the time required for 80 seeks, plus the time required
to transfer 800 megabytes:

1. Unless the computing environment has many active users pulling the read/write head to other parts
of the disk, seek time is likely to be less than the average, since many of the blocks that make up the
file are probably going to be physically adjacent to one another on the disk. Many will be on the
same cylinder, requiring no seeks at all. However, for simplicity we assume the average seek time.

2. For simplicity, we use the term seek even though we really mean seek and rotational delay. Hence,
the time we give for a seek is the time that it takes to perform an average seek followed by an aver-
age rotational delay.

heé¢eps://hemanthrajhemu.github.io

322 Chapter 8 Cosequential Processing and the Sorting of Large Files

Access : 80 seeks x 11 lmsec

= 1sec
Transfer: 800 megabytes @ 14 500 bytes/msec = 60 sec
Total 61 sec

Step 2: Writing Sorted Runs to Disk

In this case, writing is just the reverse of reading—the same number of
seeks and the same amount of data to transfer. So it takes another 61
seconds to write the 80 sorted runs.

Step 3: Reading Sorted Runs into Memory for Mergir;g

Since we have 10 megabytes of memory for storing runs, we divide 10
megabytes into 80 parts for buffering the 80 runs. In a sense, we are real-
locating our 10 megabytes of memory as 80 input buffers. Each of the 80
buffers then holds 1/80th of a run (125 000 bytes), so we have to access
each run 80 times to read all of it. Because there are 80 runs, in order to
complete the merge operation (Fig. 8.22) we end up making

80 runs X 80 seeks = 6400 seeks.

Total seek and rotation time is then 6400 X 11 msec = 70 seconds.
Since 800 megabytes is still transferred, transfer time is still 60 seconds.
Step 4: Writing Sorted File to Disk

To compute the time for writing the file, we need to know how big our
output buffers are. Unlike steps 1 and 2, where our big memory sorting

1st run = 80 buffers’ worth (80 accesses)
SNESERANNEEEREERRERERERARREREEEN

2nd run = 80 buffers’ }vorth (80 accesses)
(NEERENEARANRARAERERERERNRERERNERE

800 .000
. sorted records

80th run = 80 buffers’ worth (80 accesses)
SEESENSEEREENNEREEDENERREEERERER

Figure 8.22 Effect of buffering on.the number of seeks req-uired,where each runis as
large as the available work area in memory.

heé¢eps://hemanthrajhemu.github.io

" Merging as.a Way of Sorting Large Files on Disk . 323

space doubled as our I/O buffer, we are now using that memory space for

storing the data from the runs before it is merged. To keep matters simple,

let us assume that we can allocate two 200 000-byte output buffers.? With
-200 000-byte buffers, we need to make

800 000 000
200 000 bytes per seek = 4000 seeks.

Total seek and rotation time is then 4000 X 11 msec = 44 seconds. Transfer
time is still 60 seconds.

The time estimates for the four steps are summarized in the first row
in Table 8.1. The total time for this merge sort is 356 seconds, or 5 minutes,
56 seconds. The sort phase takes 122 seconds, and the merge phase takes
234 seconds.

To gain an appreciation of the improvement that this merge sort
approach provides us, we need only look at how long it would take us to
do one part of a nonmerging method like the keysort method described in
Chapter 6. The last part of the keysort algorithm (Fig. 6.16) consists of this
for loop:

// write new file in key order

for (int j.= 0; j < inFile . NumRecs(); j++)

(.
inFile . ReadByRRN (obj, Keys([jl . RRN);// read in key order
outFile . Append (obj);// write in key order

3. We use two buffers to allow double buffering; we use 20 000 bytes per buffer because that s
approximately the size of a track on our hypothetical disk drive.

Table 8.1 Time estimates for merge sort of 80-megabyte file, assuming use of the
Seagate Cheetah 9 disk drive described in Table 3.1.The total time for the sort phase
(steps 1 and 2) is 14 seconds, and the total time for the merge phase is 126 seconds.

‘Amount - Seek + Transfer
‘Number transferred rotation time time Total time
of seeks (megabytes) (seconds) (seconds) (seconds)
Sort: reading "800 | 800 1 60 61
Sort: writing 800 800 1 60 61
Merge: reading 6400 800 70 60 130
Merge: writing 4000 800 44 60 104

Totals 10 560 3200 116 240 356

heé¢eps://hemanthrajhemu.github.io

324 Chapter 8 Cosequential Processing and the Sorting of Large Files

This for loop requires us to do a separate seek for every record in the file.
That is 8 000 000 seeks. At 11 msec per seek, the total time required to
perform that one operation works out to 88 000 seconds, or 24 hours, 26
minutes, 40 seconds! '

Clearly, for large files the merge sort approach in general is the best
option of any that we have seen. Does this mean that we have found the
best technique for sorting large files? If sorting is a relatively rare event
and files are not too large, the particular approach to merge sorting that
we have just looked at produces acceptable results. Let’s see how those
results stand up as we change some of the parameters of our sorting
example.

8.5.2 Sorting a File That Is Ten Times Larger

The first question that comes to mind when we ask about the general
applicability of a computing technique is: What happens when we make
the problem bigger? In this instance, we need to ask how this approach
stands up as we scale up the size of the file.

Before we look at how a bigger file affects the performance of our
merge sort, it will help to examine the kinds of I/O that are being done in
the two different phases—the sort phase and the merge phase. We will see
that for the purposes of finding ways to improve on our original appfoach,
we need pay attention only to one of the two phases.

' A major difference between the sort phase and the merge phase is in
the amount of sequential (versus random) access that each performs. By
using heapsort to create runs during the sort phase, we guarantee that all
I/O 1s, in a sense, sequential.* Since sequential access implies minimal
seeking, we cannot algorithmically speed up 1/O during the sort phase. No
matter what we do with the records in the file, we have to read them and
write them all at least once. Since we cannot improve on this phase by
changing the way we do the sort or merge, we ignore the sort phase in the
analysis that follows. '

The merge phase is a different matter. In particular, the reading step of
the merge phase is different. Since there is a memory buffer for each run,
and these buffers get loaded and reloaded at unpredictable times, the read
step, of the merge phase is, to a large extent, one in which random accesses

4. Itis not sequential in the sense that in a multiuser environment there will be other users pulling the
read/write head to other parts of the disk between reads and writes, possibly forcing the disk to do
a seek each time it reads or writes a block.

heé¢eps://hemanthrajhemu.github.io

Merging as a Way of Sorting Large Files on Disk 325

are the norm. Furthermore, the number and size of the memory buffers that
we read the run data into determine the number of times we have to do
random accesses. If we can somehow reconfigure these buffers in ways that
reduce the number of random accesses, we can speed up 1/O correspond-
ingly. So, if we are going to look for ways to improve performance in a merge
sort algorithm, our best hope is to look for ways to cut down on the number of
random accesses that occur while reading runs during the merge phase.

What about the write step of the merge phase? Like the steps of the
sort phase, this step is not influenced by differences in the way we organize
runs. Improvements in the way we organize the merge sort do not affect
this step. On the other hand, we will see later that it is helpful to include
this phase when we measure the results of changes in the organization of
the merge sort. ‘

To sum up, since the merge phase is the only one in whi¢h we can
improve performance by improving the method, we concentrate on it
from now on. Now let’s get back to the question that we started this
section with: What happens when we make the problem bigger? How, for
instance, is the time for the merge phase affected if our file is 80 million
records rather than 8 million?

If we increase the size of our file by a factor of 10 without increasing
the memory space, we clearly need to create more runs. Instead of 80
initial 100 000-record runs, we now have 800 runs. This means we have to
do an 800-way merge in our 10 megabytes of memory space. This, in turn,
means that during the merge phase we must divide memory into 800
buffers. Each of the 800 buffers holds 1/800th of a run, so we would end
up making 800 seeks per run, and

800 runs x 800 seeks/run = 640 000 seeks altogether

The times for the merge phase are summarized in Table 8.2. Note that
the total time is more than 2 hours and 24 minutes, almost 25 times
greater than for the 800-megabyte file. By increasing the size of our file, we
have gotten ourselves back into the situation we had with keysort, in which
we can't do the job we need to do without doing a huge amount of seek-
ing. In this instance, by increasing the order of the merge from 80 to 800,
we made it necessary to divide our 10-megabyte memory area into 800
tiny buffers for doing I/O; and because the buffers are tiny, each requires
many seeks to process its corresponding run.

If we want to improve performance, clearly we need to look for ways
to improve on the amount of time spent getting to the data during the
merge phase. We will do this shortly, but first let us generalize what we
have just observed.

heé¢eps://hemanthrajhemu.github.io

326 Chapter 8 Cosequential Processing and the Sorting of Large Files

Table 8.2 Time estimates for merge sort of 8000—megabyte file, assuming use of the
Seagate Cheetah 9 disk drive described in Table 3.1.The total time for the merge phase is
7600 seconds, or 2 hours, 6 minutes, 40 seconds.

Amount Seek + Transfer
Number transferred rotation time time Total time
of seeks (megabytes) (seconds) (seconds) (seconds)
Merge: reading 640 000 8000 . 7040 600 7640
Merge: writing 40 000 8000 440 600 1040

Totals 680 000 16 000 7480 1200 8680

8.5.3 The Cost of Increasing the File Size

Obviously, the big difference between the time it took to merge the 800-
megabyte file and the 8000-megabyte file was due to the difference in total
seek and rotational delay times. You probably noticed that the number of
seeks for the larger file is 100 times the number of seeks for the first file,
and 100 is the square of the difference in size between the two files. We can
formalize this relationship as follows: in general, for a K-way merge of K
runs where each run is as large as the memory space available, the buffer
size for each of the runs is

% size of memory space = X size of each run

T

so K seeks are required to read all of the records in each individual run..
Since there are K runs altogether, the merge operation requires K2 seeks.
‘Hence, measured in terms of seeks, our sort merge is an O(K?) opera-
tion. Because K is directly proportional to N (if we increase the number
of records from & 000 000 to 80 000 000, K increases from 80 to 800) it
also follows that our sort. merge is an O(N2) operation, measured in
terms of seeks. .

This brief, formal look establishes the principle that as files grow large,
we can expect the time required for our merge sort to increase rapidly. It
would be very nice if we could find some ways to reduce this time.
Fortunately, there are several ways:

® Allocate more hardware, such as disk drives, memory, and 1/O
channels; .

heé¢eps://hemanthrajhemu.github.io

Merging as a Way of Sorting Large Files on Disk 327

B Perform the merge in more than one step, reducing the order of each
merge and increasing the buffer size for each run;

m Algorithmically increase the lengths of the initial sorted runs; and

W Find ways to overlap 1/O operations.
In'the following sections we look at each of these ways in detail, begin-
ning with the first; invest in more hardware.

8.5.4 Hardware-Based Iniprovements

We have seen that changes in our sorting algorithm can improve perfor-
mance. Likewise, we can make changes in our hardware that will also
improve performance. In this section we look at three possible changes to
a system configuration that could lead to substantial decreases in sort
time:

® Increasing the amount of memory,

M Increasing the number of disk drives, and

m Increasing the number of I/O channels.

Increasing the Amount of Memory

It should be clear now that when we have to divide limited buffer space
into many small buffers, we increase seek and rotation times to the point
where they overwhelm all other sorting operations. Roughly speaking, the
increase in. the number of seeks is proportional to the square of the
increase in file size, given a fixed amount of total buffer space.

It stands to reason, then, that increasing memory space ought to have
a substantial effect on total sorting time. A larger memory size means
longer and fewer initial runs during the sort phase, and it means fewer
seeks per run.during the merge phase. The product of fewer runs and
fewer seeks per run means.a substantial reduction in total seeks.

Let’s test this conclusion with our 80 000 000-record file, which took
about 2 hours, 6 minutes using 10 megabytes of memory. Suppose we are
able to obtain 40 megabytes of memory buffer space for our sort. Each of
the initial runs would increase from 100 000 records to 400 000 records,
resulting in two hundred 400 000-record runs. For the merge phase, the
internal buffér space would be divided into 200 buffers, each capable of
holding 1/200th of a run, meaning that there would be 200 x 200 = 40 000
seeks. Usin'g the same time estimates that we used for the previous two

heé¢eps://hemanthrajhemu.github.io

328 Chapter 8 Cosequential Processing and the Sorting of Large Files

cases, the total time for this merge is 16 minutes, 40 seconds, nearly a
sevenfold improvement.

Increasing the Number of Dedicated Disk Drives

If we could have a separate read/write head for every run and no other

users contending for use of the same read/write heads, there would be no

delay due to seek time after the original runs are generated. The primary

source of delay would now be rotational delays and transfers, which would
- occur every time a new block had to be read.

For example, if each run is on a separate, dedicated drive, our 800-way
merge calls for only 800 seeks (one seek per run), down from 640 000,
cutting the total seek and rotation times from 7040 seconds to 1 second.
Of course, we can’t configure 800 separate disk drives every time we want
to do a sort, but perhaps something short of this is possible. For instance,
if we had two disk drives to dedicate to the'merge, we could assign one to
input and the other to output, so reading and writing could overlap when-
ever they occurred simultaneously. (This approach takes some clever
buffer management, however. We discuss this later in this chapter.)

Increasing the Number of I/O Channels

If there is only one I/O channel, no two transmissions can occur at the
same time, and the total transmission time is the one we have computed.
But if there is a separate I/O channel for each disk drive, I/O can overlap
completely.

For example, if for our 800-way merge there are 800 channels'from
800 disk drives, then transmissions can overlap completely. Practically
speaking, it is unlikely that 800 channels and 800 disk drives are available,
and even if they were, it is unlikely that all transmissions would overlap
because all buffers would not need to be refilled at one time. Nevertheless,
increasing the number of I/O channels could improve transmission time
substantially. »

So we see that there are ways to improve performance if we have some
control over how our hardware is configured. In those environments in
which external sorting occupies a large percentage of computing time, we
are likely to have at least some such control. On the other hand, many
times we are not able to expand a system specifically to meet sorting needs
that we might have. When this is the case, we need to look for algorithmic
ways to improve performance, and this is what we do now.

heé¢eps://hemanthrajhemu.github.io

Merging as a Way of Sorting Large Files on Disk 329

8.5.5 Decreasing the Number of Seeks Using
Multiple-Step Merges,

One of the halimarks of a solution to a file structure problem, as opposed
to the solution of a mere data structure problem, is the attention given to
the enormous difference in cost between accessing information on disk
and accessing information in memory. If our merging problem involved
only memory operations, the relevant measure of work, or expense, would
be the number of comparisons required to complete the merge. The merge
pattern that would minimize the number of comparisons for our sample
problem, in which we want to merge 800 runs, would be the 800-way
merge considered. Looked at from a point of view that ignores the cost of
seeking, this K-way merge has the following desirable characteristics:

m Each record is read only once.

R Ifa selection tree is used for the comparisons performed in the merg-
ing operation, as described in Section 8.3, then the number of
comparisons required for a K-way merge of N records (total) is a
function of Nxlog, K.

B Since Kis directly proportional to N, this is an O(N X% log, N) opera-
tion (measured in numbers of comparisons), which is to say that it is
reasonably efficient even as N grows large.

This would all be very good news were we working exclusively in
memory, but the very purpose of this merge sort procedure is to be able to
sort files that are too large to fit into memory. Given the task at hand, the

-costs associated with disk seeks are orders of magnitude greater than the
costs of operations in memory. Consequently, if we can sacrifice the
advantages of an 800-way merge and trade them for savings in access time,
we may be able to obtain a net gain in performance.

We have seen that one of the keys to reducing seeks is to reduce the
number of runs that we have to merge, thereby giving each run a bigger
share of available buffer space. In the previous section we accomplished
this by adding more memory. Multiple-step merging provides a way for us
to apply the same principle without having to buy more memory.

In multiple-step merging, we do not try to merge all runs at one time.
Instead, we break the original set of runs into small groups and merge the
runs in these groups separately. On each of these smaller merges, more
buffer space is available for each run; hence, fewer seeks are required per
run. When all of the smaller merges are completed, a second pass merges
the new set of merged runs.

heé¢eps://hemanthrajhemu.github.io

330 Chapter 8 Cosequential Processing and the Sorting of Large Files

It should be clear that this approach will lead to fewer seeks on the first
pass, but now there is a second pass. Not only are a number of seeks
required for reading and writing on the second pass, but extra transmis-
sion time is used in reading and writing all records in the file. Do the
advantages of the two-pass approach outweigh these extra costs? Let’s
revisit the merge step of our 80 million record.sort to find out.

Recall that we began with 800 runs of 100 000 records each. Rather
than merging all 800 runs at once, we could merge them as, say, 25 sets of
32 runs each, followed by a 25-way merge of the intermediate runs. This
scheme is illustrated in Fig. 8.23.

When compared with our original 800-way merge, this approach has
the disadvantage of requiring that we read every record twice: once to
form the intermediate runs and again to form the final sorted file. But,
since each step of the merge is reading from 25 input files at a time, we are
able to use larger buffers and avoid a large number of disk seeks. When we
analyzed the seeking required for the 800-way merge, disregarding seeking
for the output file, we calculated that the 800-way merge involved 640 000
seeks between the input files. Let’s perform similar calculations for our
multistep merge. .

First Merge Step

For each of the 32-way merges of the initial runs, each input buffer can
hold 1/32 run, so we end up making 32 x 32 = 1024 seeks. For all 25 of the

< — 25 sets of 32 runs each — >
32 runs 32 runs 32 runs 32 runs
o0 O - oo 0 -0 o0 @ --- 0 oo e ¢ - 0

VVVYV oV

Figure 8.23 Two-step mérge of 800 runs.

heé¢eps://hemanthrajhemu.github.io

Merging as a Way of Sorting Large Files on Disk 331

32-way merges, we make 25 X 1024 = 25 600 seeks. Each of the resulting
runs is 3 200 000 records, or 320 megabytes.

‘Second Merge Step.'

For each of the 25 final runs, 1/25 of the total buffer space is allocated, so
each input buffer can hold 4000 records, or 1/800 run. Hence, in this step
there are 800 seeks per run, so we end up making 25 x 800 = 20 000 seeks,

and

The total number of seeks for the two steps = 25 600 + 20 000 = 45 600

So, by accepting the cost of processing each record twice, we reduce the
number of seeks for reading from 640 000 to 45 600, and we haven’t spent
a penny for extra memory.

But what about the total time for the merge? We save on access times
for inputting data, but there are costs. We now have to transmit all of the
records four times instead of two, so transmission time increases by 1200
seconds. Also, we write the records twice, rather than once, requiring an
extra 40 000 seeks. When we add these extra operations, the total time for
the merge is 3782 seconds, or about 1 hour, 3 minutes, compared with 2
hours, 25 minutes for the single-step merge. These results are summarized

~in Table 8.3.

Once more, note that the essence of what we have done is to find a way
to increase the available buffer space for each run. We trade extra passes
over the data for a dramatic decrease in random accesses. In this case the
trade is certainly a profitable one.

Table 8.3 Time estimates for two-step merge sort of 8000-megabyte file, assuming use
of the Seagate Cheetah 9 disk drive described in Table 3.1. The total time is 27 minutes.

Amount Seek + Transfer

Number transferred rotation time time Total time
of seeks (megabytes) (seconds) (seconds) (seconds)
1st Merge: reading 25 600 8000 282 600 882
1st Merge: writing 40 000 " 8000 440 600 1040
2nd Merge: reading 20 000 8000 220 600 820
2nd Merge: writing 40 000 8000 440 600 1040
Totals 125 600 32 000 1382 2400 3782

heé¢eps://hemanthrajhemu.github.io

332 Chapter 8 Cosequential Processing and the Sorting of Large Files

If we can achieve such an improvement with a two-step merge, can we
do even better with three steps? Perhaps, but it is important to note in
Table 8.3 that we have reduced total seek and rotation times to the point
where transmission times are more expensive. Since a three-step merge
would require yet another pass over the file, we have reached a point of
diminishing returns.

We also could have chosen to distribute our initial runs differently.
How would the merge perform if we did 400 two-way merges, followed by
one 400-way merge, for instance? A rigorous analysis of the trade-offs

‘between seek and rotation time and transmission time, accounting for
different buffer sizes, is beyond the scope of our treatment of the subject.
Our goal is simply to establish the importance of the interacting roles of
the major costs in performing merge sorts: seek and rotation time, trans-
mission time, buffer size, and number of runs. In the next section we focus
on the pivotal role of the last of these—the number of runs.

8.5.6 Increasing Run Lengths Using Replacement Selection

What would happen if we could somehow increase the size.of the initial
runs? Consider, for example, our earlier sort of 80 000 000 records in
which each record was 100 bytes. Our initial runs were limited to approx-
imately 100 000 records because the memory work area was limited to 10
megabytes. Suppose we are somehow able to create runs of twice this
length, containing 200 000 records each. Then, rather than needing to
perform an 800-way merge, we need to do only a 400-way merge. The
available memory is divided into 400 buffers, each holding 1/800th of a
run. Hence, the number of seeks required per run is 800, and the total
number of seeksis |

800 seeks/run x 400 runs = 320 000 seeks,

half the number required for the 800-way merge of 100 000-byte runs.

In general, if we can somehow increase the size of the initial runs, we
decrease the amount of work required during the merge step of the sort-
ing process. A longer initial run means fewer total runs, which means a
lower-order merge, which means bigger buffers, which means fewer seeks.
But how, short of buying twice as much memory for the computer, can we
create initial runs that are twice as large as the number of records that we

5. For more rigorous and detailed analyses of these issues, consult the references cited at the end of
this chapter, especially Knuth (1998) and Salzberg (1988, 1990).

heé¢eps://hemanthrajhemu.github.io

Merging as aWay of Sorting Large Files on Disk 333

can hold in memory? The answer, once again, involves sacrificing some
efficiency in our in-memory operations in return for decreasing the
amount of work to be done on disk. In particular, the answer involves the
use of an algorithm known as replacement selection.

- Replacement selection is based on the idea of always selecting the key
from memory that has the lowest value, outputting that key, and then
replacing it with a new key from the input list. Replacement selection can
be implemented as follows:

1. Read a collection of records and sort them using heapsort. This creates
a heap of sorted values. Call this heap the primary heap.

2. Instead of writing the entire primary heap in sorted order (as we do in
a normal heapsort), write only the record whose key has.the lowest
value.

3. ABrlng in a new record and compare the value of its key with that of the
key that has just been output.

a. If the new key value is higher, insert the new record into its proper
place in the primary heap along with the other records that are
being selected for output. (This makes the new record part of the
run that is being created, which means that the run being formed
will be larger than the number of keys that can be held in memory
at one time.)

b. If the new record’s key value is lower, place the record in a secondary
heap of records with key values lower than those already written. (It
cannot be put into the primary heap because it cannot be included
in the run that is being created.)

4. Repeat step 3 as long as there are records left in the primary heap and
there are records to be read. When the primary heap is empty, make.
the secondary heap into the primary heap, and repeat steps 2 and 3.

To see how this works, let’s begin with a simple example, using an
input list of only six keys and a memory work area that can hold only three
keys. As Fig. 8.24 illustrates, we begin by reading into memory the three
keys that fit there and use heapsort to sort them. We select the key with the
minimum value, which happens to be 5 in this example, and output that
key. We now have room in the heap for another key, so we read one from
the input list. The new key, which has a value of 12, now becomes a
member of the set of keys to be sorted into the output run. In fact, because
it 1s smaller than the other keys in memory, 12 is the next key that is
output. A new key is read into its place, and the process continues. When

heé¢eps://hemanthrajhemu.github.io

334 Chapter 8 Cosequential Processing and the Sorting of Large Files

Input: .
21, 67, 12, 5, 47, 16~

T—Fr’om‘. of input string

Remaining input Memory (P = 3) Output run
21, 67, 12 5 47 16 -
21, 67 12 47 16 5
21 67 47 16 12, 5
- 67 47 21 16, 12, 5
- 67 47 - 21, 16, 12, 5
- 67 - - 47, 21, 16, 12, 5
- — - - 67, 47, 21, 16,12, 5

Figure 8.24 Example of the principle underlying replacement selection.

the process is complete, it produces a sorted list of six keys while using
only three memory locations.

In this example the entire file is created usmg only one heap, but what
happens if the fourth key in the input list is 2 rather than 12? This key
arrives in memory too late to be output into its proper position relative to
the other keys: the 5 has already been written to the output list. Step 3b in
the algorithm handles this case by placing such values in a second heap, to
be included in the next run. Figure 8.25 illustrates how this process works.
During the first run, when keys that are too small to be included in the
primary heap are brought in, we mark them with parentheses, indicating
that they have to be held for the second run.

It is interesting to use this example to compare the action of replace-
ment selection to the procedure we have been using up to this point,
namely that of reading keys into memory, sorting them, and outputting a
run that is the size of the memory space. In this example our input list
contains thirteen keys. A series of successive memory sorts, given only
three memory locations, results in five runs. The replacement selection
procedure results in only two runs. Since the disk accesses during a multi-
way merge can be a major expense, replacement selection’s ability to create
longer, and therefore fewer, runs can be an important advantage.

Two questions emerge at this point:

1. Given Plocations in memory, how long a run can we expect replace-
ment selection to produce, on the average?

2.. What are the costs of using replacement selection?

heé¢eps://hemanthrajhemu.github.io

Merging as.a Way of Sorting Large Files on Disk 335

Input:
33, 18, 24, 58, 14, 17, 7, 21, 67, 12, 5, 47, 16
‘ 1L——Front of input string'

Remaining input Memory (P-= 3) Output run
33, 18, 24, 58, 14, 17, 7., 21, 67, 12 5 47 16 -
33, 18, 24, 58, 14, 17, 7, 21, 67 12 47 16 5
33, 18, 24, 58, 14, 17, 7, 21 67 47 16 . 12, 5
33, 18, 24, 58, 14, 17, 7 67 47 21 16, 12, 5
33, 18, 24, 58, 14, 17 67 47 { 7) 21, 16, 12, 5
33. 18, 24, 58, 14 67 (17) { 7) 47, 21, 16, 12. 5
33, 18, 24, 58 (14) (17) (7) 67, 47, 21, 16, 12, 5
First run complete; start building the second

33, 18, 24, 58 14 17 7 -
33, 18, 24 14 17 58 7
33, 18 7 24 17 58 14, 7
33 24 18 58 17, 14, 7
- 24 33 58 18, 17, 14, 7
- -~ 33 58 24, 18, 17, 14, 7
- - - 58 33, 24, 18, 17, 14, 7

- 58, 33, 24, 18, 17, 14, 7

Figure 8.25 Step-by-step opération of replacement selection working to form two
sorted runs. '

Average Run Length for Replacement Selection

The answer to the first question is that, on the average, we can expect a run
length of 2B, given P memory locations. Knuth$ provides an excellent
description of an intuitive argument for why this is so:

A clever way to show that 2P is indeed the expected run length was
discovered by E. F. Moore, who compared the situation to a snowplow on
, a circular track [U.S. Patent 2983904 (1961), Cols. 3—4]. Consider the
situation shown [page 336]; flakes of snow are falling uniformly on a’
circular road, and a lone snowplow is continually clearing the snow. Once
the snow has been. plowed off the road, it disappears from the system.
Points on the road may be designated by real numbers x, 0 < x< 1; a flake
of snow falling at position x represents an input record whose key is x,

.

6. From Donald Knuth, The Art of Computer Programming, vol. 3 1973, Addison-Wesley, Reading,
Mass. Pages 25455 and Figs. 64 and 65. Reprinted with permission.

heé¢eps://hemanthrajhemu.github.io

336 Chapter 8 Cosequential Processing and the Sorting of Large Files

and the snowplow represents the output of replacement selection. The
ground speed of the snowplow is inversely proportional to the height of
the snow that it encounters, and the situation is perfectly balanced so that
the total amount of snow on the road at all times is exactly P. A new run
is formed in the output whenever the plow passes point 0.

-3/4

After this system has been in operation for a while, it is intuitively clear
that it will approach a stable situation in which the snowplow runs at
constant speed (because of the circular symmietry of thetrack). This
means that the snow is at constant height when it meets the plow, and
the height drops off linearly in front of the plow as shown [below]. It
follows that the volume of snow removed in one revolution {namely the
run length) is twice the amount present at any one time (namely P).

Falling snow

R EEEE.

..

‘Tuture snow

k- Total length of the road 5

So, given a random ordering of keys, we can expect replacement
selection to form runs that contain about twice as many records as we can
hold in memory at one time. It follows that replacement selection creates
half as many runs as a series of memory sorts of memory contents,
assumning that the replacement selection and the memory sort have access
to the same amount of memory. (As we see in a moment, the replacement
selection does, in fact, have to make do with less memory than the memo-

ry sort.)

heé¢eps://hemanthrajhemu.github.io

Merging as a Way of Sorting Large Files on Disk 337

_ It is often possible to create runs that are substantially longer than 2P,
In many applications, the order of the records is not wholly random; the
keys are often already partially in ascending order. In these cases replace-
ment selection can produce runs that, on the average, exceed 2P. (Consider
what would happen if the input list is already sorted.) Replacement selec-
tion becomes an especially valuable tool for such partially ordered input

files.

The Costs of Using Replacement Selection

Unfortunately, the no-free-lunch rule applies to replacement selection, as
it does to so many other areas of file structure design. In the worked-by-
hand examples we have looked at up to this point, we have been inputting
records into memory one at a time. We know, in fact, that the cost of seek-
ing for every single input record is prohibitive. Instead, we want to buffer
the input, which means, in turn, that we are not able to use all of the
memory for the operation of replacement selection. Some of it has to be
used for input and output buffering. This cost, and the affect it has on
available space for sorting, is illustrated in Fig. 8.26.

To see the effects of this need for buffering during the replacement
selection step, let’s return to our example in which we sort 80 000 000
records, given a memory area that can hold 100 000 records. |

For the memory sorting methods such as heapsort, which simply read
records into memory until it is full, we can perform sequential reads of
100 000 records at a time, until 800 runs have been created. This means
that the sort step requires 1600 seeks: 800 for reading and 800 for writing.

For replacement selection we might use an input/output buffer that
can hold, for example, 25 000 records, leaving enough space to hold 75 000
records for the replacement selection process. If the I/O buffer holds 2500
records, we can perform sequential reads of 25 000 records at a time, so it

heapsort area Figure 8.26 In-memory
; sort versus replacement
(a) In-RAM sort: all available space used for the sort. selection, in terms of

their use of available
memory for sorting
operation.

i/0 buffer heapsort area

(b) Replacement selection: some of available space is used for I/O.

heé¢eps://hemanthrajhemu.github.io

338 Chapter 8 Cosequential Processing and the Sorting of Large Files

takes 80 000 000/25 000 = 3200 seeks to access all records in the file. This
means that the sort step for replacement selection requires 6400 seeks:
3200 for reading and 3200 for writing.

If the records occur in a random key sequence, the average run length
using replacement selection will be 2 x 75 000 = 150 000 records, and there
will be about 80 000 000/150 000 = 534 such runs produced. For the merge
step we divide the 10 megabytes of memory into 534 buffers, which hold
an average of 187.3 records, so we end up making 150 000/187.3 = 801
seeks per run, and

801 seeks per run X 534 runs = 427 734 seeks altogether

Table 8.4 compares the access times required to sort the 80 million
records using both a memory sort and replacement selection. The table
includes our initial 800-way merge and two replacement selection exam-
ples. The second replacement selection example, which produces runs of
400 000 records while using only 75 000 record storage locations in
memory, assumes that there is already a good deal of sequential ordering
within the input records.

It is clear that, given randomly distributed input data, replacement

- selection can substantially reduce the number of runs formed. Even
though replacement selection requires four times as many seeks to form
the runs, the reduction in the amount of seeking effort required to merge
the runs more than offsets the extra amount of seeking that is required to
form the runs. And when the original data is assumed to possess enough
order to make the runs 400 000 records long, replacement selection
produces less than one-third as many seeks as memory sorting.

8.5.7 Replacement Selection Plus Multistep Merging

While these comparisons highlight the advantages of replacement selec-
tion over memory sorting, we would probably not in reality choose the
one-step merge patterns shown in Table 8.4. We have seen that two-step
merges can result in much better performance than one-step merges. Table
8.5 shows how these same three sorting schemes compare when two-step
merges are used. From Table 8.5 (page 340) we see that the total number
of seeks is dramatically less-in every case than it was for the one-step
merges. Clearly, the method used to form runs is not nearly as important
as the use of multistep, rather than one-step, merges.

Furthermore, because the number of seeks required for the merge
steps is much smaller in all cases, while the number of seeks required to

heé¢eps://hemanthrajhemu.github.io

33%

Merging as a Way of Sorting Large Files on Disk

(paiapio Lfjeryred

§p10231) 3315w

. Aem-00z £q pamorjoy

8¢ 00 00¥ 90T 00¢ 00%9 00t 000 O0¥ 000 ST uond3as Juawade|day

(1op10 wopuels

ut sp10dd1) 3810w

Aem-pgg AQ pamoroj

9¢ I FEL 125 ves 00%9 bes 000 0SI 000 §T uonda[as Juswradejday

adraw Aem-0g
ue Aq pamoj]oj

5 4 009 189 008 0091 , 008 000 001 000 001 §1108 AJOUJBU{ 008
(unu) (4y)
. Suni wioy
swn Aepap $}33s JO pasn sunJ w.aoy o) . pawiiog pawio) 0])[33$
[euonejor pue I3qunu Iapi1o paxmmbau syoaas sunl jo suni xad spiodazx
%238 [e30L, [e10], EX-SE) AN Jo yaqunp Jaquinp joazig Jo IsqunyN ' yoeoaddy

. 'Pawuloj sund jo s3quinu 3y o) [enba st 1apio abiapy "uonda|as
JusWade|dal pue 1105 Klowsw yioq Buisn sp1odas uotjiw pg 140s 0} paJinbal saw ssadde jo uosuedwon g ajqey

he¢eps:/hemanthrajhemu.github.io

Chapter 8 Cosequential Processing and the Sorting of Large Files

340

Aem-qz uatt

(pazapio
Arenred sp1o22i)

0¢ 0 00% 011 000 91/000 8 Aem-01 x 02 007 000 00% 000 s¢ uotnaas Jusuwdeday
(1api1o
Aem-g1 uay WOPUEI Ul SPI0J3I)
€T 0 8¢P ¥CI ¢91 G61/9/.8 T Aem-87 X 61 125 000 061 000 s uono9[as Juawade[day
_ Kem-gz uayy
¥C 0 00T £Z1 000 0Z/009 ST Aem-z¢ x 67 008 000 001 000 001 s110s Atoutaur g0g
(uua) (1)
SUNJI ULI0J
aurn Aejap $a3s jo saseyd 2810w pasn paurIoj pawrioj 0] j23s
[cuonelor pue I3qunu Ul $)[23S uiapyed suni jo sunt 1ad spiodax
3}a3s [ej0], [eloy, Jo raquinN 331 raqunpn Jo3zI§ jo raquunp peosddy

-abiaw dais-omy e Aq pamoj|o) Yyoea ‘uond9|as
wswade|das pue y1os Alowaw yiog Buisn spiodas uoljjiw 08 110s 03 palinbal sawy ssadde jo uosuedwod) g'g ajqel

he¢eps:/hemanthrajhemu.github.io

Merging as a Way of Sorting Large Files on Disk 341

form runs remains the same, the latter have a bigger effect proportionally
on the final total, and the differences between the memory-sort based
method and replacement selection are diminished.

The differences between the one-step and two-step merges are exag-
gerated by the results in Table 8.5 because they don’t take into account the
amount of time spent transmitting the data. The two-step merges require
that we transfer the data between memory and disk two more times than
the one-step merges. Table 8.6 shows the results after adding transmission
time to our results. The two-step merges are still better, and replacement
selection still wins, but the results are less dramatic.

8.5.8 Using Two Disk Drives with Replacement Selection

Interestingly, and fortunately, replacement selection offers an opportunity
to save on both transmission and seek times in ways that memory sort
methods do not. As usual, this is at a cost, but if sorting time is expensive,
it could well be worth the cost.

Suppose we have two disk drives to which we can assign the separate
dedicated tasks of reading and writing during replacement selection. One
drive, which contains the original file, does only input, and the other does
only output. This has two very nice results: (1) it means that input and
output can overlap, reducing transmission time by as much as 50 percent;
and (2) seeking is virtually eliminated.

If we have two disks at our disposal, we should also configure memo-
ry to take advantage of them. We configure memory as follows: we allocate
two buffers each for input and output, permitting double buffering, and
allocate the rest of memory for forming the selection tree. This arrange-
ment is illustrated in Fig. 8.27. |

- b— — — — =
buffers
output

4—_ —_— — — — —

8 buffers

Figure 8.27 Memory organization for replacement selection.

heap

heé¢eps://hemanthrajhemu.github.io

Chapter 8 Cosequential Processing and the Sorting of Large Files

342

(paiapuio Ajjenaed
sp.aoda1) ad1atu

Aem-Qz 2uo ds1s-0m) e £q pamojjo)

08 09 9 0T 00v/011 Aem-01 X 0T 000 ST uona[as Justuade|day

(19p10 WOpUEI

_ ur spaoodar) 8w

Aem-g1 auo da1s-omy e £q pamoj|oj

€8 09 9 €t 8C¥/ Pl Aem-87 X 61 000 ST uoI303[as Juawuade[day]

adiow days-omy

Aem-g7 suo e Aq pamoj[0)

€8 09 9 £C 00z/LTi Aem-z¢ x 67 000 001 s310s A1owuatt 00§

(pasopio Ljjenaed

_spdoda1) 281w

Aem-007 © Ag pomo)jo)

8/ 0]% b g¢ 00¥/90¢ Aem-007 000 ST UO1ID3[98 JUILLID L’ldDH

_{(Jap1o wopuel

ut sp102a1) 28121

| Aem-p¢G e Aq pamor|o)

9¢l ov 1% 96 yer/1es Aem-p¢s 000 ST uo)23}9s juawrade(day

281w Aem-Q08

ue £q pamof|oj

So1 0¥ % SZ1 00£/189 Aem-008 000 001 51108 L1owau 008
(unu) swny (1) Il a4yl (i) sadrow sunl wioy
uolIssTuIsueI} I uols 12a0 2wy Lefap pue syj1os pasn 03 yassiad
puUe ‘uorjejor -sIursuery sassed [eUOIIBIOX 10 $)33S JO uiayyed Sp10d31 Jo

995 jo [e10], felol, [e10], +){293¢§ Iaqunpn adrop Jaquunp] yoeoaddy

"JUNODDE OJUI S3WII] UOISSiusueI) Bupiel's'g pue g sa|qe| ul paies1sn||l safiaw 110s jo uospuedw o) 9-g ajqel

he¢eps:/hemanthrajhemu.github.io

“Merging as a Way of Sorting Large Files on Disk 343

Let’s see how the merge sort process might proceed to take advantage
of this configuration.

First, the sort phase. We begin by reading enough records to fill up the
‘heap-sized part of memory and form the heap. Next, as we move records
from the heap into one of the output buffers, we replace those records with
records from one of the input buffers, adjusting the tree in the usual
manner. While we empty one input buffer int6 the tree, we can be filling
the other one from the input disk. This permits processing and input to
overlap. Similarly, at the same time that we are filling one of the output
buffers from the tree, we can transmit the contents of the other to the
output disk. In this way, run selection and output can overlap.

During the merge phase, the output disk becomes the input disk, and
vice versa. Since the runs are all on the same disk, seeking will occur on the
input disk. But output is still sequential, since it goesto a dedicated drive.

Because of the overlapping of so many parts of this procedure, it is diffi-
cult to estimate the amount of time the procedure is likely to take. But it
should be clear that by substantially reducing seeking and transmission
time, we are attacking those parts of the sort merge that are the most costly.

8.5.9 More Drives? More Processors?

If two drives can improve performance, why not three, or four, or more?
Isn’t it true that the more drives we have to hold runs during the merge
phase, the faster we can perform I/O? Up to a point this is true, but of
course the number and speed of I/O processors must be sufficient to keep
up with the data streaming in and out. And there will also be a point at
which I/O becomes so fast that processing can’t keep up with it.

But who is to say that we can use only one processor? A decade ago, it
would have been farfetched to imagine doing sorting with more than one
processor, but now it is very common to be able to dedicate more than one
processor to a single job. Possibilities include the following:

B Mainframe computers, many of which spend a great deal of their time
sorting, commonly come with two or more processors that can simul-
taneously work on different parts of the same problem.

B Vector and array processors can be programmed to execute certain
kinds of algorithm orders of magnitude faster than scalar processors.

M Massively parallel machines provide thousands, even millions, of
processors that can operate independently and at the same time com-
municate in complex ways with one another.

heé¢eps://hemanthrajhemu.github.io

344 Chapter 8 Cosequential Processing and the Sorting of Large Files

m Very fast local area networks and communication software make it
relatively easy to parcel out different parts of the same process to
several different machines.

It is not appropriate, in this text, to cover in detail the implications of
these newer architectures for external sorting. But just as the changes over
the past decade in the availability and performance of memory and disk
storage have altered the way we look at external sorting, we can expect it to
change many more times as the current generation of new architectures
becomes commonplace.

8.5.10 Effects of Multiprogramming

In our discussions of external sorting on disk we are, of course, making
tacit assumptions about the computing environment in which this merg-
ing is taking place. We are assuming, for example, that the merge job is
running in a dedicated environment (no multiprogramming). If, in fact,
the operating system is multiprogrammed, as it normally is, the total time
for the I/O might be longer, as our job waits for other jobs to perform
their I/O. ' '

On the other hand, one of the reasons for multiprogramming is to
allow the operating system to find ways to increase the efficiency of the
overall system by overlapping processing and 1/0 among different jobs. So
the system could be performing I/O for our job while it is doing CPU
processing on others, and vice versa, diminishing any delays caused by
overlap of I/O and CPU processing within our job.

Effects such as these are hard to predict, even when you have much
information about your system. Only experimentation can determine
what real performance will be like on a busy, multiuser system.

8.5.11 A Conceptual Toolkit for External Sorting

We can now list many tools that can improve external sorting perfor-
mance. It should be our goal to add these various tools to our conceptual
toolkit for designing external sorts and to pull them out and use them
whenever they are appropriate. A full listing of our new set of tools would
include the following:

B For in-memory sorting, use heapsort for forming the original list of
sorted elements in a run. With it and double buffering, we can overlap
input and output with internal processing. '

heé¢eps://hemanthrajhemu.github.io

Sorting Files on Tape 345

M Use as much memory as possible. It makes the runs longer and
provides bigger and/or more buffers during the merge phase.

B If the number of initial runs is so large that total seek and rotation
time is much greater than total transmission time, use a multistep
merge. It increases the amount of transmission time but can decrease
the number of seeks enormously. |

m . Consider using replacement selection for initial run formation, espe-
cially if there is a possibility that the runs will be partially ordered.

W Use more than one disk drive and I/O channel so reading and writing
can overlap. This is especially true if there are no other users on the
systemn.

B Keep in mind the fundamental elements of external sorting and their
relative costs, and look for ways to take advantage of new architectures
and systems, such as parallel processing and high-speed local area
networks. |

8.6 Sorting Files on Tape

There was a time when it was usually faster to perform large external sorts
on tape than on disk, but this is much less the case now. Nevertheless, tape
is still used in external sorting, and we would be remiss if we did not
consider sort merge algorithms designed for tape.

There are a large number of approaches to sorting files on tape. After
approximately one hundred pages of closely reasoned discussion of differ-
ent alternatives for tape sorting, Knuth (1998) summarizes his analysis in
the following way:

Theorem A. It is difficult to decide which merge pattern is best in a given
situation.

Because of the complexity and number of alternative approaches and
because of the way that these alternatives depend so closely on the specif-
ic characteristics of the hardware at a particular computer installation, our
objective here is merely to communicate some of the fundamental issues
associated with tape sorting and merging. For a more comprehensive
discussion of specific alternatives, we recommend the work of Knuth
(1998) as a starting point.

From a general perspective, the steps involved in sorting on tape
resemble those we discussed with regard to sorting on disk:

heé¢eps://hemanthrajhemu.github.io

346 Chapter 8 Cosequential Processing and the Sorting of Large Files

1. Distribute the unsorted file into sorted runs, and

2. Merge the runs into a single sorted file.

Replacement selection is almost always a good choice as a method for
creating the initial runs during a tape sort. You will remember that the
problem with replacement selection when we are working on disk is that
the amount of seeking required during run creation more than offsets the
advantage of creating longer runs. This seeking problem disappears when
the input is from tape. So, for a tape-to-tape sort, it is almost always advis-
able to take advantage of the longer runs created by replacement selection.

8.6.1 The Balanced Merge

Given that the question of how to create the initial runs has such a
straightforward answer, it is clear that it is in the merging process that we
encounter all of the choices and complexities implied by Knuth’s tongue-
in-cheek theorem. These choices include the question of how to distrib-
ute the initial runs on tape and questions about the process of merging
from this initial distribution. Let’s look at some examples to show what
we mean.

Suppose we have a file that, after the sort phase, has been divided into:
ten runs. We look at a number of different methods for merging these runs
on tape, assuming that our computer system has four tape drives. Since the
initial, unsorted file is read from one of the drives; we have the choice of
initially distributing the ten runs on two or three of the other drives. We
begin with a method called two-way balanced merging, which requires that
the initial distribution be on two drives and that at each step of the merge
except the last, the output be distributed on two drives. Balanced merging

is the simplest tape merging algorithm that we look at; it is also, as you will
. see, the slowest.

The balanced merge proceeds according to the pattern illustrated in
Fig. 8.28.

. This balanced merge process is expressed in an alternate, more
compact form in Fig. 8.29 (page 348). The numbers inside the table are the
run lengths measured in terms of the number of initial runs included in
each merged run. For example; in step 1, all the input runs consist of a
single initial run. By step 2, the input runs each consist of a pair of initial
runs. At the start of step 3, tape drive T1 contains one run consisting of
four initial runs followed by a run consisting of two initial runs. This
method of illustration more clearly shows the way some of the intermedi-

heé¢eps://hemanthrajhemu.github.io

Sorting Files on Tape 347

Tape Contains runs

T1 Rl R3 R5 R7 R9
Step 1 T2 R2 R4 R6 R8 R10

T3 —

T4 —

TI —

Step 2 T2 —
T3 R1-R2 R5-R6 R9-R10
T4 R3-R4 R7-R8 .

T1 R1-R4 R9-R10
Step 3 T2 ‘R5-R8

T3 —

T4 —

Tl —
Step 4 T2 —
T3 R1-R8
T4 R9-R10

Tl RI-R10
Step 5 T2 —

T3 —

T4 —

Figure 8.28 Balanced four-tape merge of ten runs.

ate runs combine and grow into runs of lengths 2, 4, and 8, whereas the
one run that is copied again and again stays at length 2 until the end. The
form used in this illustration is used throughout the following discussions
on tape merging.

Since there is no seeking, the cost associated with balanced merging on
tape is measured in terms of how much time is spent transmitting the
data. In the example, we passed over all of the data four times during the
merge phase. In general, given some number of initial runs, how many
passes over the data will a two-way balanced merge take? That is, if we start
with N runs, how many passés are required to reduce the number of runs
to 1? Since each step combines two runs, the number of runs after each

heé¢eps://hemanthrajhemu.github.io

348 Chapter 8 Cosequential Processing and the Sorting of Large Files

T1 T2 T3 T4
Step 1 11111 11111 — —
Merge ten runs
Step 2 — — 222 22
Merge ten runs
Step 3 42 4 — —
Merge ten runs
Step 4 — — 8 2
Merge ten runs
Step 5 10 — ' — —

Figure 8.29 Balanced four-tape merge of ten runs expressed in a more
compact table notation. '

step is half the number for the previous step. If p is the number of passes,
then we can express this relationship as

(V)P N=1
from which it can be shown that
p=Ilog, N.W

In our simple example, N = 10, so four passes over the data were required.
Recall that for our partially sorted 800-megabyte file there were 200 runs,
so[log, 2001 =8 passes are required for a balanced merge. If reading and
writing overlap perfectly, each pass takes about 11 minutes,” so the total
time is 1 hour, 28 minutes. This time is not competitive with our disk-
based merges, even when a single disk drive is used. The transmission
tumes far outweigh the savings in seek times.

8.6.2 The K-way Balanced Merge

If we want to improve on this approach, it is clear that we must find ways
to reduce the number of passes over the data..A quick look at the formula
tells us that we can reduce the number of passes by increasing the order of
each merge. Suppose, for instance, that we have 20 tape drives, 10 for input

7. This assumes the 6250 bpi tape used in the examples in Chapter 3. If the transport speed is 200
inches per second, the transmission rate is 1250 kilobytes per second, assuming no blocking. At
this rate an 800-megabyte file takes 640 seconds, or 10 minutes 40 seconds to read.

heé¢eps://hemanthrajhemu.github.io

Sorting Files on Tape 349

and 10 for output, at each step. Since each step combines 10 runs, the
number of runs after each step is one-tenth the number for the previous
step. Hence, we have

(V)P - N< 1
and
p= r10g10 N]

In general, a k-way balanced merge is one in which the order of the
merge at each step (except possibly the last) is k. Hence, the number of
passes required for a k-way balanced merge with N initial runs is

p=[log N1
, .

For a 10-way balanced merge of our 800-megabyte file with 200 runs,
log,o 200 = 3, so three passes are required. The best estimated time now is
reduced to a more respectable 42 minutes. Of course, the cost is quite high:
we must keep 20 working tape drives on hand for the merge.

8.6.3 Multiphase Merges

The balanced merging algorithm has the advantage of being very simple;
it is easy to write a program to perform this algorithm. Unfortunately, one
reason it is simple is that it is “dumb” and cannot take advantage of oppor-
tunities to save work. Let’s see how we can improve on it.

We can begin by noting that when we merge the extra run with empty
runs in steps 3 and 4, we don’t really accomplish anything. Figure 8.30
shows how we can dramiatically reduce the amount of work that has to be
done by simply not copying the extra run during step 3. Instead of merg-
ing this run with a dummy run, we simply stop tape T3 where it is. Tapes
T1 and T2 now each contain a single run made up of four of the initial
runs. We rewind all the tapes but T3 and then perform a three-way merge
of the runs on tapes T1, T2, and T3, writing the final result on T4. Adding
this intelligence to the merging procedure reduces the number of initial
runs that must be read and written from forty down to twenty-eight.

The example in Fig. 8.30 clearly indicates that there are ways to
improve on the performance of balanced merging. It is important to be
able to state, in general terms, what it is about this second merging pattern
that saves work:)

W We use a higher-order merge. In place of two two-way merges, we use
one three-way merge.

heé¢eps://hemanthrajhemu.github.io

350 Chapter 8 Cosequential Processing and the Sorting of Large Files

T T2 T3 T4

Step 1 11111 11111 — —
Merge ten runs

Step 2 — — 222 22
' Merge eight runs
Step 3 4 4 .2 —

' Merge ten runs
Step 4 — — — 10

a

Figure 8.30 Modification of balanced four-tape rﬁerge that'does not rewind -
between steps 2 and 3-to avoid copying runs.

B We extend the merging of runs from one tape over several steps.
Specifically, we merge some of the runs from T3 in step 3 and some in
step 4. We could say that we merge the runs from T3 in two phases.

These ideas, the use of higher-order merge patterns and the merging of
runs from a tape in phases, are the basis for two well-known approaches to
merging called polyphase merging and cascade merging. In general, these
merges share the following characteristics:

W The initial distribution of runs is such that at least the initial merge is
a J-1-way merge, where] is the number of available tape drives.

m The distribution of the runs across the tapes is such that the tapes
often contain different numbers of runs.

Figure 8.31 illustrates how a polyphase merge can be used to merge
ten runs distributed on four tape drives. This merge pattern reduces the
number of initial runs that must be read and written from forty (for a
balanced two-way merge) to twenty-five. It is easy to see that this reduc-
‘tion is a consequence of the use of several three-way merges in place of
two-way merges. It should also be clear that the ability to do these opera-
tions as three-way merges is related to the uneven nature of the initial
distribution. Consider, for example, what happens if the initial distribu-
tion of runs is 4-3-3 rather than 5-3-2. We can perform three three-way
merges to open up space on T3, but this also clears all the runs off of T2
and leaves only a single run 6n T1. Obviously, we are not able to perform
another three-way merge as a second step.

Several questions arise at this point:

1. How does one choose an initial distribution that leads readily to an
efficient merge pattern?

heé¢eps://hemanthrajhemu.github.io

Sorting Files on Tape 351

T1) T2 T3 T4
Step 1 11111 111 11 —
. Merge six runs
Step 2 .. 111 ol — 33
Merge five runs
Step 3. ... 11 — 5 .3
Merge four runs
Step 4 S| 4 5 — A
Merge ten runs
Step 5 — . - — 10

Figure 8.31 Polyphase four-tape merge of ten runs.

2. Are there algorithmic descriptions of the merge patterns, given an
initial distribution?

3. " Given Nruns and] tape drives, is there some way to compute the opti-
mal merging performance so we have a yardstick against which to
compare the performance of any specific algorithm?

Precise answers to these questions are beyond the scope of this text; in
pdrticular, the answer to the last question requires a more mathematical
approach to the problem than the one we have taken here. Readers want-
ing more than an intuitive understanding of how to set up initial distribu-
tions should consult Knuth (1998).

8.6.4 Tapes versus Disks for External Sorting

A decade ago 1 megabyte of memory was considered a substantial amount
of memory to allocate to any single job, and extra disk drives were very
costly. This meant that many of the disk sorting techniques to decrease
seeking that we have seen were not available to us or were very limited.
Suppose, for instance, that we want to sort our 8000-megabyte file and
there is only 1 megabyte of memory available instead of 10 megabytes. The
approach that we used for allocating memory for replacement selection
would provide 250 kilobytes for buffering and 750 kilobytes for our selec-
tion tree. From this we can expect 5334 runs of 15 000 records each, versus
534 when there is a megabyte of memory. For a one-step merge, this
tenfold increase in the number of runs results in a hundredfold increase in
the number of seeks. What took three hours with 10 megabytes of mem-
ory now takes three hundred hours, just for the seeks! No wonder tapes,
which are basically sequential and require no seeking, were preferred.

heé¢eps://hemanthrajhemu.github.io

352 Chapter 8 Cosequential Processing and the Sorting of Large Files

But now memory is much more readily available. Runs can be longer
and fewer, and seeks are much less of a problem. Transmission time is now
more important. The best way to decrease transmission time is to reduce
the number of passes over the data, and we can do this by increasing the
order of the merge. Since disks are random-access devices; very large-order
merges can be performed, even if there is only one drive. Tapes, however,
are not random-access devices; we need an extra tape drive for every extra
run we want to merge. Unless a large number of drives is available, we can
perform only low-order merges, and that means large numbers of passes

~ over the data. Disks are better.

8.7 Sort-Merge Packages

Many good utility programs are available for users who need to sort large
files. Often the programs have enough intelligence to choose from one of
several strategies, depending on the nature of the data to be sorted and the
available system configuration. They also often allow users to exert some
control (if they want it) over the organization of data and strategies used.
Consequently, even if you are using a commercial sort package rather than
designing your own sorting procedure, it helps to be familiar with the vari-
ety of different ways to design merge sorts. It is especially important to.
have a good general understanding of the most-important factors and
trade-offs influencing performance.

8.8 Sorting and Cosequential Processing in Unix -

Unix has a number of utilities for performing cosequential processing. It
also has sorting routines, but nothing at the level of sophistication that you
find in production sort-merge packages. In the following discussion we
introduce some of these utilities. For full details, consult the Unix docu-

mentation.

8.8.1 Sorting and Merging in Unix

Because Unix is not an environment in which one expects to do frequent
sorting of large files of the type we discuss in this chapter, sophisticated

heé¢eps://hemanthrajhemu.github.io

Sorting and Cosequential Processing in Unix 353

sort-merge packages are not generally available on Unix systems. Still, the
sort routines you find in Unix are quick and flexible and quite adequate
for the types of applications that are. common in a Unix environment. We
can divide Unix sorting into two categories: (1) the sort command, and
(2) callable sorting routines.

The Unix sort Command

The sort command has many different options, but the simplest one is
to sort the lines in an ASCII file in ascending lexical order. (A 'line is any
sequence of characters ending with the new-line character ,.) By default,
the sort -utility takes its input file name from the command line and
writes the sorted file to standard output. If the file to be sorted is too large
to fit in memory, sort performs a merge sort. If more than one file is
named on the input line, sort sorts and merges the files.

As a simple example, suppose we have an ASCII file called t eam with
names of- members of a basketball team, together with their classes and
their scoring averages:

Jean Smith Senior 8.8

Chris Mason Junior 9.6

Pat Jones Junior 3.2

Leslie Brown Sophomore 18.2
Pat Jones Freshman 11.4

To sort the file, enter

$ sort team

Chris Mason Junior 9.6
Jean Smith Senior 8.8
Leslie Brown Sophomore 18.2
Pat Jones Freshman 11.4

Pat Jones Junior 3.2

Notice that by default sort considers an entire line as the sort key.
Hence, of the two players named Pat Jones, the freshman occurs first in the
output because “Freshman” is lexically smaller than “Junior.” The assump-
tion that the key is an entire line can be overridden by sorting on specified
key fields. For sort a key field is assumed to be any sequence of charac-
ters delimited by spaces or tabs. You can indicate which key fields to use for
sorting by giving their positions:

+posl [-pos2]

heé¢eps://hemanthrajhemu.github.io

354 Chapter 8 Cosequential Processing and the Sorting of Large Files

where pos1 tells how many fields to skip before starting the key, and
pos?2 tells which field to end with. If pos2 is omitted, the key extends to
the end of the line. Hence, entering

$ sort +1 -2 team

causes the file team to be sorted according to last names. (There is also a
form of pos1 and pos?2 that allows you to specify the character within a
field to start a key with.)

The following options, among others, allow you to override the
default ASCII ordering used by sort :

-d Use “dictionary” ordering: only letters, digits, and blanks are signifi-
cant in comparisons.

-f “Fold” lowercase letters into uppercase. (This is the canonical form
that we defined in Chapter 4.)

-r “Reverse” the sense of comparison: sort in descending ASCII order.

Notice that sort sorts lines, and within lines it compares groups of
characters delimited by white space. In the language of Chapter 4, records
are lines, and fields are groups of characters delimited by white space. This
Is consistent with the most common Unix view of fields and records with-
in Unix text files.

The gsort Library Routine

The Unix library routine gsort is a general sorting routine. Given a table
of data, gsort sorts the elements in the table in place. A table could be
the contents of a file, loaded into memory, where the elements of the table
are its records. In C, gsort is defined as follows:

gsort {char *base, int nel, int width, int (*compar()))

The argument base is a pointer to the base of the data, nel is the
number of elements in the table, and width is the size of each element.
The last’ argument, compar (), is the name of a user-supplied
comparison function that gsort uses to compare keys. compar must
have two parameters that are pointers to elements that are to be
compared. When gsort needsto compare two elements, it passes to
compar pointers to these elements, and compar compares them,
returning an integer that is less than, equal to, or greater than zero,
depending on whether the first argument is considered less than, equal
to, or greater than the second argument. A full explanation of how to

heé¢eps://hemanthrajhemu.github.io

‘Sorting and.Cosequential Processing in Unix 355

use gsort is beyond the scope of this text. Consult the Unix docu-
mentation for details.

8.8.2 Cosequential Processing Utilities in Unix

Unix provides a number of utilities for cosequential processing. The sort
utility, when used to merge files, is one example. In this section we intro-

duce three others: diff, cmp, and comm.

cmp

Suppose you find in your computer that you have two team files, one
called t eam and the other called myteam. You think that the two files
are the same, but you are not sure. You can use the command cmp to
find out.

cmp compares two files. If they differ, it prints the byte and line
number where they differ; otherwise it does nothing. If all of one file is
identical to the first part of another, it reports that end-of-file was reached
on the shorter file before any differences were found.

For example, suppose the file team and myteam have the followmg
contents:

team myteam

Jean Smith Senior 8.8 Jean Smith Senior 8.8
Chris Mason Junior 9.6 Stacy Fox Senior 1.6

Pat Jones Junior 3.2 Chris Mason Junior 9.6
Leslie Brown Sophomore 18.2 Pat Jones Junior 5.2

Pat Jones Freshman 11.4 Leslie Brown Sophomore 18.2

Pat Jones Freshman 11.4

cmp tells you where they differ:

$ cmp team myteam
team myteam differ: char 23 line 2

Since cmp simply compares files on a byte-by-byte basis until it finds a
difference, it makes no assumptions about fields or records. It works with
both text and nontext files.

diff

cmp is useful if you want to know if two files are different, but it doesn’t
tell you much about how they differ. The command diff gives fuller

heé¢eps://hemanthrajhemu.github.io

356 Chapter 8 Cosequential Processing and the Sorting of Large Files

information. di £ £ tells which limes must be changed in two files to bring
them into agreement. For example:

$ diff team myteam

la?

> Stacy Fox Senior 1.6
3c4

< Pat Jones Junior 3.2

> Pat Jones Junior 5.2

The 1a2 indicates that after line 1 in the first file, we need to add line 2
from the second file to make them agree. This is followed by the line from
the second file that would need to be added. The 3c4 indicates that we
need to changeline 3 in the first file to make it look like line 4 in the second
file. This is followed by a listing of the two differing lines, where the lead-
ing <indicates that the line is from the first file, and the >indicates that it
is from the second file.

One other indicator that could appear in di £ £ output is d, meaning
that a line in the first file has been deleted in the second file. For example,
12d15 means that line 12 in the first file appears to have been deleted from
being right after line 15 in the second file. Notice that di £ f, like sort, is
designed to work with lines of text. It would not work well with non-
ASCII text files. ‘

comm

Whereas diff tells what is different about two files, comm compares two
files, which must be ordered in ASCII collating sequence, to see what they
have in common. The syntax for comm is the following:

comm [-123] filel file2

comm produces three columns of output. Column 1 lists the lines that are
in filel only; column 2 lists lines in £ile2 only, and column 3 lists
lines that are in both files. For example, '

$ sort team > ts

$ sort myteam > ms

$ comm ts ms
Chris Mason Junior 9.6
Jean Smith Senior 8.8
Leslie Brown.K Sophomore 18.2
Pat Jones Freshman 11.4

heé¢eps://hemanthrajhemu.github.io

Summary 357

Pat Jones Junior 3.2
Pat Jones Junior 5.2
Stacy Fox Senior 1.6

Selecting any of the flags 1, 2, or 3 allows you to print only those columns
you are interested in. ‘

The sort, diff, comm, and cmp commands (and the gsort
function) are representative of what is available in Unix for sorting and
cosequential processing. As we have said, they have many useful options
that we don’t cover that you will be interested in reading about.

SUMMARY

In the first half of this chapter, we develop a cosequential processing model

and apply it to two common problems—updating a general ledger and

merge sorting. The model is presented as a class hierarchy, using virtual

methods to tailor the model to particular types of lists. In the second half
of the chapter we identify the most important factors influencing perfor-

mance in merge-sorting operations and suggest sorne strategies for achiev-

ing good performance.

The cosequential processing model can be applied to problems that
involve operations such as matching and merging (and combinations of
these) on two or more sorted input files. We begin the chapter by illustrat-
ing the use of the model to perform a simple match of the elements
common to two lists and a merge of two lists. The procedures we develop
to perform these two operations embody all the basic elements of the
model.

In its most complete form, the model depends on certain assumptions
about the data in the input files. We enumerate these assumptions in our
formal description of the model. Given these assumptions, we can describe
the processing components of the model and define pure virtual functions
that represent those components.

The real value of the cosequential model is that it can be adapted to
more substantial problems than simple matches or merges by extending
the class hierarchy. We illustrate this by using the mode] to design a gener-
al ledger accounting program.

All of our early sample applications of the model involve only two
input files. We next adapt the model to a multiway merge to show how the
-model might be extended to deal with more than two input lists. The
problem of finding the minimum key value during each: pass through the

heé¢eps://hemanthrajhemu.github.io

358 Chapter 8 Cosequential Processing and the Sorting of Large Files

main loop becomes more complex as the number of input files increases.
Its solution involves replacing the three-way selection statement with
either a multiway selection or a procedure that keeps current keys in a list
structure that can be processed more conveniently.

We see that the application of the model to k-way merging performs
well for small values of k, but that for values of k greater than 8 or so, it is
more efficient to find the minimum key value by means of a selection tree.

After discussing multiway merging, we shift our attention to a prob-
lem that we encountered in a previous chapter—how to sort large files. We
begin with files that are small enough to fit into memory and introduce an
efficient sorting algorithm, heapsort, which makes it possible to overlap
I/O with the sorting process. '

The generally accepted solution when a file is too large for in-memo-
ry sorts is some form of merge sort. A merge sort involves two steps:

1. Break the file into two or more sorted subfiles, or runs, using internal
sorting methods; and

2. Merge the runs.

Ideally, we would like to keep every run in a separate file so we can
perform the merge step with one pass through the runs. Unfortunately,
practical considerations sometimes make it difficult to do this effectively.

The critical elements when merging many files on disk are seek and
rotational delay times and transmission times. These times depend largely
on two interrelated factors: the number of different runs being merged
and the amount of internal buffer space available to hold parts of the runs.
We can reduce seek and rotational delay times in two ways:

m By performing the merge in more than one step; and/or

H By increasing the sizes of the initial sorted runs.

In both cases, the order of each merge step can be reduced, increasing
the sizes of the internal buffers and allowing more data to be processed
per seek. \

Looking at the first alternative, we see how performing the merge in
several steps can decrease the number of seeks dramatically, though it also
means that we need to read through the data more than once (increasing
total data transmission time).

The second alternative is realized through use of an algorithm called
replacement selection. Replacement selection, which can be implemented
using the selection tree mentioned earlier, involves selecting from memo-
ry-the key that has the lowest value, outputting that key, and replacing it
with a new key from the input list. ‘

heé¢eps://hemanthrajhemu.github.io

Summary - 359

With randomly organized files, replacement selection can be expect-
ed to produce runs twice as long as the number of internal storage loca-
tions available for performing the algorithms. Although this represents a
major step toward decreasing the number of runs that need to be merged,
it carries an additional cost. The need for a large buffer for performing
the replacement selection operation leaves relatively little space for the
I/0 buffer, which means that many more seeks are involved in forming
the runs than are needed when the sort step uses an in-memory sort. If
we compare the total number of seeks required by the two different
approaches, we find that replacement selection can require more seeks; it
performs substantially better only when there is a great deal of order in
the initial file.

Next we turn our attention to file sorting on tapes. Since file [/O with
tapes does not involve seeking, the problems and solutions associated with
tape sorting can differ from those associated with disk sorting, although
the fundamental goal of working with fewer, longer runs remains. With
tape sorting, the primary measure of performance is the number of times
each record must be transmitted. (Other factors, such as tape rewind time,
can also be important, but we do not consider them here.)

Since tapes do not require seeking, replacement selection is almost
always a good choice for creating initial runs. As the number of drives
available to hold run files is limited, the next question is how to distribute
the files on the tapes. In most cases, it is necessary to put several runs on
each of several tapes, reserving one or more other tapes for the results.
This generally leads to merges of several steps, with the total number of
runs being decreased after each merge step. Two approaches to doing this
are balanced merges and multiphase merges. In a k-way balanced merge, all
input tapes contain approximately the same number of runs, there are the
same number of output tapes as there are input tapes, and the input tapes
are read through entirely during each step. The number of runs is
decreased by a factor of k after each step.

A multiphase merge (such as a polyphase merge or a cascade merge)
requires that the runs initially be distributed unevenly among all but one
of the available tapes. This increases the order of the merge and as a result
can decrease the number of times each record has to be read. It turns out
that the initial distribution of runs among the first set of input tapes has a
major effect on the number of times each record has to be read.

Next, we discuss briefly the existence of sort-merge utilities, which are
available on most large systems and can be very flexible and effective. We
conclude the chapter with a listing of Unix utilities used for sorting and

cosequential processing.

heé¢eps://hemanthrajhemu.github.io

360 Chapter 8 Cosequential Processing and the Sorting of Large Files

, KEY TERMS

Balanced merge. A multistep merging technique that uses the same
number of input devices as output devices. A two-way balanced merge
uses two input tapes, each with approximately the same number of
runs on it, and produces two output tapes, each with approximately
half as many runs as the input tapes. A balanced merge is suitable for
merge sorting with tapes, though it is not generally the best method
(see multiphase merging).

cmp. A Unix utility for determining whether two files are identical. Given
two files, it reports the first byte where the two files differ, if they differ.

comm. A Unix utility for determining which lines two files have in
common. Given two files, it reports the lines they have in common,
the lines that are in the first file and not in the second, and the lines
that are in the second file and not in the first.

Cosequential operations. Operations applied to problems that involve the
performance of union, intersection, and more complex set operations
on two or more sorted input files to produce one or more output files
built from some combination of the elements of the input files.
Cosequential operations commonly occur in matching, merging, and
file-updating problems.

diff. A Unix utility for determining all the lines that differ between two
files. It reports the lines that need to be added to the first file to make
it like the second, the lines that need to be deleted from the second file
to make it like the first, and the lines that need to be changed in the
first file to make it like the second.

Heapsort. A sorting algorithm especially well suited for sorting large files
that fit in memory because its execution can overlap with [/O. A vari-
ation of heapsort is used to obtain longer runs in the replacement
selection algorithm.

HighValue. A value used in the cosequential model that is greater than any
possible key value. By assigning HighValue as the current key value for
files for which an end-of-file condition has been encountered, extra

logic for dealing with end-of-file conditions can be simplified.

k-way merge. A merge in which k input files are merged to produce one
output file. '

LowValue. A value used in the cosequential model that is less than any
possible key value. By assigning LowValue as the previous key value

heé¢eps://hemanthrajhemu.github.io

Key Terms 361

.during initialization, the need for certain other special start-up code is
eliminated.

Match. The process of forming a sorted output file consisting of all the
elements common to two or more sorted input files.

Merge. The process of forming a sorted output file that consists of the
union of the elements from two or more sorted input files.

Multiphase merge. A multistep tape merge in which the initial distribu-
tion of runs is such that at least the initial merge is a J-1-way merge (J
is the number of available tape drives) and in which the distribution
of runs across the tapes is such that the merge performs efficiently at
every step. (See polyphase merge.)

Multistep merge. A merge in which not all runs are merged in one step.
Rather, several sets of runs are merged separately, each set producing
one long run consisting of the records from all of its runs. These new,
longer sets are then merged, either all together or in several sets. After
each step, the number of runs is decreased and the length of the runs
is increased. The output of the final step is a single run consisting of
the entire file. (Be careful not to confuse our use of the term multistep
merge with multiphase merge.) Although a multistep merge is theoret-
ically more time-consuming than a single-step merge, it can involve
much less seeking when performed on a disk, and it may be the only
reasonable way to perform a merge on tape if the number of tape
drives is limited.

Order of a merge. The number of different files, or runs, being merged.
For example, 100 is the order of a 100-way merge.

Polyphase merge. A multiphase merge in which, ideally, the merge order
1s maximized at every step.

gsort. A general-purpose Unix library routine for sorting files that
employs a user-defined comparison function.

Replacement selection. A method of creating initial runs based on the
Jidea of always selecting from memory the record whose key has the
lowest value, outputting that record, and then replacing it in memory
with a new record from the input list. When new records are brought
in with keys that are greater than those of the most recently output
records, they eventually become part of the run being created. When
new records have keys that are less than those of the most recently
output records, they are held over for the next run. Replacement selec-
tion generally produces runs that are substantially longer than runs

heé¢eps://hemanthrajhemu.github.io

362 Chapter 8 Cosequential Processing and the Sorting of Large Files

that can be created by in-memory sorts and hence can help improve
performance in merge sorting. When using replacement selection with
merge sorts on disk, however, one must be careful that the extra seek-
ing required for replacement selection does not outwelgh the benefits
of having longer runs to merge.

Run. A sorted subset of a file resulting from the sort step of a sort merge
or one of the steps of a multistep merge.

Selection tree. A binary tree in which each higher-level node represents
the winner of the comparison between the two descendent keys. The
minimum (or maximum) value in a selection tree is always at the root
node, making the selection tree a good data structure for merging
several lists. It is also a key structure in replacement selection algo-
rithms, which can be used for producing long runs for merge sorts.
(Tournament sort, an internal sort, is also based on the use of a selec-
tion tree.)

Sequence checking. Checking that records in a file are in the expected
order. It is recommended that all files used in a cosequential operation
be sequence checked.

sort. A Unix utility for sorting and merging files.

Synchronization loop. The main loop in the cosequential processing.
model. A primary feature of the model is to do all synchronization
within a single loop rather than in multiple nested loops. A second
objective is to keep the main synchronization loop as simple as possi-
ble. This is done by restricting the operations that occur within the
loop to those that involve current keys and by relegating as much
special logic as possible (such as error checking and end-of-file check-
ing) to subprocedures.

Theorem A (Knuth). It is difficult to decide which merge pattern is best in
- agiven situation.

FURTHER READINGS

The subject matter treated in this chapter can be divided into two separate
topics: the presentation of a model for cosequential processing and discus-
sion of external merging procedurés on tape and disk. Although most file
processing texts discuss cosequential processing, they usually do it in the
context of specific applications, rather than presenting a general model

heé¢eps://hemanthrajhemu.github.io

Exercises 363

that can be adapted to a variety of applications. We found this useful and
flexible model through Dr. James VanDoren who developed this form of
the model himself for presentation in the file structures course that he
teaches. We are not aware of any discussion of the cosequential model else-
where in the literature. |

Quite a bit of work has been done toward developing simple and
effective algorithms to do sequential file updating, which is an important
instance of cosequential processing. The results deal with some of the
same problems the cosequential model deals with, and some of the solu-
tions are similar. See Levy (1982) and Dwyer (1981) for more.

Unlike cosequential processing, external sorting is a topic that is
covered widely in the literature. The most complete discussion of the
subject, by far, is in Knuth (1998). Students interested in the topic of exter-
nal sorting must, at some point, familiarize themselves with Knutl’s defin-
itive summary of the subject. Knuth also describes replacement selection,
as evidenced by our quoting from his book in this chapter.

Salzberg (1990) describes an approach to external sorting that takes
advantage of replacement selection, parallelism, distributed computing,
and large amounts of memory. Cormen, Leiserson, and Rivest (1990) and
Loomis (1989) also have chapters on external sorting.

EXERCISES

1. Consider the cosequential Merge2Lists method of Fig. 8.5 and the
supporting methods of class CosequentialProcess in Appendix
H. Comment on how they handle the following initial conditions. If
they do not correctly handle a situation, indicate how they might be
altered to do so.

a. List 1 empty and List 2 not empty
b. List 1 not empty and List 2 empty
c. List 1 empty and List 2 empty

2. Section 8.3.1 includes the body of a loop for doing a k-way merge,
assuming that there are no duplicate names. If duplicate names are
allowed, one could add to the procedure a facility for keeping a list of
subscripts of duplicate lowest names. Modify the body of the loop to
implement this. Describe the changes required to the supporting
methods.

heé¢eps://hemanthrajhemu.github.io

364 Chapter 8 Cosequential Processing and the Sorting of Large Files

3. In Section 8.3, two methods are presented for ¢hoosing the Iowest of K
keys at each step in a K-way merge: a linear search and use of a selec-
tion tree. Compare the performances of the two approaches in terms
of numbers of comparisons for K= 2, 4, 8, 16, 32, and 100. Why do
you think the linear approach is recommended for values of K less
than 8?

4. Suppose you have 80 megabytes of memory available for sorting the
8 000 000-record fiie described in Section 8.5.

a. How long does it take to sort the file using the merge-sort algo-
rithm described in Section 8.5.12

b. How long does it take to sort the file using the keysort algorithm
described in Chapter 6?

c. Why will keysort not work if there are ten megabytes of memory
available for the sorting phase?

5. How much seek time is required to perform a one-step merge such as
the one described in Section 8.5 if the time for an average seek is 10
msec and the amount of available internal buffer space is 5000 K?
1000 Kz ' '

6. Performance in sorting is often measured in terms of the number of
comparisons. Explain why the number of comparisons is not adequate
for measuring performance in sorting large files.

7. In our computations involving the merge sorts, we made the simplify-
ing assumption that only one seek and one rotational delay are
required for any single sequential access. If this were not the case, a
great deal more time would be required to.perform I/O. For example,
for the 800-megabyte file used in the example in Section 8.5.1; for the
input step of the sort phase (“reading all records into memory for
sorting and forming runs”}, each individual run could require many
accesses. Now let’s assume that the extent size for our hypothetical
drive is 80 000 bytes (approximately one track) and that all files are
stored in track-sized blocks that must be accessed separately (one seek
and one rotational delay per block).

a. How many seeks does step 1 now require?

b. How long do steps 1, 2, 3, and 4 now take?
c. How does increasing the file size by a factor of 10 now affect the
total time required for the merge sort?

8. Derive two formulas for the number of seeks required to perform the
merge step of a one-step k-way sort merge of a file with r records

heé¢eps://hemanthrajhemu.github.io

Exercises 365

-divided into k runs, where the amount of available memory is equiv-
alent to M records. If an internal sort is used for the sort phase, you
can assume that the length of each run is M, but if replacement selec-
tion is used, you can assume that the length of each run is about 2M.
Why?

9. Assume a quiet system with four separately addressable disk drives,
each of which is able to hold several gigabytes. Assume that the 800-
megabyte file described in Section 8.5 is already on one of the drives.
Design a sorting procedure for this sample file that uses the separate
drives to minimize the amount of seeking required. Assume that the
final sorted file is written off to tape and that buffering for this tape
output 1s handled invisibly by the operating system. Is there any
advantage to be gained by using replacement selection?

10. Use replacement selection to produce runs from the following files,
assuming P = 4.
a. 2329517955413513318241147
b. 3591117182324293341475155
c. 5551474133292423181711953

11. Suppose you have a disk drive that has 10 read/write heads per
surface, so 10 cylinders may be accessed at any one time without
having to move the actuator arm. If you could control the physical
organization of runs stored on disk, how might you be able to exploit
this arrangement in performing a sort merge?

12. Assume we need to merge 14 runs on four tape drives. Develop merge
patterns starting from each of these initial distributions:

d. 8—4————2
b. 7—4—3
c. 6—5—3
d. 5—5—4.

13. A four-tape polyphase merge is to be performed to sort the list 24 36
13 25 16 4529 38 23 50 22 19 43 30 11 27 48. The original list is on
‘tape 4. Initial runs are of length 1. After initial sorting, tapes 1, 2, and
3 contain the following runs (a slash separates runs):
Tape 1:24/36/13/25
Tape 2:16/45/29/38/23 /50 Tape 3:22/ 19/43/30/11/27/47
a. Show the contents of tape 4 after one merge phase.
b. Show the contents of all four tapes after the second and fourth
phases.

heé¢eps://hemanthrajhemu.github.io

366 Chapter 8 Cosequential Processing and the Sorting of Large Files

c. Comment on the appropriateness of the original 4—6—7 distrib-
ution for performing a polyphase merge.

14. Obtain a copy of the manual for one or more commercially available
sort-merge packages. Identify the different kinds of choices available
to users of the packages. Relate the options to the performance issues
discussed in this chapter.

15. A join operation matches two files by matching field values in the two
files. In the ledger example, a join could be used to match master and
transaction records that have the same account numbers. The ledger
posting operation could be implemented with a sorted ledger file and -
an indexed, entry-sequenced transaction file by reading a master
record and then using the index to find all corresponding transaction
records.

Compare the speed of this join operation with the cosequential
processing method of this chapter. Don’t forget to include the cost of
sorting the transaction file.

PROGRAMMING EXERCISES

16. Modify method LedgerProcess: : ProcessEndMaster so it
updates the ledger file with the new account balances for the month.

17. Implement the k-way merge in class Cosequent ial Processing
using an object of class Heap to perform the merge selection.

18. Implement a k-way match in class Cosequential Processing.

19. Implement the sort merge operation using class Heap to pérform
replacement selection to create the initial sorted runs and class
CosequentialProcessing to perform the merge phases.

heé¢eps://hemanthrajhemu.github.io

Programming Project 367

PROGRAMMING PROJECT

This is the sixth part of the programming project. We develop applications
that produce student transcripts and student grade reports from informa-
tion contained in files produced by the programming project of Chapter 4.

20. Use class CosequentialProcesses and
MasterTransactionProcess to develop an application that
produces student transcripts. For each student record (master) print
the student information and a list of all courses (transaction) taken
by the student. As input, use a file of student records sorted by
student identifier and a file of course registration records sorted by
student identifiers.

21. Use class CosequentialProcesses and

‘MasterTransactionProcess to develop an application that
produces student grade reports. As input, use a file of student records
sorted by student identifier and a file of course registrations with
grades for a single semester.

The next part of the programming project is in Chapter 9.

heé¢eps://hemanthrajhemu.github.io

heé¢eps://hemanthrajhemu.github.io

CHAPTER

Multilevel Indexing
and B-Trees

CHAPTER OBJECTIVES

+» Place the development of B-trees in the historical context of the

problems they were designed to solve.

+» Look briefly at other tree structures that might be used on
secondary storage, such as paged AVL trees.

s Introduce multirecord and multilevel indexes and evaluate the
speed of the search operation.

++ Provide an understanding of the important properties possessed by
B-trees and show how these properties are especially well suited to
secondary storage applications.

& Present the object-oriented design of B-trees

- Define class BTreeNode, the in-memory representation of the
nodes of B-trees.

- Define class BTree, the full representation of B-trees including all
operations.

++ Explain the implementation of the fundamental operations on
B-trees. '

LS
0.0

Introduce the notion of page buffering and virtual B-trees.

%

*

Describe variations of the fundamental B-tree algorithms, such as
those used to build B* trees and B-trees with variable-length
records.”

he¢eps:/hemanthrajhemu.github.io

370 Chapter 9 Multilevel Indexing and B-Trees

CHAPTER OUTLINE

9.1 Introduction:The Invention of the B-Tree
9.2 Statement of the Problem
9.3 Indexing with Binary Search Trees
9.3.1 AVL Trees
9.3.2 Paged Binary Trees
9.3.3 Problems with Paged Trees
9.4 Multilevel Indexing: A Better Approach to Tree Indexes
9.5 B-Trees:Working up from the Bottom
8.6 Example of Creating a B-Tree
9.7 An Object-Oriented Representation of B-Trees
9.7.1 Class BTreeNode: Representing B-Tree Nodes in Memory
9.7.2 Class BTree: Supporting Files of B-Tree Nodes
9.8 B-Tree Methods Search, Insert, and Others
9.8.1 Searching
9.8.2 Insertion _
9.8.3 Create, Open, and Close
9.8.4 Testing the B-Tree
9.9 B-Tree Nomenclature
9.10 Formal Definition of B-Tree Properties
9.11 Worst-Case Search Depth
9.12 Deletion, Merging, and Redistribution
9.12.1 Redistribution
9.13 Redistribution During Insertion: A Way to Improve Storage
Utilization
9.14 B*Trees
9.15 Buffering of Pages: Virtual B-Trees
9.15.1 LRU Replacement
9.15.2 Replacement Based on Page Height
9.15.3 Importance of Virtual B-Trees
- 9.16 Variable-Length Records and Keys

9.1 Introduction: The Invention of the B-Tree

Computer science is a young discipline. As evidence of this youth, consid-
er that at the start of 1970, after astronauts had twice traveled to the moon,
B-trees did not yet exist. Today, twenty-seven years later, it is hard to think
of a major, general-purpose file system that is not built around a B-tree
design. ' ’

heé¢eps://hemanthrajhemu.github.io

Introduction: The Invention of the B-Tree 371

Douglas Comer, in his excellent survey article, “The Ubiquitous B-
Tree” (1979), recounts the competition among computer manufacturers
and independent research groups in the late 1960s. The goal was the
discovery of a general method for storing and retrieving data in large file
systems that would provide rapid access to the data with minimal over-
head cost. Among the competitors were R. Bayer and E. McCreight, who
were working for Boeing Corporation. In 1972 they published an article,
“Organization and Maintenance of Large Ordered Indexes,” which an-
nounced B-trees to the world. By 1979, when Comer published his survey
article, B-trees had already become so widely used that Comer was able to
state that “the B-tree is, de facto, the standard organization for indexesin a
database system.”

We have reprinted the first few paragraphs of the 1972 Bayer and
McCreight article! because it so concisely describes the facets of the prob-
lem that B-trees were designed to solve: how to access and efficiently main-
tain an index that is too large to hold in memory. You will remember that
this is the same problem that is left unresolved in Chapter 7, on simple
index structures. It will be clear as you read Bayer and McCreight's intro-
duction that their work goes straight to the heart of the issues we raised in
the indexing chapter. .

In this paper we consider the problem of organizing and maintaining an
index for a dynamically changing random access file. By an index we
mean a collection of index elements which are pairs (x, a) of fixed size
physically adjacent data items, namely a key x and some associated infor-
mation a. The key x identifies a unique element in the index, the associ-
ated information is typically a pointer to a record or a collection of
records in a random access file. For this paper the associated information
is of no further interest. '

We assume that the index itself is so voluminous that only rather
small parts of it can be kept in main store at one time. Thus the bulk of
the index must be kept on some backup store. The class of backup stores
considered are pseudo random access devices which have rather long
access or wait time—as opposed to a true random access device like core
store-—and a rather high data rate once the transmission of physically
sequential data has been initiated. Typical pseudo random access devices
are: fixed and moving head disks, drums, and data cells.

Since the data file itself changes, it must be possible not only to
search the index and to retrieve elements, but also to delete and to insert

1. From Acta-Informatica, 1:173-189, ©1972, Springer Verlag, New York. Reprinted with permission.

heé¢eps://hemanthrajhemu.github.io

372 Chapter 9 Multilevel Indexing and B-Trees

keys—more accurately index elements—economically. The index orga-
nization described in this paper allows retrieval, insertion, and deletion
of keys in time proportional to log; I or better, where [is the size of the
index, and k is a device dependent natural number which describes the
page size such that the performance of the maintenance and retrieval
scheme becomes near optimal.

Bayer and McCreight’s statement that they have developed a scheme
with retrieval time proportional to log, I, where k is related to the page
size, is very significant. As we will see, the use of a B-tree with a page size
of sixty-four to index an file with 1 million records results in being able to
find the key for any record in no more than three seeks to the disk. A bina-
ry search on the same file can require as many as twenty seeks. Moreover,
we are talking about getting this kind of performance from a system that
requires only minimal overhead as keys are inserted and deleted.

Before looking in detail at Bayer and McCreight’s solution, let’s first
return to a more careful look at the problem, picking up where we left off
in Chapter 7. We will also look at some of the data and file structures that
were routinely used to attack the problem before the invention of B-trees.
Given this background, it will be easiér to appreciate the contribution
made by Bayer and McCreight’s work.

One last matter before we begin: why the name B-tree? Comer (1979)
provides this footnote:

The origin of “B-tree” has never been explained by [Bayer and
McCreight]. As we shall see, “balanced,” “broad,” or “bushy” might apply.
Others suggest that the “B” stands for Boeing. Because of his contribu-
tions, however, it seems appropriate to think of B-trees as “Bayer”-trees.

9.2 Statement of'the Problem

The fundamental problem with keeping an index on secondary storage is,
of course, that accessing secondary storage is slow. This can be broken
down into two more specific problems:

W Searching the index must be faster than binary searching. Searching for.
a key on a disk often involves seeking to different disk tracks. Since
seeks are expensive, a search that has to look in more than three or
four locations before finding the key often requires more time than is
desirable. If we are using a binary search, four seeks is enough only to
differentiate among fifteen items. An.average of about 9.5 seeks is

heé¢eps://hemanthrajhemu.github.io

Indexing with Binary Search Trees 373

required to find a key in an index of one thousand items using a bina-
ry search. We need to find a way to home in on a key using fewer seeks.

B [nsertion and deletion must be as fast as search. As we saw in Chapter 7,
if inserting a key into an index involves moving a large number of the
‘other keys in the index, index maintenance is very nearly impractical
on secondary storage for indexes consisting of only a few hundred
keys, much less thousands of keys. We need to find a way to make
insertions and deletions that have only local effects in the index rather
than requiring massive reorganization.

These were the two critical problems that confronted Bayer and McCreight
in 1970. They serve as guideposts for steering our discussion of the use of
tree structures and multilevel indexes for secondary storage retrieval.

9.3 Indexing with Binary Search Trees

Let’s begin by addressing the second of these two problems: looking at the
cost of keeping a list in sorted order so we can perform binary searches.
Given the sorted list in Fig. 9.1, we can express a binary search of this list
as a binary search tree, as shown in Fig. 9.2. '

Using elementary data structure techniques, it is a sxmple matter to
create nodes that contain right and left link fields so the binary search tree
can be constructed as a linked structure. Figure 9.3 illustrates a linked
representation of the first two levels of the binary search tree shown in Fig.
9.2.In each node, the left and right links pomt to the left and right children
of the node..

What is wrong with binary search trees? We have already said that
binary search is not fast enough for disk resident indexing. Hence, a bina-
ry search tree cannot solve our problem as stated earlier. However, this is
not the only problem with binary search trees. Chief among these is the
lack of an effective strategy of balancing the tree. That is, making sure that
the height of the leaves of the tree is uniform: no leaf is much farther from
the root than any other leaf. Historically, a number of attempts were made
to solve these problems, and we will look at two of them: AVL trees and
paged binary trees.

AX CL DE FB FI HN JD KF NR PA RF SD TK WS YJj

Figure 9.1 Sorted list of keys.

heé¢eps://hemanthrajhemu.github.io

374 Chapter 9 Multilevel Indexing and B-Trees

KF

T

FB SD
CL/ \HN e N
/7 N\ \
FT D

PA ws
AX DE

NR RF TK Y]

Figure 9.2 Binary search tree representation of the list of keys.

— N\ /T

Figure 9.3 Linked representation of part of a binary search tree.

~ However, to focus on the costs and not the advantages is to miss the
important new capability that this tree structure gives us: we no longer
have to sort the file to perform a binary search. Note that the records in the
file illustrated in Fig. 9.4 appear in random rather than sorted order. The
sequence of the records in the file has no necessary relation to the struc-
ture of the tree; all the information about the logical structure is carried in
. the link fields. The very positive consequence that follows from this is that
if we add a new key to the file, such as LV, we need only link it to the
appropriate leaf node to create a tree that provides search performance
that is as good as we would get with a binary search on a sorted list. The
tree with LV added is illustrated in Fig. 9.5 (page 376).

Search performance on this tree is still good because the tree is in a
balanced state. By balanced we mean that the height of the shortest path to
a leaf does not differ from the height of the longest path by more than one
level. For the tree in Fig. 9.5, this difference of one is as close as we can get
to complete balance, in which all the paths from root to leaf are exactly the
same length.

heé¢eps://hemanthrajhemu.github.io

Indexing with Binary Search Trees ' 375

Figure 9.4< ROOT ¥ 9
Record contents fora_
linked representation Left Right Left Right
of the binary tree in Key child child Key child child
Figure 9.2. o|FB | 10 | 8 s{HN| 7 | 1
1{Jp ' 9| kF| o | 3
21 RF 10 | CL 4 12
3{sp| 6|13 11 | NR
4 | AX 12 | DE
51 Y] 13| ws| 14| 5
6| PA | 11 2 14 | TK
71 FT

Consider what happens if we go on to enter the following eight keys to
the tree in the sequence in which they appear:

NP MB TM LA UF ND TS NK

Just searching down through the tree and adding each key at its correct
position in the search tree results in the tree shown in Fig. 9.6.

The tree is now out of balance. This is a typical result for trees that are
built by placing keys into the tree as they occur without rearrangement.
The resulting disparity between the length of various search paths is unde-
sirable in any binary search tree, but it is especially troublesome if the
nodes of the tree are being kept on secondary storage. There are now keys
that require seven, eight, or nine seeks for retrieval. A binary search on a
sorted list of these twenty-four keys requires only five seeks in the worst
case. Although the use of a tree lets us avoid sorting, we are paying for this
convenience in terms of extra seeks at retrieval time. For trees with
hundreds of keys, in which an out-of-balance search path might extend to
thirty, forty, or more seeks, this price 1s too high.

If each node is treated as a fixed-length record in which the link fields
contain relative record numbers (RRNs) pointing to other nodes, then it is
possible to place such a tree structure on secondary storage. Figure 9.4

heé¢eps://hemanthrajhemu.github.io

376 Chapter 9 Multilevel Indexing and B-Trees

_ / \SD
CL/ \HN 'PA/ \ws
7 \ 7/
AX DE FT \JD /NR/ \RF TK/ \Yj

Ly

Figure 9.5 Binary search tree with LV added.

FB/ KF\SD
N N

CL HN PA\ /ws\
AX/ \DE FT./ \JD NR/ RF TK Y]
‘LV/ ™
/\ \
LA NP UF
/ /
MB TS
\
ND
\
NK

Figure 9.6 Binary search tree showing the effect of added keys.

illustrates the contents of the fifteen records that would be required to
form the binary tree depicted in Fig. 9.2.

Note that more than half of the link fields in the file are empty because
they are leaf nodes with no children. In practice, leaf nodes need to
contain some special character, such as —1, to indicate that the search
through' the tree has reached the leaf level and that there are no more
nodes on the search path. We leave the fields blank in this figure to make
them more noticeable, illustrating the potentially substantial cost in terms
of space utilization incurred by this kind of linked representation of a tree,

heé¢eps://hemanthrajhemu.github.io

Indexing with Binary Search Trees 377

9.3.1 AVL Trees

Earlier we said that there is no necessary relationship between the order in
which keys are entered and the structure of the tree. We stress the word
necessary because it is clear that order of entry is, in fact, important in
determining the structure of the sample tree illustrated in Fig. 9.6. The
reason for this sensitivity to the order of entry is that, so far, we have just
been linking the newest nodes at the leaf levels of the tree. This approach
can result in some very undesirable tree organizations. Suppose, for exam-
ple, that our keys consist of the letters A~G and that we receive these keys
in alphabetical order. Linking the nodes as we receive them produces a
degenerate tree that is, in fact, nothing more than a linked list, as illustrat-
ed in Fig. 9.7.

The solution to this problem is somehow to reorganize the nodes of
the tree as we receive new keys, maintaining a near optimal tree structure.
One elegant method for handling such reorganization results in a class of
trees known as AVL trees, in honor of the pair of Russian mathematicians,
G. M. Adel’son-Vel’skii and E. M. Landis, who first defined them. An AVL
tree is a height-balanced tree. This means that there is a limit placed on
the amount of difference allowed between the heights of any two subtrees
sharing a common root. Ini an AVL tree the maximum allowable differ-
ence is one. An AVL tree is therefore called a height-balanced 1-tree or

"HB(1) tree. It is a member of a more general class of height-balanced
trees known as HB(k) trees, which are permitted to be k levels out of
balance.

The trees illustrated in Fig. 9.8 have the AVL, or HB(1) property. Note
that no two subtrees of any root differ by more than one level. The trees in
Fig. 9.9 are not AVL trees. In each of these trees, the root of the subtree that

-is not in balance is marked with an X.

Figurg 9.7 L
A degenerate tree. B

heé¢eps://hemanthrajhemu.github.io

378 Chapter 9 Multilevel Indexing and B-Trees -

o
e /.- /.’\° 'o/ e
7\ o o/ /
) @ /\ o
/\ o ¢
o o \
o
Figure 9.8 AVL trees.
X X [[
e \. 7 ./ \X RS
/\ / /AYNA / /
e o ® ¢ O o ® [
\ \ /
[] []

Figure 9.9 Trees that are not AVL trees.

The two features that make AVL trees important are

B By setting a maximum allowable difference in the height of any two
subtrees, AVL trees guarantee a minimum level of performance in
searching; and

M Maintaining a tree in AVL form as new nodes are inserted involves the
use of one of a set of four possible rotations. Each of the rotations is
confined to a single, local area of the tree. The most complex of the
rotations requires only five pointer reassignments.

AVL trees are an important class of data structure. The operations
used to build and maintain AVL trees are described in Knuth (1998),
‘Standish (1980), and elsewhere. AVL trees are not themselves directly
applicable to most file structure problems because, like all strictly binary
trees, they have too many levels—they are too deep. However, in the
context of our general discussion of the problem of accessing and main-
taining indexes that are too large to fit in memory, AVL trees are interest-
ing because they suggest that it is possible to define procedures that
maintain height balance.
The fact that an AVL tree is height-balanced guarantees that search
performance approximates that of a completely balanced tree. For example,
the completely balanced form of a tree made up from the input keys

BCGEFDRA

heé¢eps://hemanthrajhemu.github.io

Indexing with Binary Search Trees 379

/D\ - E\

B F C F
VAN VRN VRN \
A C E G B D G

Figure 9.10 A
A completely balanced
search tree. Figure 9.11 A search tree -

constructed using AVL procedures.

is illustrated in Fig. 9.10, and the AVL tree resulting from the same input
keys, arriving in the same sequence, is illustrated in Fig. 9.11.

For a completely balanced tree, the worst-case search to find a key,
given N possible keys, looks at

log, (N+1)
levels of the tree. For an AVL tree, the worst-case search could look at
1.441og, (N+2)

levels. So, given 1 000 000 keys, a completely balanced tree requires seeking
to 20 levels for some of the keys, but never to 21 levels. If the tree is an AVL
tree, the maximum number of levels increases to only 29. This 1s a very
interesting result, given that the AVL procedures guarantee that a single
reorganization requires. no more than five pointer reassignments.
Empirical studies by VanDoren and Gray (1974), among others, have
shown that such local reorganizations are required for approximately
every other insertion into the tree and for approximately every fourth
deletion. So height balancing using AVL methods guarantees that we will
obtain a reasonable approximation of optimal binary tree performance at
a cost that is acceptable in most applications using primary, random-
access memory.

When we are using secondary storage, a procedure that requires more
than five or six seeks to find a key is less than desirable; twenty or twenty-
eight seeks is unacceptable. Returning to the two problems that we identi-
fied earlier in this chapter, '

M Binary searching requires too many seeks, and

B Keeping an index in sorted order is expensive,

we can see that height-balanced trees provide an acceptable solution to the
second problem. Now we need to turn our attention to the first problem.

heé¢eps://hemanthrajhemu.github.io

380 Chapter 9 Multilevel Indexing and B-Trees

9.3.2 Paged Binary Trees

Disk utilization of a binary search tree is extremely inefficient. That is,
when we read a node of a binary search tree, there are only three useful
pieces of information—the key value and the addresses of the left and
right subtrees. Each disk read produces a minimum of a single page—at
least 512 bytes. Reading a binary node wastes most of the data read from
the disk. Since this disk read is the critical factor in the cost of searching,
we cannot afford to waste the reads. It is imperative that we choose an
‘index record that uses all of the space read from the disk.

The paged binary tree attempts to address the problem by locating
multiple binary nodes on the same disk page. In a paged system, you do
not incur the cost of a disk seek just to get a few bytes. Instead, once you
have taken the time to seek to an area of the disk, you read in an entire
page from the file. This page might consist of a great many individual
records. If the next bit of information you need from the disk is in the page
that was just read in, you have saved the cost of a disk access.

Paging, then, is a potential solution to the inefficient disk utilization
of binary search trees. By dividing a binary tree into pages and then stor-
ing each page in a block of contiguous locations on disk, we should be
able to reduce the number of seeks associated with any search. Figure
9.12 illustrates such a paged tree. In this tree we are able to locate any one

Figure 9.12 Paged binary tree.

heé¢eps://hemanthrajhemu.github.io

indexing with Binary Search Trees 381

of the 63 nodes in the tree with no more than two disk accesses. Note
that every page holds 7 nodes and can branch to eight new pages. If we
extend the tree to one additional level of paging, we add sixty-four new
pages; we can then find any one of 511 nodes in only three seeks. Adding
yet another level of paging lets us find any one of 4095 nodes in only
four seeks. A binary search of a list of 4095 items can take as many as
twelve seeks.

Clearly, breaking the tree into pages has the potential to result in faster
searching on secondary storage, providing us with much faster retrieval
than any other form of keyed access that we have considered up to this
point. Moreover, our use of a page size of seven in Fig. 9.12 is dictated
more by the constraints of the printed page than by anything having to do
with secondary storage devices. A more typical example of a page size
might be 8 kilobytes, capable of holding 511 key/reference field pairs.
Given this page size and assuming that each page contains a completely
balanced full tree and that the pages are organized as a completely
balanced full tree, it is then possible to find any one of 134 217 727 keys
with only three seeks. That is the kind of performance we are looking for.
Note that, while the number of seeks required for a worst-case search of a
completely full, balanced binary tree is

log, (N +1)

where N is the number of keys in the tree, the number of seeks required
for the paged versions of a completely full, balanced tree is

logi (N+1)

where N is, once again, the number of keys. The new variable, k, is the
number of keys held in a single page. The second formula is actually a
generalization of the first, since the number of keys in a page of a purely
binary tree is 1. It is the logarithmic effect of the page size that makes the
impact of paging so dramatic:

log, (134217 727 + 1) = 27 seeks
IOgSIlH_l (134 217 727 + 1) =3 Seeks

The use of large pages does not come free. Every access to a page
requires the transmission of a large amount of data, most of which is not
used. This extra transmission time is well worth the cost, however, because
it saves so many seeks, which are far more time-consuming than the extra

transmissions. A much more serious problem, which we look at next, has
to do with keeping the paged tree organized.

heé¢eps://hemanthrajhemu.github.io

382 Chapter 9 Multitevel Indexing and B-Trees

9.3.3 Problems with Paged Trees

The major problem with paged trees is still inefficient disk usage. In the
example in Fig. 9.12, there are seven tree nodes per page. Of the fourteen
reference fields in a single page, six of them are reference nodes within the
page. That is, we are using fourteen reference fields to distinguish between
eight subtrees. We could represent the same information with seven key
fields and eight subtree references. A significant amount of the space in the
node is still being wasted.
Is there any advantage to storing a binary search tree within the page?
It’s true that in doing so we can perform binary search. However, if the
keys are stored in an array, we can still do our binary search. The only
problem here is that insertion requires a linear number of operations. We
have to remember, however, that the factor that determines the cost of
search is the number of disk accesses. We can do almost anything in
memory in the time it takes to read a page. The bottom line is that there is
no compelling reason to produce a tree inside the page.
The second problem, if we decide to implement a paged tree, is how to
build it. If we have the entire set of keys in hand before the tree is built, the
-solution to the problem is relatively straightforward: we can sort the list of
keys and build the tree from this sorted list. Most importanvt, if we plan to
start building the tree from the root, we know that the middle key in the’
sorted list of keys should be the root key within the root page of the tree. In
short, we know where to begin and are assured that this beginning point
will divide the set of keys in‘a balanced manner.

. Unfortunately, the problem is much more complicated if we are
receiving keys in random order and inserting them as soon as we receive
them. Assume that we must build a paged tree as we receive the following’
sequence of single-letter keys:

CSDTAMPIBWNGURKEHOLJYQZFXV

We will build a paged binary tree that contains a maximum of three
keys per page. As we insert the keys, we rotate them within a page as neces-
sary to keep each page as balanced as possible. The resulting tree is illus-
trated in Fig. 9.13. Evaluated in terms of the depth of the tree (measured
in pages), this tree does not turn out too badly. (Consider, for example,
what happens if the keys arrive in alphabetical order.) '

Even though this tree is not dramatically misshapen, it clearly illus-
trates the difficulties inherent in building a paged binary tree from the top
down. When you start from the root, the initial keys must, of necessity, go
into the root. In this example at least two of these keys, C and D, are not

heé¢eps://hemanthrajhemu.github.io

Indexing with Binary Search Trees 383

keys that we want there. They are adjacent in sequence and tend toward
the beginning of the total set of keys. Consequently, they force the tree out
of balance.

Once the wrong keys are placed in the root of the tree (or in the root
of any subtree farther down the tree), what can you do about it?
Unfortunately, there is no easy answer to this. We cannot simply rotate
entire pages of the tree in the same way that we would rotate individual
keys in an unpaged tree. If we rotate the tree so the initial root page moves
down to the left, moving the C and D keys into a better position, then the
S key is out of place. So we must break up the pages. This opens up a whole
world of possibilities and difficulties. Breaking up the pages implies rear-
ranging them to create new pages that are both internally balanced and
well arranged relative to other pages. Try creating a page rearrangement
algorithm for the simple, three-keys-per-page tree from Fig. 9.13. You will
find it very difficult to create an algorithm that has only local effects, rear-
ranging just a few pages. The tendency is for rearrangements and adjust-
ments to spread out through a large part of the tree. This situation grows
even more complex with larger page sizes.

So, although we have determined that collecting keys into pages is a
very good idea from thg'standpoint of reducing seeks to the disk, we have

A\B i M\P 7O\,
VANVAN /\
/\H J/\L \0 Q/ V x/Y\z

Figure 9.13 Paged tree constructed from keys arriving in random input sequence. .

heé¢eps://hemanthrajhemu.github.io

384 Chapter @ Multilevel Indexing and B-Trees

not yet found a way to collect the right keys. We are still confronting at
least two unresolved questions:

m How do we ensure that the keys in the root page turn out to be good
separator keys, dividing up the set of other keys more or less evenly?

M How do we avoid grouping keys, such as C, D, and S in our example,
that should not share a page?

There is, in addition, a third q‘uestion’that we have not yet had to confront
because of the small page size of our sample tree:

® How can we guarantee that each of the pages contains at least some
minimum number of keys? If we are working with a larger page size,
such as 8191 keys per page, we want to avoid situations in which a
large number of pages each contains only a few dozen keys.

Bayer and McCreight’s 1972 B-tree article provides a solution directed
precisely at these questions.

A number of the elegant, powerful 1deas used in computer science
have grown out of looking at a problem from a different viewpoint. B-
trees are an example of this viewpoint-shift phenomenon.

The key insight required to make the leap from the kinds of trees we
have been considering to a new solution, B-trees, 1s that we can choose to
build trees upward from the bottom instead of downward from the top. So
far, we have assumed the necessity of starting construction from the root
as a given. Then, as we found that we had the wrong keys in the root, we
tried to find ways to repair the problem with rearrangement algorithms.
Bayer and McCreight recognized that the decision to work down from the
root was, of itself, the problem. Rather than finding ways to undo a bad
situation, they decided to avoid the difficulty altogether. With B-trees, you
allow the root to emerge, rather than set it up and then find ways to
change it.

9.4 Multilevel Indexi:: j: A Better Approach
to Tree Indexes

The previous section attempted to develop an ideal strategy for indexing
large files based on building search trees, but serious flaws were uncovered.
In this section we take a different approach. Instead of basing our strategy
on binary tree searches, we start with the single record indexing strategy of

heé¢eps://hemanthrajhemu.github.io

Multilevel Indexing: A Better Approach to Tree Indexes 385

Chapter 7. We extend this to muitirecord indexes nd then multilevel
indexes. Ultimately, this approach, too, is flawed, but it is the source of the
primary efficiency of searching and leads us directly to B-trees.

In Chapter 7, we noted that a single record index puts a limit on the
number of keys allowed and that large files need multirecord indexes. A
multirecord index consists of a sequence of simple index records. The keys
in one record in the list are all smaller than the keys of the next record. A
binary search is possible on a file that consists of an ordered sequence of
index records, but we already know that binary search is too expensive.

To illustrate the benefits of an indexed approach, we use the large
example file of Chapter 8, an 80-megabyte file of 8 000 000 records, 100
bytes each, with 10-byte keys. An index of this file has 8 000 000 key-refer-
ence pairs divided among a sequence of index records. Let’s suppose that
we can put 100 key-reference pairs in a single index record. Hence there
are 80 000 records in the index. In order to build the index, we need to
read the original file, extract the key from each record, and sort the keys.
The strategies outlined in Chapter 8 can be used for this sorting. The 100
largest keys are inserted into an index record, and that record is written to
the index file. The next largest 100 keys go into the next record of the file,
and so on. This continues until we have 80 000 index records in the index
file. Although we have reduced the number of records to be searched by a
factor of 100, we still must find a way to speed up the search of this 80 000-
record file.

Can we build an index of the index file, and how big will it be? Since
the index records form a sorted list of keys, we can choose one of the keys
(for example, the largest) in each index record as the key of that whole
record. These second-level keys can be used to build a second-level index
with 80 000 keys, or 800 index records. In searching the second-level index
for a key k, we choose the smallest second-level key that is greater than or
equal to k. If kis in the first-level index, it must be in the block referenced
by that second-level key. _

Continuing to a third level, we need just 8 index records to index the
largest keys in the 800 second-level records. Finally, the fourth level
consists of a single index record with only 8 keys. These four levels togeth-
er form an index tree with a fan-out of 100 and can be stored in a single
index file. Each node of the tree is an index record with 100 children. Each
of the children of a node is itself an index node, except at the leaves, The
children of the leaf nodes are data records.

A single index file containing the full four-level index-of 8 000 000
records requires 80 809 index records, each with 100 key-reference

heé¢eps://hemanthrajhemu.github.io

386 Chapter 9 Multilevel Indexing and B-Trees

pairs. The lowest level index is an index to the data file, and its reference
fields are record addresses in the data file. The other indexes use their
reference fields for index record addresses, that is, addresses within the
index file.

The costs associated with this multilevel index file are the space over-
head of maintaining the extra levels, the search time, and the time to insert
and delete elements. The space overhead is 809 more records than the
80 000 minimum for an index of the data file. This is just 1 percent
Certainly this is not a burden.

The search time is simple to calculate—it’s three disk reads! An analy-
sis of search time always has multiple parts: the minimum search time, the
maximum search time, and the average search time for keys that-are in the
index and for keys that are not in the index. For this multilevel index, all of
these cases require searching four index records. That is, each level of the
index must be searched. For a key that is in the index, we need to search all
the way to the bottom level to get the data record address. For a key notin
the index, we need to search all the way to the bottom to determine that it
is missing. The average, minimum, and maximum number of index blocks
to search are all four, that is, the number of levels in the index. Since there
is only one block at the top level, we can keep that block in memory.
Hence, a maximum of three disk accesses are required for any key search.
[t might require fewer disk reads if any of the other index records are
already in memory.

Look how far we’ve come: an arbitrary record in ar 80-megabyte file
can be read with just four disk accesses—three to search the index and one
to read the data record. The total space overhead, including the primary
index, is well below 10 percent of the data file size. This tree is not full,
since the root node has only eight children and can accommodate one
hundred. This four-level tree will accommodate twelve times this many
data records, or a total of 100 million records in a file of 10 gigabytes. Any
one of these records can be found with only three disk accesses. This is
what we need to produce efficient indexed access!

The final factor in the cost of multilevel indexes is the hardest one.
How can we insert keys into the index? Recall that the first-level index is an
ordered sequence of records. Does this imply that the index file must be
sorted? The search strategy relies on indexes and record addresses, not on
record placement in the file. As with the simple indexes of Chapter 7, this
indexed search supports entry-sequenced records. As long as the location
of the highest level index record is known, the other records can be
anywhere in the file.

heé¢eps://hemanthrajhemu.github.io

B-Trees: Working Up from the Bottom 387

Having an entry-sequenced index file does not eliminate the possibil-
ity of linear insertion time. For instance, suppose a new key is added that
will be the smallest key in the index. This key must be inserted into the
first record of the first-level index. Since that record is already full with one
hundred elements, its largest key must be inserted into the second record,
and so on. Every record in the first-level index must be changed. This
requires 80 000 reads and writes. This is truly a fatal flaw in simple multi-

level indexing.

9.5 B-Trees: Working up from the Bottom

B-trees are multilevel indexes that solve the problem of linear cost of inser-
tion and deletion. This is what makes B-trees so good, and why they are
now the standard way to represent indexes. The solution is twofold. First,
don’t require that the index records be full. Second, don’t shift the overflow
keys to the next record; instead split an overfull record into two records,
each half full. Deletion takes a similar strategy of merging two records into
a.single record when necessary.

Each node of a B-tree is an index record. Each of these records has the
same maximum number of key-reference pairs, called the order of the B-
tree. The records also have a minimum number of key-reference pairs,
typically half of the order. A B-tree of order one hundred has a minimum
of fifty keys and a maximum of one hundred keys per record. The only
exception is the single root node, which can have a minimum of two keys.

An attempt to insert a new key into an index record that is not full is
cheap. Simply update tiie index record. If the new key is the new largest
key in the index record, it is the new higher-level key of that record, and
the next higher level of the index must be updated. The cost is bounded by
the height of the tree.

When insertion into an index record causes it to be overfull, it is split
into two records, each with half of the keys. Since a new index node has
; been created at this level, the largest key in this new node must be inserted

into the next higher level node. We call this the promotion of the key. This
promotion may cause an overflow at that level. This in turn causes that
node to be split, and a key promoted to the next level. This continues as far
as necessary. If the index record at the highest level overflows, it must be
split. This causes another level to be added to the multilevel index. In this

‘way, a B-tree grows up from the leaves. Again the cost of insertion is

bounded by the height of the tree.

heé¢eps://hemanthrajhemu.github.io

388 Chapter 9 Multilevel Indexing and B-Trees

The rest of the secrets of B-trees are just working out the details. How
to split nodes, how to promote keys, how to increase the height of the tree,
and how to delete keys.

9.6 Example of Creating a B-Tree

Let’s see how a B-tree grows given the key sequence that produces the
paged binary tree illustrated in Fig. 9.13. The sequence is

CSDTAMPI.BWNGURK'EHOILJYQZFXV

We use an order four B-tree (maximum of four key-reference pairs per
node). Using such a small node size has the advantage of causing pages to
split more frequently, providing us with more examples of splitting. We
omit explicit indication of the reference fields so we can fit a larger tree on
the printed page.

Figure 9.14 illustrates the growth of the tree up to the point where it is
about to split the root for the second time. The tree starts with a single
empty record. In Fig. 9.14(a), the first four keys are inserted into that record.
When the fifth key, A, is added in Fig. 9.14(b), the original node is split and
the tree grows by one level as a new root is created. The keys in the root are
the largest key in the left leaf, D, and the largest key in the right leaf, T.

The keys M, P, and I all belong in the rightmost leaf node, since they are
larger than the largest key in the right node. However, inserting I makes the
rightmost leaf node overfull, and it must be split, as shown in Fig. 9.14(c).
The largest key in the new node, P, is inserted into the root. This process
continues in Figs. 9.14(d) and (e), where B, W, N, G, and U are inserted.

In the tree of Fig. 9.14(e), the next key in the list, R, should be put into
the rightmost leaf node, since it is greater than the largest key in the previ-
ous node, P, and less than or equal to the largest key in that node, W.
However, the rightmost leaf node is full, and so is the root. Splitting that
leaf node will overfill the root node. At this point a new root must be
created, and the height of the tree increased to three.

Figure 9.15 shows the tree as it grows to height three. The figure also
shows how the tree continues to grow as the remaining keys in the
sequence are added. Figure 9.15(b) stops after Z is added. The next key in
the sequence, F, requires splitting the second-leaf node, as shown in Fig.
9.15(c). Although the leaf level of the tree is not shown in a single line, it is
still a single level. Insertions of X and V causes the rightmost leaf to be

heé¢eps://hemanthrajhemu.github.io

Example of Creating a B-Tree 389

a) Insertions of C, S, D, T
into the initial node. [[cl o] Is] IT1]

b) Insertion of A causes node to split

and the largest key ineach leafnode | [pl [T] [[| |
(D and T) to be placed in the root .
node. '

[lal fcf Ip] [| (sl I T 117

c) M and P are inserted into the
rightmost leaf node, then insertion
of I causes it to split.

CIa] Je o] |] Ll [sf [e]]] LIsl [l T 1T

d) Insertions of B, W, N, and G into
leaf nodes causes another split and U o] [m] Tr] Iw]
the root is now full.

(sl Is[el Il Llel [l bl [] [Inf: CEENE [s{ [r] Iw[[]

e) Insertion of U proceeds without
incident, but R would have to be

inserted into the rightmost leaf, [Io] Im] fp] [w]
which is full. S

Clal {87 Tcf fo] [Jol [x] Inf [(N[Je[J T 1] [IsT T [u] W]

Figure 9.14 Growth of a B-tree, part 1.The tree grows to a point at which the root needs
to be split the second time. ‘

heé¢eps://hemanthrajhemu.github.io

390 Chapter 9 Multilevel Indexing and B-Trees

a) Insertion of R causes the rightmost Pl [w

leaf node to split, insertion into the

SR) N mENTEEEN
L [a] [8] [c] Ip] CIN[e[T T T Llol Wl [[1]

LGl Jril [m]] | LIR] [s] §7] [}

b) Insertions of K, E, H, O, L, 1, Y, Q, []ﬂ];[TLJJ

and Z. continue with another node

split. / D 1 M TLJZl 1] 1]

[Tl T Tc[] ‘ %TTFT [l/uﬂwl N[Iz
(el T[Tl 1 [ol Ir] [s] [r]

¢) Insertions of F, X, and V finish the [[Iel J2] 1]

insertion of the alphabet.

(L Tel DL)M Pl L1110 [1zl]

(R BITel 10 | | IRLIEl MY}F[EI‘ISI 7| (12l T 1]

[(TELTFLT6I) [l 11 1J) [Tl Tl 1] [lol [W ¥

Figure 9.15 Growth of a B-tree, part 2. The root splits to level three; remaining keys are
inserted.

heé¢eps://hemanthrajhemu.github.io

An Object-Oriented Representation of B-Trees 391

overfull and split. The rightmost leaf of the middle level is also overfull
and is split. All twenty-six letters are inserted into a tree of height three and

order four.
Note that the number of nodes affected by any insertion is never more

than two nodes per level (one changed and a new one created by a split),
so the insertion cost is strictly linear in the height of the tree.

9.7 An Object-Oriented Representation of B-Trees

9.7.1 Class BTreeNode: Representing B-Tree Nodes
in Memory ‘

As we have seen, a B-tree is an index file associated with a data file. Most
of the operations on B-trees, including insertion and deletion, are
applied to the B-tree nodes in memory. The B-tree file simply stores the
nodes when they are not in memory. Hence, we need a class to represent
the memory resident B-tree nodes. Class BTreeNode, given in Fig.

' 9.16 and in file bt node. hof Appendix I, is a template class based on
the SimpleTIndex template class that was described in Section 7.4.3.
Note that a BTreeNode object has methods to insert and remove a key
and to split and merge nodes. There are also protected members that
store the file address of the node and the minimum and maximum
number of keys. You may notice that there is no search method defined
in the class. The search method of the base class SimpleIndex works
perfectly well. |

It is important to note that not every data member of a BTreeNode
has to be stored when the object is not in memory. The difference between
the memory and the disk representations of BTreeNode objects is
managed by the pack and unpack operations. :

Class BTreeNode is designed to support some optimizations of the
in-memory operations. For example, the number of keys is actually one
more than the order of the tree, as shown in the constructor. The call to
the SimpleIndex constructor creates an index record with
maxKeys+1 elements:

template <class keyType>

BTreeNode<keyType>: :BTreeNode (int maxKeys, int unique)
:SimpleIndex<keyType> (maxKeys+1l, unique)

{ 1Init ();)}

heé¢eps://hemanthrajhemu.github.io

392 . Chapter9 Multilevel Indexing and B-Trees

template <class keyType>
class BTreeNode: public SimpleIndex <keyType>
// this is the in-memory version of the BTreeNode '
{public:
BTreeNode (int maxKeys, int unique = 1);
int Insert (const keyType key, int recAddr);
int Remove (const keyType key, int recAddr = -1);
int LargestKey ()}; // returns value of Largest key
int Split (BTreeNode<keyType>*newNode);//move into newNode
int Pack (IOBuffer& buffer) const;
int Unpack (IOBuffer& buffer);
protected:
int MaxBKeys; // maximum number of keys in a node
int Init (); |
friend class BTree<keyType>;

}i

Figure 9.16 The main members and methods of class BTreeNode:template class for
B-tree node in memory.

'For this class, the order of the B-tree node (member MaxBKeys) is one
less than the value of MaxKeys, which is a member of the base class
SimpleIndex. Making the index record larger allows the Insert
method to create an overfull node. The caller of BTreeNode: : Insert
needs to respond to the overflow in an appropriate fashion. Similarly, the
Remove method can create an underfull node.

Method Insert simply calls SimpleIndex: :Insert and then
checks for overflow. The value returned is 1 for success, 0 for failure, and
—1 for overflow:

template <class keyType>

int BTreeNode<keyType>::Insert (const keyType key, int recAddr)
{ ' A
int result = SimpleIndex<keyType>::Insert (key, recAddr);
if ('result) return 0; // insert failed

if (NumKeys > MaxBKeys) return -1; // node overflow

return 1;

heé¢eps://hemanthrajhemu.github.io

An Object-Oriented Representation of B-Trees 393

9.7:2 Class BTree: Supporting Files of B-Tree Nodes

We now look at class BTreé which uses in-memory BTreeNode objects,
adds the file access portion, and enforces the consistent size of the nodes.
Figure 9.17 and file btree . h of Appendix I contain the definition of
class BTree. Here are methods to create, open, and close a B-tree and to
search; insert, and remove key-reference pairs. In the protected area of the
_class, we find methods to transfer nodes from disk to memory (Fetch)
and back to disk (Store). There are members that hold the root node in
memory and represent the height of the tree and the file of index records.
Member Nodes is used to keep a collection of tree nodes in memory and
reduce disk accesses, as will be explained later.

template <class keyType>
class BTree
{public:
BTree(int order, int keySize=sizeof (keyType), int unique=l);
int Open (char * name, int mode);
int Create (char * name, int mode) ;
int Close ();
int Insert (const keyType key, const int recAddr);
int Remove {(const keyType key, const int recAddr = -1);
int Search (const keyType key, const int recAddr

1l
|
'_l

protected:
typedef BTreeNode<keyType> BTNode; // necessary shorthand
BTNode * FindLeaf (const keyType key); '
// load a branch into memory down to the leaf with key
BTNode * Fetch(const int recaddr);//load node into memory.
int Store (BTNode *);// store node into file
BTNode Root;
int Height; // height of tree
int Order; // order of tree
BTNode ** Nodes; // storage for a branch
// Nodes[l] is level 1, etc. (see FindLeaf)
// Nodes [Height-1] is leaf
RecordFile<BTNode> BTreeFile; .
}i

Figure 9.17 Main members and methods of class BTree: whole B-tree impl‘ementation—
including methods Create, Open, Search, Insert,and Remove.

heé¢eps://hemanthrajhemu.github.io

394 Chapter 9 Multilevel Indexing and B-Trees

9.8 B-Tree Methods Search, Insert, and Others

Now that we have seen the principles of B-tree operations and we have the
class definitions and the single node operations, we are ready to consider
the details of the B-tree methods.

9.8.1 Searching

The first B-tree method we examine is a tree-searching procedure. .
Searching is a good place to begin because it is relatively simple, yet it still
illustrates the characteristic aspects of most B-tree algorithms:

B They are iterative, and

B They work in two stages, operating alternatively on entire pages (class
BTree) and then within pages (class BTreeNode). '

The searching procedure is iterative, loading a page into memory and
then searching through the page, looking for the key at successively lower
levels of the tree until it reaches the leaf level. Figure 9.18 contains the code
for method Search and the protected method FindLeaf that does.
almost all of the work. Let’s work through the methods by hand, searching
for the key L in the tree illustrated in Fig. 9.15(a). For an object bt ree of
type BTree<char> and an integer recAddr, the following code finds
that there is no data file record with key L:

recAddr = btree.Search ('L');

Method Search &ills method FindLeaf, which searches down a
branch of the tree, beginning at the root, which is referenced by the point-
er value Nodes [0]. In the first iteration, with 1evel = 1, the line

fecAddr = Nodes{level-1]->Search(key,-1,0);

is an inexact search and finds that L is less than P, the first key in the
record. Hence, recAddr is set to the first reference in the root node,
which is the index file address of the first node in the second level of the
tree of Fig. 9.15(a). The line :

Nodes[1evel]=Fetch(recAddr);

reads that second-level node into a new BTreeNode object and makes
Nodes [1] point to this new object. The second iteration, with level =
2, searches for L in this node. Since L is less than M, the second key in the

heé¢eps://hemanthrajhemu.github.io

B-Tree Methods Search, Insert, and Others 395

template <class keyType>
int BTree<keyType>::Search (const keyType key, const int recAddr)
{ ,

BTreeNode<keyType> .* leafNode;

leafNode = FindLeaf (key);

return leafNode -> Search (key, recAddr);

}

template <class keyType> ,
BTreeNode<keyType> * BTree<keyType>::FindLeaf (const keyType key)
// load a branch into memory down to the leaf with key
L 4

int recAddr, level;

for (level = 1; level < Height; level++)

{
‘recAddr = Nodes[level-1]->Search(key,-1,0);//inexact search

Nodes{level]=Fetch (recaddr) ;
}
return Nodes[level-1];
}

Figure 9.18 Method BTree:Search and BTree:FindLeaf.

record, the second reference is selected, and the second node in the leaf
level of the tree is loaded into Nodes [2]. After the for loop increments
level, the iteration stops, and FindLeaf returns the address of this
leaf node. At the end of this method, the array Nodes contains pointers to
the complete branch of the tree.

. After FindLeaf returns, method Search uses an exact search of
the leaf node to find that there is no data record that has key L. The value

returned is — I.
Now let’s use method Search to look for G, which is in the tree of

Fig. 9.15(a). It follows the same downward path that it did for L, but this
time the exact search in method Search finds G in position 1. of the
second-leaf node. It returns the first reference field in the node, which is
the data file address of the record with key G.

9.8.2 Insertion

There are two important observations we can make about the insertion,
splitting, and promotion process:

heé¢eps://hemanthrajhemu.github.io

396 Chapter 9 Multilevel Indexing and B-Trees

B It begins with a search that proceed$ all the way down to the leaf level,
and

' W After finding the insertion location at the leaf level, the work of inser-
tion, overflow detection, and splitting proceeds upward from the
bottom. '

Consequently, we can conceive of our iterative procedure as having three

phases:

1. Search to the leaf level, using method FindLeaf, before the
iteration; »

2. Insertion, overflow detection, and splitting on the upward path;

3. Creation of a new root node, if the current root was split.

Let’s use the example of inserting R and its data record address (called
recAddr) into the tree of Fig. 9.14(e) so we can watch the insertion proce-
dure work through these phases. The result of this insertion is shown in Fig.
9.15(a). Method Insert is the most complicated of the methods included
in file bt ree. tc in Appendix I. We will look at some of its code here.

The first operation in method Insert is to search to the root for key
R using FindLeaf:

thisNode = FindLeaf (key);

As described above, FindLeaf loads a complete branch into memory. In
this case, Nodes [0] is the root node, and Nodes (1] isAthe rightmost
leaf node (containing S, T, U, and W).

The next step is to insert R into the leaf node
result = thisNode -> Insert (key, recAddr);

The result here is that an overflow is detected. The object thisNode now
has five keys. The node must be split into two nodes, using the following
code:

newNode = NewNode () ;
thisNode -> Split (newNode);
Store(thisNede); Store(newNode) ;

Now the two nodes, on: ~ith keys R, S, and T, and one with U and W, have
been stored back in the file. We are done with the leaf level and are ready

to move up the tree.
The next step is to update the parent node. Since the largest key in

thisNode has changed, method UpdateKey is used to record the
change (largestKey has been set to the previous largest key in
thisNode):

heé¢eps://hemanthrajhemu.github.io

B-Tree Methods Search, Insert, and Others 397

parentNode->UpdateKey (largestKey, thisNode->LargestKey());

Hence the value W in the root.is changed to T. Then the largest value in the
new node is inserted into the root of the tree:

parentNode->Insert (newNode->LargestKey ()}, newNode->RecAddr) ;

The value W is inserted into the root. This is often called promoting the key
W. This causes the root to overflow with five keys. Again, the node is split,
resulting in a node with keys D, M, and P, and one with T and W.

 There is no higher level of the tree, so a new root node is created, and
the keys P and W are inserted into it. This is accomplished by the follow-
ing code:

int newAddr = BTreeFile.Append(Root);//put previous root into file
// insert 2 keys in new root node '

Root .Keys [0] =thisNode->LargestKey(};

Root .RecAddrs [0] =newAddr;

Root .Keys [1] =newNode->LargestKey () ;

Root .RecAddrs [1] =newNode->RecAddr;

Root .NumKeys=2;

Height++;

It begins by appending the old root node into the B-tree file. The very first
index record in the file is always the root node, so the old root node, which
is no longer the root, must be put somewhere else. Then the insertions are
performed. Finally the height of the tree is increased by one.

Insert uses a number of support functions. The most obvious one
is method BTreeNode: : Split which distributes the keys between the
original page and the new page. Figure 9.19 contains an implementation
of this method. Some additional error checking is included in the full
implementation in Appendix I. Method Split simply removes some of
the keys and references from the overfull node and puts them into the
new node. .

The full implementation of BTree::Insert in Appendix I
includes code to handle the special case of the insertion of a new largest
key in the tree. This is the only case where an insertion adds a new largest
key to a node. This can be verified by looking at method FindLeaf,
which is used to determine the leaf node to be used in insertion.
FindLeaf always chooses a node whose largest key is greater than or
equal to the search key. Hence, the only case where FindLeaf returns a
leaf node in which the search key is greater than the largest key is where
that leaf node is the rightmost node in the tree and the search key is
greater than any key in the tree. In this case, the insertion of the new key

heé¢eps://hemanthrajhemu.github.io

398 Chapter 9 Multilevel Indexing and B-Trees

template <class keyType>
int BTreeNode<keyType>::Split (BTreeNode<keyType> * newNode)
{
~// find the first Key to be moved into the new node
int midpt = (NumKeys+1l)/2;
int nﬁmNewKeys = NumKeys - midpt; .
// move the keys and recaddrs from this to newNode
for (int 1 = midpt; i< NumKeys; i++)
{
newNode->Keys[i-midpt] = Keys[i];
newNode->RecAddrs{i-midpt] = RecAddrs[i];
}
// set number of keys in the two Nodes
newNode->NumKeys = numNewKeys; '
NumKeys = midpt;
refturn 1;

}

Figure 9.19 Method Split of class BTreeNode.

requires changing the largest key in the rightmost node in every level of
the index. The code to handle this special case is included in
BTree::Insert.

9.8.3 Create, Open,and Close

We need methods to create, open, and close B-tree files. Our object-orient-
ed design and the use of objects from previous classes have made these
methods quite simple, as you can see in file bt ree. tc of Appendix I.
‘Method Create has to write the empty root node into the file
BTreeFile so thatits first record is reserved for that root node. Method
Open has to open BTreeFile and load the root node into memory
from the first record in the file. Method Close simply stores the root
node into BTreeFile and closes it.

9.8.4 Testing the B-Tree

The file t stbtree. cpp in Appendix I has the full code of a program to
test creation and insertion of a B-tree. Figure 9.20 contains most of the
code. As you can see, this program uses a single character key (class

heé¢eps://hemanthrajhemu.github.io

B-Tree Nomenciature 399

const char * keys="CSDTAMPIBWNGURKEHOLJYQZFXV*;

const int BTreeSize = 4;

‘main (int argc, char * argv)

{

int result, i;
BTree <char> bt (BTreeSize);
result = bt.Create (“testbt.dat”,ios::inlios::out);
for (i = 0; i<26; i++)

{
‘ cout<<”Inserting “<<keys[i)<<endl;
result = bt.Insert (keys([i]),1i);
bt.Print (cout); // print after each insert
}
return 1;

}

| Figure 9.20 Pro_gf_am tstbtree.cpp.

. BTree<char>) and inserts the alphabet in the same order as in Fig. 9.14
and 9.15. The tree that is created is identical in form to those pictured in

the figures.

9.9 'B-Tree Nomenclature

Before moving on to discuss B-tree performance and variations on the
basic B-tree algorithms, we need to formalize our B-tree terminology.
Providing careful definitions of terms such as order and leaf enables us to
state precisely the properties that must be present for a data structure to
qualify as a B-tree.

This definition of B-tree properties, in turn, informs our discussion of
matters such as the procedure for deleting keys from a B-tree.

Unfortunately, the literature on B-trees is not uniform in its use of
terms. Reading that literature and keeping up with new developments
therefore require some flexibility and some background: the reader needs
to be aware of the different uses of some of the fundamental terms.

For example, Bayer and McCreight (1972), Comer (1979), and a few
others refer to the order of a B-tree as the minimum number of keys that
can be in a page of a tree. So, our initial sample B-tree (Fig. 9.14), which

heé¢eps://hemanthrajhemu.github.io

400 Chapter 9 Multilevel Indexing and 8-Trees

can hold a maximum of four keys per page, has an order of two, using
Bayer and McCreight’s terminology. The problem with this definition of
order is that it becomes clumsy when you try to account for pages that
hold an odd, maximum number of keys. For example, consider the follow-
ing question: Within the Bayer and McCreight framework, is the page of
an order three B-tree full when it contains six keys or when it contains
seven keys?

Knuth (1998) and others have addressed the odd/even confusion by
defining the order of a B-tree to be the maximum number of descendants
that a page can have. This is the definition of order that we use in this text.
Note that this definition differs from Bayer and McCreight’s in two ways:
it references a maximum, not a minimum, and it counts descendants rather
than keys. '

When you split the page of a B-tree, the descendants are divided as
evenly as possible between the new page and the old page. Consequently,
every page except the root and the leaves has at least m/2 descendants.
Expressed in terms of a ceiling function, we can say that the minimum
number of descendants is I-m/Zgl

Another term that is used differently by different authors is leaf. Bayer
and McCreight refer to the lowest level of keys in a B-tree as the leaf level.
This is consistent with the nomenclature we have used in this text. Other
authors, including Knuth, consider the leaves of a B-tree to be one level
below the lowest level of keys. In other words, they consider the leaves to be
the actual data records that might be pointed to by the lowest level of keys
in the tree. We do not use this definition; instead we stick with the notion
of leaf as the lowest level of B-tree nodes.

Finally, many authors call our definition of B-tree a Bt tree. The term
B-tree is often used for a version of the B-tree that has data record refer-
ences in all of the nodes, instead of only in the leaf nodes. A major differ-
ence is that our version has the full index in the leaf nodes and uses the
interior nodes as higher level indexes. This results in a duplication of keys,
since each key in an interior node is duplicated at each lower level. The
other version eliminates this duplication of key values, and instead
includes data record references in interior nodes. While it seems that this
will save space and reduce search times, in fact it often does neither. The
major deficiency of this version is that the size of the interior nodes is
much larger for the same order B-tree. Another way to look at the differ-
ence is that for the same amount of space in the interior nodes, by elimi-
nating the data references, we could significantly increase the order of the
tree, resulting in shallower trees. Of course, the shallower the tree, the
shorter the search. '

heé¢eps://hemanthrajhemu.github.io

Worst-Case Search Depth 401

In this book, we use the term B* tree to refer to a somewhat more

. complex situation in which the data file is not entry sequenced but is orga-

nized into a linked list of sorted blocks of records. The data file is orga-

nized in much the same way as the leaf nodes of a B-tree. The great

advantage of the B+ tree organization is that both indexed access and

sequential access are optimized. This technique is explained in detail in the
next chapter.

You may have recognized that the largest key in each interior B-tree
node is not needed in the searching. That is, in method FindLeaf,
whenever the search key is bigger than any key in the node, the search
proceeds to the rightmost child. It is possible and common to implement
B-trees with one less key than reference in each interior node. However,
the insertion method is made more complicated by this optimization, so it
has been omitted in the B-tree classes and is included as a programming
exercise.

9.10 Formal Definition of B-Tree Properties

Given these definitions of order and leaf, we-can formulate a precise state-
ment of the properties of a B-tree of order m:
M Every page has a maximum of m descendants.

m Every page, except for the root and the leaves, has at least [m/2]
descendants.

M The root has at least two descendants (unless it is a leaf).

All the leaves appear on the same level.

M The leaf level forms a complete, ordered index of the associated data
file.

9,11 Worst-Case Search Depth

It is important to have a quantitative understanding of the relationship
between the page size of a B-tree, the number of keys to be stored in the
tree, and the number of levels that the tree can extend. For example, you
might know that you need to store 1 000 000 keys and that, given the
nature of your storage hardware and the size of your keys, it is reasonable

heé¢eps://hemanthrajhemu.github.io

402 Chapter 9 Multilevel Indexing and B-Trees

to consider using a B-tree of order 512 (maximum of 511 keys per page).
Given these two facts, you need to be able to answer the question: In the
worst case, what will be the maximum number of disk accesses required
to locate a key in the tree? This is the same as asking how deep the tree
will be.

We can answer this question by noting that every key appears in the
leaf level. Hence, we need to calculate the maximum height of a tree with
1 000 000 keys in the leaves.

Next we need to observe that we can use the formal definition of B-
tree properties to calculate the minimum number of descendants that can
extend from any level of a B-tree of some given order. This is of interest
because we are interested in the worst-case depth of the tree. The worst
case occurs when every page of the tree has only the minimum number of
descendants. In such a case the keys are spread over a maximal height for
the tree and a minimal breadth.

For a B-tree of order m, the minimum number of descendants from
the root page is 2, so the second level of the tree contains only 2 pages.
Each of these pages, in turn, has at least| m/2 | descendants. The third level,
then, contains

2x[ms2]

pages. Since each of these pages, once again, has a minimum of [mi2]
descendants, the general pattern of the relation between depth and the
minimum number of descendants takes the following form:

Level Minimum number of descendants
1 (root)- 2

2 2x[m/2]

3 2xrn;/21xrm/21 or 2 x| m/2}

4 2x[mp2b |

d 2 x[m/2d=1

So, in general, for any level d of a B-tree, the minimum number of descen-
dants extending from that level is

2%[mf2]

For a tree with N keys in its leaves, we can express the relationship
between keys and the minimum height d as '

N>2 x| m/2]d-1

heé¢eps://hemanthrajhemu.github.io

Deletion, Merging, and Redistribution 403

Solving for d, we arrive at the following expression:
d< 1 +logf by, (N/2).

This expression gives us an upper bound for the depth of a B-tree with
N keys. Let’s find the upper bound for the hypothetical tree that we
describe at the start of this section: a tree of order 512 that contains
* 1000 000 keys. Substituting these specific numbers into the expression, we
find that ' '
d< 1+ logysg 500 000

or
d<3.37

So we can say that given 1 000 000 keys, a B-tree of order 512 has a depth
of no more than three levels.

9.12 Deletion, Merging, and Redistribution

Indexing 1 000 000 keys in no more than three levels of a tree is precisely
the kind of performance we are looking for. As we have just seen, this
performance is predicated on the B-tree properties we described earlier. In
particular, the ability to guarantee that B-trees are broad:and shallow
rather than narrow and deep is coupled with the rules that state the
following:

'm Every page except for the root and the leaves has at least [m/2 | descen-
dants.

B A page contains at least | m/2 | keys and no more than m keys.

We have already seen that the process of page splitting guarantees that
these properties are maintained when new keys are inserted into the tree.
We need to develop some kind of equally reliable guarantee that these
properties are maintained when keys are deleted from the tree.

Working through some simple deletion situations by hand helps us
demonstrate that the deletion of a key can result in several different situa-

tions. We start with the B-tree of Fig. 9.15(c) that contains all the letters of
the alphabet. Consider what happens when we try to delete some of its
keys. ‘ |

The simplest situation is illustrated in the result of deleting key C in
Fig. 9.21(a). Deleting the ke'y from the first leaf node does not cause an

heé¢eps://hemanthrajhemu.github.io

404 Chapter 9 Multilevel Indexing and B-Trees

a) Removal of key C from Fig. 9.15c. [il e I2] []
Change occurs only in leaf node .

(ol Tel i (][l [e{ T[] [T Ix[[2[]

[EEC RN (e’ EE | (L

CTEL[FITel 10 [T CINCIol L1 (v W15

b) Result of deleting P from Fig. [J1] o] [z] |]
9.15c. P changes to O in the second
level and the root. -

(L IF[O L)l Jol 1111 [T X[[z[1]

(Il Jel o) | IR e N\ [(Tol IR [T [7] |[Iv[[2[1 [1]

0 2 O 0 O 1 2 O B

¢) Result of deleting H from Fig. 1 Pl |z
9.15c. Removal of H caused an
underflow, and two leaf nodes were

merged. [l 1] [[]]

(LTIl Tl Io)| CIOT IR [el N\ (Tl [R[[s[11 |3 (2 [T

LIEl [F] Tef | | [INTol Tp] T [(Jul[V[W[]x]

Figure 9.21 Three situations that can occur during deletions.

heé¢eps://hemanthrajhemu.github.io

Deletion, Merging, and Redistribution 405

underflow in the node and does not change its largest value. Consequently,
deletion involves nothing more than removing the key from the node.

Deleting the P in Fig. 9.21(b) is more complicated. Removal of P from
the second leaf node does not cause underflow, but it does change the
largest key in the node. Hence, the second-level node must be modified to
reflect this change. The key to the second leaf node becomes O, and the
second-level node must be modified so that it contains O instead of P.
Since P was the largest key in the second node in the second level, the root
node must also have key P replaced by O.

Deleting the H in Fig 9.21(c) causes an underflow in the third leaf
node. After H is deleted, the last remaining key in the node, I, is inserted
into the neighbor node, and the third leaf node is deleted. Since the second
leaf node has only three keys, there is room for the key I in that node. This
illustrates a more general merge operation, After the merge, the second-
level node is modified to reflect the current status of the leaf nodes.

Merging and other modifications can propagate to the root of the B-
tree. If the root ends up with only one key and one child, it can be elimi-
nated. Its sole child node becomes the new root of the tree and the tree
gets shorter by one level.

The rules for deleting a key k from a node #n in a B-tree are as follows:

1. If nhas more than the minimum number of keys and the k is not the
largest in 1, simply delete k from n.-

2. If n has more than the minimum number of keys and the k is the
largest in n, delete k and modify the higher level indexes to reflect the
new largest key in n.

3. If n has exactly the minimum number of keys and one of the siblings
of n has few enough keys, merge n with its sibling and delete a key
from the parent node.

4, If n has exactly the minimum number of keys and one of the siblings
of n has extra keys, redistribute by moving some keys from a sibling to
n, and modify the higher level indexes to reflect the new largest keys in
the affected nodes.

Rules 3 and 4 include references to “few enough keys” to allow merg-
ing and “extra keys” to allow redistribution. These are not exclusive rules,
and the implementation of delete 1s allowed to choose which rule to use
when they are both applicable. Look at the example of an order five tree in
Fig. 9.22, and consider deleting keys C, M, and W. Since three is the mini-
mum number of keys, deleting ariy of these keys requires some adjustment
of the leaf nodes. In the case of deleting C, the only sibling node has three

heé¢eps://hemanthrajhemu.github.io

406 Chapter 9 Multilevel Indexing and B-Trees

J (B[N[Ju] [2[]

LIal Jel Je[T [T] v Wl Jz] [[[]

L[Im] N[T T T]

Figure ‘9:\22 Example of order five B-tree. Consider delete of keys C,M,and W.
(b)

keys. After deleting C, there are five keys in the two sibling nodes, so a
merge is allowed. No redistribution is possible because the sibling node
has the minimum number of keys. In the case of deleting W, the only
sibling has five keys, so one or two of the keys can be moved to the under-
full node. No merge is possible here, since there are seven keys remaining
in the two sibling nodes—too many for a single node. In the case of delet-
ing M, there are two options: merge with the left sibling or redistribute
keys in the right siblirig. |

9ﬂ.1 2.1 Redistribution

Unlike merge, which is a kind of reverse split, redistribution is a new idea.
Our insertion algorithm does not require operations analogous to redis-
tribution.

Redistribution differs from both splitting and merging in that it never
causes the collection of nodes in the tree to change. It is guaranteed to have
strictly local effects. Note that the term sibling implies that the pages have
the same parent page. If there are two nodes at the leaf level that are logi-

‘cally adjacent but do not have the same parent—for example, HI and
JKLM in the tree of Fig. 9.22(a)—these nodes are not siblings.
Redistribution algorithms are generally written so they do not consider
moving keys between nodes that are not siblings, even when they are logi-
cally adjacent. Can you see the reasoning behind this restriction?

Another difference between redistribution on the one hand and merg-
ing and splitting on the other is that there is no necessary, fixed prescrip-
tion for how the keys should be rearranged. A single deletion in a properly
formed B-tree cannot cause an underflow of more than one key.
Therefore, redistribution can restore the B-tree properties by moving only
one key from a sibling into the page that has underflowed, even if the

heé¢eps://hemanthrajhemu.github.io

Redistribution During Insertion: A Way to Improve Storage Utilization 407

distribution of the keys between the pages is very uneven. Suppose, for
example, that we are managing a B-tree of order 101. The minimum
number of keys that can be in a page is 50; the maximum is 100. Suppose
we have one page that contains the minimum and a sibling that contains
the maximum. If a key is deleted from the page containing 50 keys, an
underflow condition occurs. We can correct the condition through redis-
tribution by moving one key, 50 keys, or any number of keys between 1
and 50. The usual strategy is to divide the keys as evenly as possible
between the pages. In this instance that means moving 25 keys.

9.13 Redistribution During Insertion: A Way to
Improve Storage Utilization

As you may recall, B-tree insertion does not require an operation analo-
gous to redistribution; splitting is able to account for all instances of over-
flow. This does not mean, however, that it is not desirable to use
redistribution during insertion as an option, particalarly since a set of
B-tree maintenance algorithms must already include a redistribution
procedure to support deletion. Given that a redistribution procedure is
already present, what advantage might we gain by using it as an alternative
to node splitting?

Redistribution during insertion is a way of avoiding, or at least post-
poning, the creation of new pages. Rather than splitting a full page and
creating two approximately half-full pages, redistribution lets us place
some of the overflowing keys into another page. The use of redistribution
in place of splitting should therefore tend to make a B-tree more efficient
in its utilization of space.

It is possible to quantify this efficiency of space usage by viewing the
amount of space used to store information as a percentage of the total
amount of space required to hold the B-tree. After a node splits, each of
the two resulting pages is about half full. So, in the worst case, space
utilization in a B-tree using two-way splitting is around 50 percent. Of
course, the actual degree of space utilization is better than this worst-case
figure. Yao (1978) has shown that, for large trees of relatively large order,
space utilization approaches a theoretical average of about 69 percent if
insertion is handled through two-way splitting.

The idea of using redistribution as an alternative to splitting when
possible, splitting a page only when both of its siblings are full, is

heé¢eps://hemanthrajhemu.github.io

408 Chapter 9 Multilevel Indexing and B-Trees

introduced in Bayer and McCreight’s original paper (1972). The paper
includes some experimental results that show that two-way splitting
results in a space utilization of 67 percent for a tree of order 121 after five
thousand random insertions. When the experiment was repeated, using
redistribution when possible, space utilization increased to over 86
percent. Subsequent empirical testing by students at Oklahoma State
University using B-trees of order 49 and 303 also resulted in space utiliza-
tion exceeding 85 percent when redistribution was used. These findings
and others suggest that any serious application of B-trees to even moder-
ately large files should implement insertion procedures that handle over-
flow through redistribution when possible.

9.14 B*Trees

In his review and amplification of work on B-trees in 1973, Knuth (1998)
extends the notion of redistribution during insertion to include new rules
for splitting. He calls the resulting variation on the fundamental B-tree
form a B* tree. |

Consider a system in which we are postponing splitting through redis-
tribution, as outlined in the preceding section. If we are considering any
page other than the root, we know that when it is finally time to split, the
page has at least one sibling that is also full. This opens up the possibility
of a two-to-three split rather than the usual one-to-two or two-way split.

The important aspect of this two-to-three split is that it results in
pages that are each about two-thirds full rather than just half full. This
makes it possible to define a new kind of B-tree, called a B* tree, which has
the following properties:

1. Every page has a maximum of m descendants.

2. Every page except for the root has at least [(2m - 1)/3] descendants.
3. Theroot has at least two descendants (unless it is a leaf).

4. All the leaves appear on the same level.

The critical changes between this set of properties and the set we
define for a convention:«i R-tree are in rule 2: a B* tree has pages that
contain a minimum [(2m - 1)/3] keys. This new property, of course,
affects procedures for deletion and redistribution.

To implement B* tree procedures, one must also deal with the ques-
tion of splitting the root, which, by definition, never has a sibling. If there

heé¢eps://hemanthrajhemu.github.io

Buffering of Pages: Virtual B-Trees 409

is no sibling, no two-to-three split is possible. Knuth suggests allowing the
root to grow to a size larger than the other pages so, when it does split, it
can produce two pages that are each about two-thirds full. This has the
advantage of ensuring that all pages below the root level adhere to B* tree
characteristics. However, it has the disadvantage of requiring that the
procedures be able to handle a page that is larger than all the others.
Another solution is to handle the splitting of the root as a conventional
one-to-two split. This second solution avoids any special page-handling
logic. On the other hand, it complicates deletion, redistribution, and other
procedures that must be sensitive to the minimum number of keys
allowed in a page. Such procedures would have to be able to recognize that
pages descending from the root might legally be only half full.

9.15 Bufferihg of Pages: Virtual B-Trees

We have seen that the B-tree can be a very efficient, {lexible storage struc-
ture that maintains its balanced properties after repeated deletions and
insertions and that provides access to any key with just a few disk accesses.
However, focusing on just the structural aspects, as we have so far, can
cause us inadvertently to overlook ways of using this structure to full
advantage. For example, the fact that a B-tree has a depth of three levels
does not at all mean that we need to do three disk accesses to retrieve keys
from pages at the leaf level. We can do much better than that.

Obtaining better performance from B-trees involves looking in a
precise way at our original problem. We needed to find a way to make effi-
cient use of indexes that are too large to be held entirely in memory. Up to
this point we have approached this problem in an all-or-nothing way:an
index has been held entirely in memory, organized as a list or binary tree,
or accessed entirely on secondary store, using a B-tree structure. But, stat-
ing that we cannot hold all of an index in memory does not imply that we
cannot hold some of it there. In fact, our implementation of class BTree
is already keeping the root in memory at all times and keeping a full
branch in memory during insertion and deletion.

For example, assume that we have an index containing 1 megabyte of
records and that we cannot reasonably use more than 256 kilobytes of
memory for index storage at any given time. Given a page size of 4 kilo-
bytes, holding around 64 keys per page, our B-tree can be contained in
three levels. We can reach any one of our keys in no more than two disk

heé¢eps://hemanthrajhemu.github.io

410 Chapter 9 Multilevel indexing and B-Trees

accesses. That is certainly acceptable, but why should we settle for this kind
of performance? Why not try to find a way to bring the average number of
disk accesses per search down to one disk access or less?

If we're thinking of the problem strictly in terms of physical storage
structures, retrieval averaging one disk access or less sounds impossible.
But remember, our objective was to find a way to manage our megabyte of
index within 256 kilobytes of memory, not within the 4 kilobytes required
to hold a single page of our tree.

The simple, keep-the-root strategy we have been using suggests an
important, more general approach: rather than just holding the root page
in memory, we can create a page buffer to hold some number of B-tree
pages, perhaps five, ten, or more. As we read pages in from the disk in
response to user requests, we fill up the buffer. Then, when a page is
requested, we access it from memory if we can, thereby avoiding a disk
access. If the page is not in memory, then we read it into the buffer from
secondary storage, replacing one of the pages that was previously there. A
B-tree that uses a memory buffer in this way is sometimes referred to as a
virtual B-tree.

For our implementation, we can use the Nodes member and the
Fetch and Store methods to manage this page buffer. Fetch and
Store can keep track of which nodes are in memory and avoid the disk

‘read or write whenever possible. This modification is included as an
exercise.

9.15.1 LRU’Replacement'

Clearly, such a buffering scheme works only if we are more likely to
request a page that is in the buffer than one that is not. The process of
accessing the disk to bring in a page that is not already in the buffer is
called a page fault. There are two causes of page faults:

1. 'We have never used the page.
2. It was once in the buffer but has since been replaced with a new page.

The first cause of page faults is unavoidable: if we have not yet read in and
used a page, there is no way it can already be in the buffer. But the second
cause is one we can try to minimize through buffer management. The crit-
ical management decision arises when we need to read a new page into a
buffer that is already full: which page do we decide to replace? -

One common approach is to replace the page that was least recently
used; this is called LRU replacement. Note that this is different from

heé¢eps://hemanthrajhemu.github.io

Buffering of Pages: Virtual B-Trees 411

replacing the page that was read into the buffer least recently. Instead, the
LRU method keeps track of the requests for pages. The page to be replaced
is the one that has gone the longest time without a request for use.

Some research by Webster (1980) shows the effect of increasing the
number of pages that can be held in the buffer area under an LRU replace-
ment strategy. Table 9.1 summarizes a small but representative portion of
Webster’s results. It lists the average number of disk accesses per search
given different numbers of page buffers. These results are obtained using a
simple LRU replacement strategy without accounting for page height.
Keeping less than 15 percent of the tree in memory (20 pages out of the total
140) reduces the average number of accesses per search to less than one.

Note that the decision to use LRU replacement is based on the
assumption that we are more likely to need a page that we have used
recently than we are to need a page that we have never used or one that we
used some time ago. If this assumption is not valid, then there is absolute-
ly rio reasori to retain preferentially pages that were used recently. The term
for this kind of assumption is temporal locality. We are assuming that there
is a kind of clustering of the use of certain pages over time. The hierarchi-
cal nature of a B-tree makes this kind of assumption reasonable.

For example, during redistribution after overflow or underflow, we
access a page and then access its sibling. Because B-trees are hierarchical,
accessing a set of sibling pages involves repeated access to the parent page
in rapid succession. This is an instance of temporal locality; it is easy to see
how it is related to the tree’s hierarchy.

1

9.15.2 Replacement Based on Page Height

There is another, more direct way to use the hierarchical nature of the B-
tree to guide decisions about page replacement in the buffers. Our simple,
keep-the-root strategy exemplifies this alternative: always retain the pages
that occur at the highest levels of the tree. Given a larger amount of buffer

Table 9.1 Effect of using more buffers with a simple LRU replacement strategy.

Buffer Count 1 5 10 20
Average Accesses per Search 3.00 1.71 1.42 0.97
Number of keys = 2400

Total pages = 140

Tree height = 3 levels

heé¢eps://hemanthrajhemu.github.io

412 Chapter 9 Multilevel Indexing and B-Trees

space, it might be possible to retain not only the root, but also all of the
pages at the second level of a tree.

Let’s explore this notion by returning to a previous example in which
we have access to 256 kilobytes of memory and a 1-megabyte index. Since
our page size is 4 kilobytes, we could build a buffer area that holds 64 pages
within the memory area. Assume that our 1 megabyte worth of index
requires around 1.2 megabytes of storage on disk (storage utilization = 83
percent). Given the 4-kilobyte page size, this 1.2 megabytes requires slight-
ly more than 300 pages. We assume that, on the average, each of our pages
has around 30 descendants. It follows that our three-level tree has, of
course, a single page at the root level, followed by 9 or 10 pages at the
second level, with all the remaining pages at the leaf level. Using a page
replacement strategy that always retains the higher-level pages, it is clear
that our 64-page buffer eventually contains the root page and all the pages
at the second level. The approximately 50 remaining buffer slots are used

‘to hold leaf-level pages. Decisions about which of these pages to replace
can be handled through an LRU strategy. It is easy to see how, given a
sizable buffer, it is possible to bring the average number of disk accesses
per search down to a number that is less than one. .

Webster’s research (1980) also investigates the effect of taking page
height into account, giving preference to pages that are higher in the tree
when it comes time to decide which pages to keep in the buffers.
Augmenting the LRU strategy with a weighting factor that accounts for
page height reduces the average number of accesses, given a 10-page
buffer, from 1.42 accesses per search down to 1.12 accesses per search.

9.15.3 Importance of Virtual B-Trees

It is difficult to overemphasize the importance of including a page buffer-
ing scheme with any implementation of a B-tree index structure. Because
the B-tree structure is so interesting and powerful, it is easy to fall into the
trap of thinking that the B-tree organization is itself a sufficient solution
to the problem of accessing large indexes that must be maintained on
secondary storage. As we have emphasized, to fall into that trap is to lose
sight of the original problem: to find a way to reduce the amount of
memory required to handle large indexes. We did not, however, need to
reduce the amount of memory to the amount required for a single index
page. It is usually possible to find enough memory to hold a number of
pages. Doing so can dramatically increase system performance.

heé¢eps://hemanthrajhemu.github.io

Variable-Length Records and Keys 413

9.16 Variable-Length Records and Keys

In many applications the information associated with a key varies in
length. Secondary indexes that reference inverted lists are an excellent
example of this. One way to handle this variability is to place the associat-
ed information in a separate, variable-lerigth record file; the B-tree would
contain a reference to the information in this other file. Another approach
is to allow a variable number of keys and records in a B-tree page.

Up to this point we have regarded B-trees as being of some order .
Each page has a fixed maximum and minimum number of keys that it can
legally hold. The notion of a variable-length record and, therefore, a vari-
able number of keys per page is a significant departure from the point of
view we have developed so far. A B-tree with a variable number of keys per
page clearly has no single, fixed order.

“The variability in length can also extend to the keys as well as to entire
records. For example, in a file in which people’s names are the keys, we
might choose to use only as much space as required for a name rather than
allocate a fixed-size field for each key. As we saw in earlier chapters, imple-
menting a structure with variable-length fields can allow us to put many
more names in a given amount of space since it eliminates internal frag-
mentation. If we can put more keys in a page, then we have a larger number
of descendants from a page and very probably a tree with fewer levels.

Accommodating this variability in length means using a different kind
of page structure. We look at page structures appropriate for use with vari-
able-length keys in detail in the next chapter. We also need a different
criterion for deciding when a page is full and when it is in an underflow
condition. Rather than use a maximum and minimum number of keys per
page, we need to use a maximum and minimum number of bytes.

Once the fundamental mechanisms for handling variable-length keys
or records are in place, interesting new possibilities emerge. For example,
we might consider the notion of biasing the splitting and redistribution
methods so that the shortest variable-length keys are promoted upward
in preference to longer keys. The idea is that we want to have pages with
the largest numbers of descendants up high in the tree, rather than at the
leaf level. Branching out as broadly as possible as high as possible in the
tree tends to reduce the overall height of the tree. McCreight (1977)
explores this notion in the article, “Pagination of B* Trees with Variable-
Length Records.”

heé¢eps://hemanthrajhemu.github.io

414 Chapter 9 Multilevel Indexing and B-Trees

The principal point we want to make with these examples of varia-
tions on B-tree structures is that this chapter introduces only the most
basic forms of this very useful; flexible file structure. Implementations of
B-trees do not slavishly follow the textbook form of B-trees. Instead, they
use many of the other organizational techniques we study in this book,
such as variable-length record structures in combination with the funda-
mental B-tree organization to make new, special-purpose file structures
uniquely suited to the problems at hand.

SUMMARY

We begin this chapter by picking up the problem we left unsolved at the
end of Chapter 7: simple, linear indexes work well if they are held in
memory, but they are expensive to maintain and search if they are so big
that they must be held on secondary storage. The expense of using
secondary storage is most evident in two areas:

B Sorting of the index; and

'MW Searching, since even binary searching requires more than two or
three disk accesses.

We first address the question of structuring an index so it can be kept
in order without sorting. We use tree structures to do this, discovering that
we need a balanced tree to ensure that the tree does not become overly
deep after repeated random insertions. We see that AVL trees provide a
way of balancing a binary tree with only a small amount of overhead.

Next we turn to the problem of reducing the number of disk accesses
required to search a tree. The solution to this problem involves dividing
the tree into pages so a substantial portion of the tree can be retrieved with
a single disk access. Paged indexes let us search through very large
numbers of keys with only a few disk accesses.

Unfortunately, we find that it is difficult to combine the idea of paging
of tree structures with the balancing of these trees by AVL methods. The
most obvious evidence of this difficulty is associated with the problem of
selecting the members of the root page of a tree or subtree when the tree is
built in the conventional top-down manner. This sets the stage for intro-
ducing Bayer and McCreight’s work on B-trees, which solves the paging
and balancing dilemma by starting from the leaf level, promoting keys
upward as the tree grows.

heé¢eps://hemanthrajhemu.github.io

Summary 415

Our discussion of B-trees begins by emphasizing the multilevel index
approach. We include a full implementation of insertion and searching
and examples of searching, insertion, overflow detection, and splitting to
show how B-trees grow while maintaining balance in a paged structure.
Next we formalize our description of B-trees. This formal definition
permits us to develop a formula for estimating worst-case B-tree depth.
The formal description also motivates our work on developing deletion
procedures that maintain the B-tree properties when keys are removed
from a tree.

Once the fundamental structure and procedures for B-trees are in
place, we begin refining and improving on these ideas. The first set of
improvements involves increasing the storage utilization within B-trees.
Of course, increasing storage utilization can also result in a decrease in the
height of the tree and therefore in improvements in performance. We
sometimes find that by redistributing keys during insertion rather than
splitting pages, we can improve storage utilization in B-trees so it averages
around 85 percent. Carrying our search for increased storage efficiency
even further, we find that we can combine redistribution during insertion
with a different kind of splitting to ensure that the pages are about two-
thirds full rather than only half full after the split. Trees using this combi-
nation of redistribution and two-to-three splitting are called B* trees.

Next we turn to the matter of buffering pages, creating a virtual B-tree.
We note that the use of memory is not an all-or-nothing choice: indexes
that are too large to fit into memory do not have to be accessed entirely
from secondary storage. If we hold pages that are likely to be reused in
memory, then we can save the expense of reading these pages in from the
disk again. We develop two methods of guessing which pages are to be
reused. One method uses the height of the page in the tree to decide which
pages to keep. Keeping the root has the highest priority, the root’s descen-
dants have the next priority, and so on. The second method for selecting
pages to keep in memory is based on recentness of use: we always replace
the least recently used (LRU) page and retain the pages used most recent-
ly. We see that it is possible to combine these methods and that doing so
can result in the ability to find keys while using an average of less than one
disk access per search.

We close the chapter with a brief look at the use of variable-length
records within the pages of a B-tree, noting that significant savings in
space and consequent reduction in the height of the tree can result from
the use of variable-length records. The modification of the basic textbook
B-tree definition to include the use of variable-length records is just one

heé¢eps://hemanthrajhemu.github.io

416 Chapter 9 Multilevel Indexing and B-Trees

example of the many variations on B-trees that are used in real-world
implementations.

KEY TERMS

AVL tree. A height-balanced (HB(1)) binary tree in which insertions and
deletions can be performed with minimal accesses to local nodes. AVL
trees are interesting because they keep branches from getting overly
long after many random insertions.

B-tree of order m. A multileve] index tree with these properties:

0 Every node has a maximum of m descendants.

1 Every node except the root has at least | m/2 | descendants.
2 The root has at least two descendants (unless it is a leaf).
3 All of the leaves appear on the same level.

B-trees are built upward from the leaf level, so creation of new pages
always starts at the leaf level. '

The power of B-trees lies in the facts that they are balanced (no
overly long branches); they are shallow (requiring few seeks); they
accommodate random deletions and insertions at a relatively low cost
while remaining in balance; and they guarantee at least 50 percent
storage utilization.

B* tree. A special B-tree in which each node is at least two-thirds full.
B* trees generally provide better storage utilization than B-trees.
Height-balanced tree. A tree structure with a special property: for each
node there is a limit to the amount of difference that is allowed among
the heights of any of the node’s subtrees. An HB(k) tree allows

subtrees to be klevels out of balance. (See AVL tree.)

Leaf of a B-tree. A page at the lowest level in a B-tree. All leaves in a B-tree
occur at the same level.

Merging. When a B-tree node underflows (becomes less than 50 percent
full), it sometimes becomes necessary to combine the node with an
adjacent node, thus decreasing the total number of nodes in the tree.
Since merging involves a change in the number of nodes in the tree, its
effects can require reorganization at many levels of the tree.

Order of a B-tree. The maximum number of descendants that a node in
the B-tree can have. ,

heé¢eps://hemanthrajhemu.github.io

Further Readings 417

Paged index. An index that is divided into blocks, or pages, each of which
can hold many keys. The use of paged indexes allows us to search
through very large numbers of keys with only a few disk accesses.

Redistribution. When a B-tree node underflows (becomes less than 50
“percent full), it may be possible to move keys into the node from an
adjacent node with the same parent. This helps ensure that the 50
percent-full property is maintained. When keys are redistributed, it
becomes necessary to alter the contents of the parent as well.
Redistribution, as opposed to merging, does not involve creation or
deletion of nodes—its effects are entirely local. Often redistribution
can also be used as an alternative to splitting.

Splitting. Creation of two nodes out of one when the original node
becomes overfull. Splitting results in the need to promote a key to a
higher-level node to provide an index separating the two new nodes.

Virtual B-tree. A B-tree index in which several pages are kept in memory
in anticipation of the possibility that one or more of them will be
needed by a later access. Many different strategies can be applied to
replacing pages in memory when virtual B-trees are used, including
the least-recently-used strategy and height-weighted strategies.

FURTHER READINGS

Currently available textbooks on file and data structures contain surpris-
ingly brief discussions on B-trees. These discussions do not, in general,
add substantially to the information presented in this chapter and the
following chapter. Consequently, readers interested in more information
about B-trees must turn to the articles that have appeared in journals over
the past 15 years. ' ‘

The article that introduced B-trees to the world is Bayer and
McCreight’s “Organization and Maintenance of Large Ordered Indexes”
(1972). It describes the theoretical properties of B-trees and includes
empirical results concerning, among other things, the effect of using redis-
tribution in addition to splitting during insertion. Readers should be
aware that the notation and terminology used in this article differ from
those used in this text in a number of important respects.

Comer’s (1979) survey article, “The Ubiquitous B-tree,” provides an
excellent overview of some important variations on the basic B-tree form.
Knuth’s (1998) discussion of B-trees, although brief, is an important

heé¢eps://hemanthrajhemu.github.io

418 Chapter 9 Multilevel Indexing and B-;l:feés_

resource in part because many of the variant forms such as B* trees were
first collected together in Knuth’s discussion. McCreight (1977) looks
specifically at operations on trees that use variable-length records and that
are therefore of variable order. Although this article speaks specifically
about B* trees, the consideration of variable-length records can be applied
to many other B-tree forms. In “Time and Space Optimality on B-trees,”
Rosenberg and Snyder (1981) analyze the effects of initializing B-trees
with the minimum number of nodes. In “Analysis of Design Alternatives
for Virtual Memory Indexes,” Murayama and Smith (1977) look at three
factors that affect the cost of retrieval: choice of search strategy, whether
pages in the index are structured, and whether keys are compressed. Gray
and Reuter (1993) provide an analysis of issues in B-tree implementation.
Zoellick (1986) discusses the use of B-tree—like structures on optical
discs.
~ Since B-trees in various forms have become a standard file organiza-
tion for databases, a good deal of interesting material on applications of B-
trees can be found in the database literature. Held and Stonebraker (1978),
Snyder (1978), Kroenke (1998), and Elmasri and Navathe (1994) discuss
the use of B-trees in database systems generally. Ullman (1986) covers the
problem of dealing with applications in which several programs have
access to the same database concurrently and identifies literature
concerned with concurrent access to B-tree.

Uses of B-trees for secondary key access are covered in many of the
previously cited references. There is also a growing literature on multidi-
mensional dynamic indexes, including variants of the B-tree, k-d B-tree
and R trees. K-d B-trees are described in papers by Ouskel and
Scheuermann (1981) and Robinson (1981). R trees support multidimen-
sional queries, so-called range gieries, and were first described in Guttman
(1984) and further extended in Sellis et al (1987), Beckmann et al (1990),
and Kamel and Floutsos (1992). Shaffer (1997) and Standish (1995)
include extensive coverage of a variety of tree structures. Other approach-
es to secondary indexing include the use of tries and grid files. Tries are
covered in many texts on files and data structures, including Knuth (1998)
and Loomis (1989). Grid files are covered thoroughly in Nievergelt et al.
(1984). _

An interesting early paper on the use of dynamic tree structures for
processing files is “The Use of Tree Structures for Processing Files,” by
Sussenguth (1963). Wagner (1973) and Keehn and Lacy (1974) examine
the index design considerations that led to. the development of VSAM.
VSAM uses an index structure véry similar to a B-tree but appears to have

heé¢eps://hemanthrajhemu.github.io

Exercises - .. . 419

been developed independently of Bayer and McCreight’s work. Readers
interested in learning more about AVL trees should read Knuth (1998),
who takes a more rigorous, mathematical look at AVL tree operations and

properties.

EXERCISES

1. Balanced binary trees can be effective index structures for memory-
based indexing, but they have several drawbacks when they become so
large that part or all of them must be kept on secondary storage. The
following questions should help bring these drawbacks into focus and
thus reinforce the need for an alternative structure such as the B-tree.

a. There are two major problems with using binary search to search a
simple sorted index on secondary storage: the number of disk
accesses is larger than we would like, and the time it takes to keep
the index sorted is substantial. Which of the problems does a bina-
ry search tree alleviate?

b. Why is it important to keep search trees balanced?
c. In what way is an AVL tree better than a simple binary search tree?

d. Suppose you have a file with 1 000 000 keys stored on disk in a
completely full, balanced binary search tree. If the tree is not paged,
what is the maximum number of accesses required to find a key? If
the tree is paged in the manner illustrated in Fig. 9.12, but with
each page able to hold 15 keys and to branch to 16 new pages, what
is the maximum number of accesses required to find a key? If the
page size is increased to hold 511 keys with branches to 512 nodes,
how does the maximum number of accesses change? '

-e. Consider the problem of balancing the three-key-per-page tree in
Fig. 9.13 by rearranging the pages. Why is it difficult to create a tree-
balancing algorithm that has only local effects? When the page size
increases to a more likely size (such as 512 keys), why does it
become difficult to guarantee that each of the pages contains at
least some minimum number of keys?

f. Explain the following statement: B-trees are built upward from the
bottom, whereas binary trees are built downward from the top.

g. Although B-trees are generally considered superior to binary search
trees for external searching, binary trees are still commonly used for
internal searching. Why is this so?

heé¢eps://hemanthrajhemu.github.io

420 Chapter 9 Multilevel Indexing and B-Trees

2. Show the B-trees of order four that result from loading the following
sets of keys in order: ‘

a. CGJX
b. CGJXNSUOAEBHI
. CGJXNSUOAEBHIF
d. CGJXNSUOAEBHIFKLQRTVUWZ
3. Given a B-tree of order 256,
a. What is the maximum number of descendants from a page?

b. What is the minimum number of descendants from a page (exclud-
ing the root and leaves)?

c. What is the minimum number of descendants from the root?
d. What is the maximum depth of the tree if it contains 100 000 keys?

4. Using a method similar to that used to derive the formula for worst-
case depth, derive a formula for best-case, or minimum, depth for an
order m B-tree with N keys. What is the minimum depth of the tree
described in the preceding question?

5. Suppose you have a B-tree index for an unsorted file containing N
data records, where each key has stored with it the RRN of the corre-
sponding record. The depth of the B-tree is d. What are the maximum
and minimum numbers of disk accesses required to

a. Retrieve a record?

b. Add a record?

c. Delete a record?

d. Retrieve all records from the file in sorted order?

Assume that page buffering is not used. In each case, indicate how you
arrived at your answer.

6. Show the trees that result after each of the keys N, P, Q, and Y is delet-
ed from the B-tree of Figure 9.15(c). .

7. A common belief about B-trees is that a B-tree cannot grow deeper
unless it is 100 percent full. Discuss this. -

8. Suppose you want to delete a key from a node in a B-tree. You look at
the right sibling and find that redistribution does not work; merging

would be necessary. You look to the left and see that redistribution is
an option here. Do you choose to merge or redistribute?

heé¢eps://hemanthrajhemu.github.io

Programming Exercises 421

9. What is the difference between a B* tree and a B-tree? What improve-
ment does a B* tree offer over a B-tree, and what complications does
it introduce? How does the minimum depth of an order m B* tree
compare with that of an order in B-tree?

10. What is a virtual B-tree? How can it be possible to average fewer than
one access per key when retrieving keys from a three-level virtual B-
tree? Write a description for an LRU replacement scheme for a ten-
page buffer used in implementing a virtual B-tree.

11. Discuss the trade-offs between storing the information indexed by
the keys in a B-tree with the key and storing the information in a
separate file.

12. We noted that, given variable-length keys, it is possible to optimize a
tree by building in a bias toward promoting shorter keys. With fixed-
order trees we promote the middle key. In a variable-order, variable-
length key tree, what is the meaning of “middle key”? What are the
trade-offs associated with building in a bias toward shorter keys in
this selection of a key for promotion? Outline an implementation for
this selection and promotion process.

PROGRAMMING EXERCISES

13. Implement the Delete method of class BTree.

14. Modify classes BTreeNode and BTree to have one more reference
than key in each interior mode. '

15. Write an interactive program that allows a user to find, insert, and
delete keys from a B-tree.

16. Write a B-tree program that uses keys that are strings rather than
single characters.

17. Write a program that builds a B-tree index for a data file in which
records contain more information than just a key. Use the Person,
Recording, Ledger, or Transaction files from previous
chapters.

18. Implement B* trees by modifying class BTree.

heé¢eps://hemanthrajhemu.github.io

422" "7 Chapter 9 Multilevel Indexing and B-Trées -

PROGRAMMING PROJECT

This is the seventh part of the programming project. We add B-tree index-
es to the data files created by the third part of the project in Chapter 4.

19, Use class BTree to create a B-tree index of a student record file with
the student identifier as key. Write a'driver program to create a B-tree
file from an existing student record file.

20. Use class BTree to create a B-tree index of a course registration
record file with the student identifier as key. Write a driver program.
to create a B-tree file from an existing course registration record file.

21. Write a program that opens a B-tree indexed student file and a B-tree
indexed course registration file and retrieves information on
demand. Prompt a user for a student identifier, and print all objects
that match it.

The next part of the programming project is in Chapter 10.

heé¢eps://hemanthrajhemu.github.io

