Or
Visit : https://hemanthrajhemu.github.io

to All Study Materials according to VTU,
— Computer Science En

— Information Science E
ctronics and Communica
& MORE...

Join Telegram to get Instant Updates: https://bit.ly/VTU TELEGRAM

Contact: MAIL: futurevisionbie@wgmail.com

INSTAGRAM: www.instagram.com/hemanthraj hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

I
File Structures

An Object-Oriented
Approach with C++

Michael J.Folk

University of Illinois

Bill Zoellick
CAP Ventures

Greg Riccardi
Florida State University

A
vy ADDISON-WESLEY

Addison-Wesley is an imprint of Addison Wesley Longman, Inc. .

Reading, Massachusetts + Harlow, England -+ Menlo Park, California
Berkeley, California + Don Mills, Ontario * Sydney
Bonn * Amsterdam * Tokyo * Mexico City

heé¢eps://hemanthrajhemu.github.io

Contents Xix

9.11 Worst-Case Search Depth 401
9.12 Deletion, Merging, and Redistribution 403
9.12.1 Redistribution 406
9.13 Redistribution During Insertion: AWay to Improve Storage
Utilization 407 :
9.14 B*Trees 408
9.15 Buffering of Pages: Virtual B-Trees 409
9.15.1 LRU Replacement 410
9.15.2 Replacement Based on Page Height 411
9.15.3 Importance of Virtual B-Trees 412
9.16 Variable-Length Records and Keys 413
Summary 414 KeyTerms 416 Further Readings 417 Exercises 419
Programming Exercises 421 Programming Project 422

Chapter 10 Indexed Sequential File Access and Prefix B+ Trees 423

10.17 Indexed Sequential Access 424
10.2 Maintaining a Sequence Set 425
10.2.1 The Use of Blocks 425
10.2.2 Choice of Block Size 428
10.3 Adding a Simple Index to the Sequence Set 430
10.4 The Content of the Index:'Separators Instead of Keys 432
10.5 TheSimple Prefix B*Tree 434 :
10.6 Simple Prefix B* Tree Maintenance 435
10.6.1 Changes Localized to Single Blocks in the Sequence Set 435
10.6.2 Changes Involving Multiple Blocks in the Sequence Set 436
10.7 IndexSetBlock Size. 439
10.8 Internal Structure of Index Set Blocks: A Variable-Order
B-Tree 440
10.9 Loading a Simple Prefix B* Tree 443
10.10° B*Trees 447
10.11 B-Trees, B* Trees, and Simple Prefix B+ Trees in Perspective 449
Summary 452 KeyTerms 455 Further Readings 456 Exercises 457
Programming Exercises 460 Programming Project 461

Chapter 11 Hashing ~ 463

11.1 Introduction 464
11.1.1 What Is Hashing? 465
11.1.2 Collisions 466
11.2 A Simple Hashing Algorithm 468

heé¢eps://hemanthrajhemu.github.io

CHAPTER

Indexed
Sequential File
Access and
Prefix B* Trees

F

CHAPTER OBJECTIVES

R/
0’0

Introduce indexed sequential files.

\7
4’0

Describe operations on a sequence set of blocks that maintains
records in order by key. ‘

<+ Show how an index set can be built on top of the sequence set to
produce an indexed sequential file structure.

<+ Introduce the use of a B-tree to maintain the index set, thereby
introducing B* trees and simple prefix Bt trees.

< lllustrate’how the B-tree index set in a simple prefix B* tree can be
of variable order, holding a variable number of separators. -

o Compare‘the strengths and weaknesses of B* trees, simple prefix B+
: piep
' trees, and B-trees.

hteps:/hemanthrajhemu.github.io

424 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

CHAPTER OQUTLINE

10.1 Indexed Sequential Access
10.2 Maintaining a Sequence Set
10.2.1 The Use of Blocks
10.2.2 Choice of Block Size
10.3 Adding a Simple Index to the Sequence Set
10.4 The Content of the Index: Separators Instead of Keys
10.5 The Simple Prefix B* Tree
10.6 Simple Prefix B* Trae Maintenance
10.6.1 Changes Localized to Single Blocks in the Sequence Set
10.6.2 Changes Involving Multiple Blocks in the Sequence Set
10.7 Index Set Block Size
10.8 Internal Structure of Index Set Blocks: A Variable-Order B-Tree
10.9 Loading a Simple Prefix B+ Tree
10.10 Bt*Trees
10.11 B-Trees, B* Trees, and Simple Prefix B* Trees in Perspective

10.1 Indexed Sequential Access

Indexed sequential file structures provide a choice between two alternative
views of a file:

B [ndexed: the file can be seen as a set of records that is indexed by key;
or '

W Sequential: the file can be accessed sequentially (physically contiguous
records—no seeking), returning records in order by key.

The idea of having a single organizational method that provides both
of these views is a new one. Up to this point we have had to choose
between them. As a somewhat extreme, though instructive, example of the
potential divergence of these two choices, consider the file structure of
Chapter 9 that consists of a file of entry-sequenced records indexed by a
separate B-tree. This structure provides excellent indexed access to any
individual record by key, even as records are added and deleted. Now let’s
suppose that we also want to use this file as part of a cosequential merge.
In cosequential processing we want to retrieve all the records in order by
key. Since the records in this file system are entry sequenced, the only way
to retrieve them in order by key without sorting is through the index. For
a file of Nrecords, following the N pointers from the index into the entry-

heé¢eps://hemanthrajhemu.github.io

Maintaining a Sequence Set 425

sequenced set requires N essentially random seeks into the record file. This
is a much less efficient process than the sequential reading of physically
adjacent records—so much so that it is unacceptable for any situation in
which cosequential processing is-a frequent occurrence. “

On the other hand, our discussions of indexing show us that a file
consisting of a set of records sorted by key, though ideal for cosequential
processing, is an unacceptable structure when we want to access, insert,
and delete records by key in random order.

What if an application involves both interactive random access and
cosequential batch processing? There are many examples of such dual-mode
applications. Student record systems at universities, for example, require
keyed access to individual records while also requiring a large amount of
batch processing, as when grades are posted or when fees are paid during
registration. Similarly, credit card systems require both batch processing of
charge slips and interactive checks of account status. Indexed sequential
access methods were developed in response to these kinds of needs.

10.2 Maintaining a Sequence Set

We set aside, for the moment, the indexed part of indexed sequential
access, focusing on the problem of keeping a set of records in physical
order by key as records are added and deleted. We refer to this ordered set
of records as a sequence set. We will assume that once we have a good way
of maintaining a sequence set, we will find some way to index it as well.
You will notice a strong parallel between these sequence set methods and
the methods presented in Chapter 9 for creating and maintaining B-trees.

10.2.1 The Use of Blo'cks

We can immediately rule out sorting and resorting the entire sequence set
as records are added and deleted, since we know that sorting an entire file
is an expensive process. We need instead to find a way to localize the
changes. One of the best ways to restrict the effects of an insertion or dele-
tion to just a part of the sequence set involves a tool we first encountered
in Chapters 3 and 4: we can collect the records into blocks.

When we block records, the block becomes the basic unit of input and
output. We read and write entire blocks at once. Consequently, the size of

the buffers we use in a program is such that they can hold an entire block.

heé¢eps://hemanthrajhemu.github.io

426 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees -

After reading in a block, all the'records in a block are in memory, where we
can work on them or rearrange them much more rapidly.

An example illustrates how the use of blocks can help us keep a

‘sequence set in order. Suppose we have records that are keyed on last name
and collected together so there are four records in a block. We also include
link fields in each block that point to the preceding block and the follow-
ing block. We need these fields because, as you will see, consecutive blocks
are not necessarily physically adjacent.

As with B-trees, the insertion of new records into a block can cause the
block to overflow. The overflow condition can be handled by a block-split-
ting process that is analogous to, but not the same as, the block-splitting
process used in a B-tree. For example, Fig. 10.1(a) shows what our blocked
sequence set looks like before any insertions or deletions take place. We
show only the forward links. In Fig. 10.1(b) we have inserted a new record
with the key CARTER. This insertion causes block 2 to split. The second
half of what was originally block 2 is found in block 4 after the split. Note
that this block-splitting process operates differently from the splitting we
encountered in B-trees. In a B-tree a split results in the promotion of a key.
Here things are simpler: we just divide the records between two blocks and
rearrange the links so we can still move through the file in order by key,
block after block.

Deletion of records can cause a block to be less than half full and
therefore to underflow. Once again, this problem and its solutions are anal-
ogous to what we encounter when working with B-trees. Underflow in‘a
B-tree can lead to either of two solutions:

B If a neighboring node is also half full, we can merge the two nodes,
freeing one up for reuse.

m If the neighboring nodes are more than half full, we can redistribute
records between the nodes to make the distribution more nearly even.

Underflow within a block of our sequence set can be handled through
the same kinds of processes. As with insertion, the process for the sequence
set is simpler than theprocess for B-trees since the sequence set is not a
tree and there are, therefore, no keys and records in a parent node. In Fig.
10.1(c) we show the effects of deleting the record for DAVIS. Block 4
underflows and is then merged with its successor in logical sequence,
which is block 3. The merging process frees up block 3 for reuse. We do
not show an example in which underflow leads to redistribution rather
than merging, because it is easy to see how the redistribution process
works. Records are simply moved between logically adjacent blocks.

heé¢eps://hemanthrajhemu.github.io

427

Maintaining a Sequence Set -

Block 1 ADAMS ... BAIRD ... BIXBY ... BOONE. ..
Block? —] BYNUM . .. CARSON . .. COLE . .. DAVIS . . .
Block3 L—J{ DENVER ... ELLIS . ..
(a)
Block 1 ADAMS . . . BAIRD . . . BIXBY . . . BOONE. . .
Block 2 Pl BYNUM . .. CARSON . .. CARTER . . .
Block 3 DENVER . .. ELLIS . . .
Block 4 COLE. .. DAVIS. ..
(b)
Block 1 ADAMS . .. BAIRD . .. BIXBY . . . BOONE . . .
Block?] BYNUM . .. CARSON . .. CARTER . . .
Block 3 ' le-Available
. for reuse
Block4 L—J{ COLE...DENVER... ELLIS ...

(c)

Figure 10.1 Block splitting and merging due to insertions and deletions in
the sequence set. (a) Initial blocked sequence set.(b) Sequence set after
insertion of CARTER record-—block 2 splits, and the contents are divided
between blocks 2 and 4.(c) Sequence set after deletion of DAVIS record—
block 4 is less than half full, so it is concatenated with block 3.

heé¢eps://hemanthrajhemu.github.io

428 Chapter 10 Indexed Sequential File Access and Prefix BT Trees

Given the separation of records into blocks, along with these funda-
mental block-splitting, merging, and redistribution operations, we can
keep a sequence set in order by key without ever having to sort the entire
set of records. As always, nothing comes free; consequently, there are costs
associated with this avoidance of sorting:

m Once insertions are made, our file takes up more space than an
unblocked file of sorted records because of internal fragmentation
within a block. However, we can apply the same kinds of strategies
used to increase space utilization in a B-tree (for example, the use of
redistribution in place of splitting during insertion, two-to-three split-
ting, and so on). Once again, the implementation of any of these
strategies must account for the fact that the sequence set is not a tree
and therefore there is no promotion of keys.

B The order of the records is not necessarily physically sequential
throughout the file. The maximum guaranteed extent of physical
sequentiality is within a block.

This last point leads us to the important question of selecting a block size.

10.2.2 Choice of Block Size

As we work with our sequence set, a block is the basic unit for our I/O
operations. When we read data from the disk, we never read less than a
block; when we write data, we always write at least one block. A block is
also, as we have said, the maximum guaranteed extent of physical sequen-
tiality. It follows that we should think in terms of large blocks, with each
block holding many records. So the question of block size becomes one of
identifying the limits on block size: why not make the block size so big we
can fit the entire file in a single block?

One answer to this is the sarne as the reason we cannot always use a
memory sort on a file: we usually do not have enough memory available.
So our first consideration regarding an upper bound for block size is as
follows: '

Consideration 1: The block size should be such that we can hold several blocks
in memory at once. For example, in performing a block split
or merging, we want to be able to hold at least two blocks in
memory at a time. If we are implementing two-to-three split-
ting to conserve disk space, we need to hold at least three

blocks in memory at a time.

heé¢eps://hemanthrajhemu.github.io

Maintaining a Sequence Set 429

Although we are presently focusing on the ability to access our
sequence set sequentially, we eventually want to consider the problem of
randomly accessing a single record from our sequence set. We have to read
in an entire block to get at any one record within that block. We can there-
fore state a second consideration:

Consideration 2: Reading in or writing out a block should not take very long.
Even if we had an unlimited amount of memory, we would
want to place an upper limit on the block size so we would not
end up reading in the entire file just to get at a single record.

This second consideration is more than a little imprecise. How long is
very long? We can refine this consideration by factoring in some of our
knowledge of the performance characteristics of disk drives:

Consideration 2 The block size should be such that we can access a block with-
(redefined): out having to bear the cost of a disk seek within the block read
or block write operation.

This is not a mandatory limitation, but it is a sensible one: we are
interested in a block because it contains records that are physically adja-
cent, so let’s not extend blocks beyond the point at which we can guaran-
tee such adjacency. And where is that?

When we discussed sector formatted disks back in Chapter 3, we
introduced the term cluster. A cluster is the minimum number of sectors
allocated at a time. If a cluster consists of eight sectors, then a file contain-
ing only 1 byte still uses up eight sectors on the disk. The reason for clus-
tering is that it guarantees a minimum amount of physical sequentiality.
As we move from cluster to cluster in reading a file, we may incur a disk
seek, but within a cluster the data can be accessed without seeking.

One reasonable suggestion for deciding on a block size, then, is to
make each block equal to the size of a cluster. Often the cluster size on a
disk system has already been determined by the system administrator. But
what if you are configuring a disk system for a particular application and
can therefore choose your own cluster size? You need to consider the issues
relating to cluster size raised in Chapter 3, along with the constraints
imposed by the amount of memory available and the number of blocks
you want to hold in memory at once. As is so often the case, the final deci-
sion will probably be a compromise between a number of divergent
considerations. The important thing is that the compromise be a truly
informed decision, based on knowledge of how.I/O devices and file struc-
tures work rather than just a guess.

heé¢eps://hemanthrajhemu.github.io

430 Chapter 10 Indexed Sequential File Access and Prefix BY Trees

If you are working with a disk system that is not sector oriented but
allows you to choose the block size for a particular file, a good starting
point is to think of a block as an entire track of the disk. You may want to
revise this downward, to half a track, for instance, depending on memory
constraints, record size, and other factors.

10.3 Adding a Simple Index to the Sequence Set

We have created a mechanism for maintaining a set of records so we can
access them sequentially in order by key. It is based on the idea of group-
ing the records into blocks then maintaining the blocks, as records are
added and deleted, through splitting, merging, and redistribution. Now
let’s see whether we can find an efficient way to locate some specific block
containing a particular record, given the record’s key.

We can view each of our blocks as containing a range of records, as
iltustrated in Fig. 10.2. This is an outside view of the blocks (we have not
actually read any blocks and so do not know exactly what they contain),
but it is sufficiently informative to allow us to choose which block might
have the record we are seeking. We can see, for examp.le, that if we are
looking for a record with the key BURNS, we want to retrieve and inspect
the second block. -

It is easy to see how we could construct a simple, single-level index for
these blocks. We might choose, for example, to build an index of fixed-
length records that contain the key for the last record in each block, as
shown in Fig. 10.3. Note that we are using the largest key in the block as
the key of the whole block. In Chapter 9, we used the smallest key in a B-
tree node as the key of the whole block, again because it is a little simpler.
Yet another programming exercise is included in Chapter 9 to make the
revisions required to use largest keys.

The combination of this kind of index with the sequence set of blocks
provides complete indexed sequential access. If we need to retrieve a

A \ A \ \
ADAMS—BERN}i} BOLEN-~-CAGE) CAMP-DUTTON) EMBRY—EVANS) FABER—FOLK) FOLKS-GADDIS
7/ / I4 7 V4

1 2 3 4 5 6

Figure 10.2. Sequence of blocks showing the range of keys in each block.

heé¢eps://hemanthrajhemu.github.io

Adding a Simple Index to the Sequence Set 431

Key Block number

BERNE
CAGE
DUTTON
EVANS
FOLK
GADDIS

Sy Ut W U9 RO =

Figure 10.3 Simple index for the sequence set illustrated in Fig. 10.2.

specific record, we consult the index and then retrieve the correct block; if
we need sequential access we start at the first block and read through the
linked list of blocks until we have read them all. As simple as this approach
is, it is a very workable one as long as the entire index can be held in
memory. The requirement that the index be held in memory is important
for two reasons: ;

B Since this is a simple index of the kind we discussed in Chapter 7, we
find specific records by means of a binary search of the index. Binary
searching works well if the searching takes place in memory, but, as we
saw in the previous chapter on B-trees, it requires too many seeks if
the file is on a secondary storage device.

B Astheblocks in the sequence set are changed through splitting, merg-
ing, and redistribution, the index has to be updated. Updating a
simple, fixed-length record index of this kind works well if the index is
relatively small and contained in memory. If, however, the updating
requires seeking to individual index records on disk, the process can
become very expensive. Once again, this is a point we discussed more
completely in earlier chapters.

What do we do, then, if the file contains so many blocks that the block
index does not conveniently fit into memory? In the preceding chapter we
found that we could divide the index structure into pages, much like the
blocks we are discussing here, handling several pages, or blocks, of the
index in memory at a time. More specifically, we found that B-trees are an
excellent file structure for handling indexes that are too large to fit entire-
ly in memory. This suggests that we might organize the index to our
sequence set as a B-tree.

The use of a B-tree index for our sequence set of blocks is a very
powerful notion. The resulting hybrid structure is known as a B* tree,
which is appropriate since it is a B-tree index plus a sequence set that holds

heé¢eps://hemanthrajhemu.github.io

432 Chapter 10 Indexed Sequential File Access and Prefix BT Trees

the records. Before we can fully develop the notion of a B* tree, we need to
think more carefully about what it is we need to keep in the index.

10.4 The Content of the Index: Separators Instead
of Keys

The purpose of the index we are building is to assist us when we are
searching for a record with a specific key. The index must guide us to the
block in the sequerce set that contains the record, if it exists in the
sequence set at all. The index serves as a kind of road map for the sequence
set. We are interested in the content of the index only insofar as it can assist
us in getting to the correct block in the sequence set; the index set does not
itself contain answers, only information about where to go to get answers.

Given this view of the index set as a road map, we can take the very
important step of recognizing that we do not need to have keys in the index
set. Our real need is for separators. Figure 10.4 shows one possible set of
separators for the sequence set in Fig. 10.2.

Note that there are many potential separators capable of distinguish-
ing between two blocks. For example, all of the strings shown between
blocks 3 and 4 in Fig. 10.5 are capable of guiding us in our choice between
the blocks as we search for a particular key. If a'string comparison between
the key and any of these separators shows that the key precedes the sepa-
rator, we look for the key in block 3. If the key follows the separator, we
look in block 4.

If we are willing to treat the separators as variable-length entities with-
in our index structure (we talk about how to do this later), we can save
space by placing the shortest separator in the index structure. Conse-
quently, we use E as the separator to guide our choice between blocks 3
and 4. Note that there is not always a unique shortest separator. For exam-

Separators: BO CAM E F FOLKS

\ \ \ \ \

7 " —7
5 6

4 7

ADAMS-B ERNE> BOLEN-CAGE CAMP-DUTTON EMBRY~EVANS FABER-FOLK > FOLKS-GADDIS
1 . 2 3 4

Figure 10.4 Separators between blocks in the sequence set.

heé¢eps://hemanthrajhemu.github.io

The Content of the Index: Separators Instead of Keys 433

DUTU

DVXGHESJF
CAMP-DUTTON EZ EMBRY-EVANS
EBQX

3 ELEEMOSYNARY 4

Figure 10.5 A list of potential separators.

ple, BK, BN, and BO are separators that are all the same length and are

equally effective as separators between blocks 1 and 2 in Fig. 10.4. We

choose BO and all of the other separators contained in Fig. 10.4 by using
. the logic embodied in the C++ function shown in Fig. 10.6.

Note that these functions can produce a separator that is the same as
the second key. This situation is illustrated in Fig. 10.4 by the separator
between blocks 5'and 6, which is the same as the first key contained in
block 6. It follows that, as we use the separators as a road map to the
sequence set, we must decide to retrieve the block to the right of the
separator or the one to the left of the separator according to the follow-

ing rule:
Relation of search key and separator Decision
Key < separator Go left
Key = separator Go right
Key > separator Go right

void FindSeparator (Char * keyl, char * key2, char * sep)
{// keyl, key2, and sep point to the beginning of char arrays
while (1) // loop until break

{
*sep = *key2; sep ++; //move the current character into sep
1f (*key2 != *keyl) break; // stop when a difference is found
if (*key2 == 0) break; // stop at end of key2
keyl ++; key2 ++; // move to the next character of keys

}

*sep = 0; // null terminate the séparator string

}

Figure 10.6 C++ function to find a shortest separator.

heé¢eps://hemanthrajhemu.github.io

434 .Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

10.5 The Simple Prefix B* Tree

Figure 10.7 shows how we can form the separators identified in Fig. 10.4
into a B-tree index of the sequence set blocks. The B-tree index is called
the index set. Taken together with the sequence set, it forms a file structure
called a simple prefix Bt tree. The modifier simple prefix indicates that the
index set contains shortest separators, or prefixes of the keys rather than
copies of the actual keys. Our separators are simple because they are,
simply, prefixes. They are just the initial letters within the keys. More
complicated (not simple) methods of creating separators from key prefix-
es remove unnecessary characters from the front of the separator as well as
from the rear. (See Bayer and Unterauer, 1977, for a more complete discus-
sion of prefix B* trees.)!

As was noted previously, the implementation of B-trees in Chapter 9
has the same number of keys and references in all nodes, even though for
interior nodes, the last key is not needed. We drop the extra key in the
following examples and discussion. If we had as many separators as we

1. The literature on B trees and simple prefix BY trees is remarkably inconsistent in the nomenclature
used for these structures. BY trees are sometimes called B trees; simple prefix BY trees are sonie-
times called simple prefix B-trees. Comer’s important article in Computing Surveys in 1979 has
reduced some of the confusion by providing a consistent, standard nomenclature which we use here.

Index
set
BO CAM I F ' FOLKS
\ : \ \ \ A\
ADAMS—BERNE> BOLEN-CACE> CAMP-DUTTON | EMBRY-EVANS FABER-FOLK FOLKS-GADDIS
4 / 7 7/ V4
1 2 3 4 5 6

Figure 10.7 . A B-tree index set for the sequence set, forming a simple prefix B* tree.

heé¢eps://hemanthrajhemu.github.io

Simple Prefix B* Tree Maintenance 435

have children (references), the last separator would be larger than the
largest key in the subtree. In essence, it separates keys in the subtree from
those that are larger than the largest key in the subtree. This last separator
is truly not needed in a prefix tree.

Note that the index set is a B-tree, and a node containing N separators
branches to N+ 1 children. If we are searching for the record with the key
EMBRY, we start at the root of thé index set, comparing EMBRY with the
separator E. Since EMBRY comes after E, we branch to the right, retrieving
the node containing the separators F and FOLKS. Since EMBRY comes
before even the first of these separators, we follow the branch that is to the
left of the F separator, which leads us to block 4, the correct block in the

sequence set.

10.6 Simple Prefix B* Tree Maintenance

10.6.1 Changes Localized to Single Blocks in the
Sequence Set '

Let’s suppose that we want to delete the records for EMBRY and FOLKS
and that neither of these deletions results in any merging or redistribution
within the sequence set. Since there is no merging or redistribution, the
effect of these deletions on the sequence set is limited to changes within
blocks 4 and 6. The record that was formerly the second record in block 4
(let’s say that its key is ERVIN) is now the first record. Similarly, the former
second record in block 6 (we assume it has a key of FROST) now starts
that block. These changes can be seen in Fig. 10.8.

The more interesting question is what effect, if any, these deletions
have on the index set. The answer is that since the number of sequence set
blocks is unchanged and since no records are moved between blocks, the
index set can also remain unchanged. This is easy to see in the case of the
EMBRY deletion: E is still a perfectly good separator for sequence set
blocks 3 and 4, so there is no reason to change it in the index set. The case
of the FOLKS deletion is a little more confusing because the string FOLKS
appears both as a key in the deleted record and as a separator within the
index set. To avoid confusion, remember to distinguish clearly between
these two uses of the string FOLKS: FOLKS can continue to serve as a
separator between blocks 5 and 6 even though the FOLKS record is delet-
ed. (One could argue that although we do not need to replace the FOLKS

heé¢eps://hemanthrajhemu.github.io

436 Chapter 10 Indexed Sequential File Access and Prefix B Trees

e

/' \
CAM\ /lFlFom

ADAMS——BERNE> BOLEN-CAGE ﬂCAMP-—DUTTON i ERVIN-EVANS _FABER—FOLK) FROST-GADDIS

. 7 4 / /
1 2 3 4 5 6

lBO

L’

Figure 10.8 The deletion of the EMBRY and FOLKS records from the sequence set leaves
the index set unchanged. '

separator, we should do so anyway because it is now possible to construct
a shorter separator. However, the cost of making such a change.in the index
set usually outweighs the benefits associated with saving a few bytes of
space.)

The effect of inserting into the sequence set new records that do not
cause block splitting is much the same as the effect of these deletions that
do not result in merging: the index set remains unchanged. Suppose, for
example, that we insert a record for EATON. Following the path indicated
by the separators in the index set, we find that we will insert the new
record into block 4 of the sequence set. We assume, for the moment, that
there is room for the record in the block. The new record becomes the first
record in block 4, but no change in the index set is necessary. This is not
surprising: we decided to insert the record into block 4 on the basis of the
existing information in the index set. It follows that the existing informa-
tion in the index set is sufficient to allow us to find the record again.

10.6.2 Changes Involving Multiple Blocks in the
Sequence Set

What happens when the addition and deletion of records to and from the
sequence set does change the number of blocks in the sequence set?
Clearly, if we have more blocks, we need additional separators in the index
set, and if we have fewer blocks, we need fewer separators. Changing the

heé¢eps://hemanthrajhemu.github.io

437

Simple Prefix B* Tree Maintenance

number of separators certainly has an effect on the index set, where the

separators are stored.
Since the index set for a simple prefix B* tree is just a normal B-tree,

the changes to the index set are handled according to the familiar rules for

B-tree insertion and deletion.? In the following examples, we assume that
the index set is a B-tree of order three, which means that the maximum
number of separators we can store in a node is two. We use this small node
size for the index set to illustrate node splitting and merging while using
only a few separators. As you will see later, implementations of simple
prefix B* trees place a much larger number of separators in a node of the
index set.

We begin with an insertion into the sequence set shown in Fig. 10.8.
Specifically, let’s assumie that there is an insertion into the first block and
that this insertion causes the block to split. A new block (block 7) is
brought in to hold the second half of what was originally the first block.
This new block is linked into the correct position in the sequence set,
following block 1 and preceding block 2 (these are the physical block
numbers). These changes to the sequence set are illustrated in Fig. 10.9.

2. As you study the material here, you may find it helptul to refer back to Chapter 9, where we discuss

B-tree operations in much more detail.-

L
AY l CAM I I) F l FOLKS
\ A\ A\ A\ - -\ \
ADAMS—AVER§ AYERS—BERNI-) BOLEN-CAGE ,CAMP-DU‘ITO> ERVIN-EVAIiS> FABER-FOLK) FROST—GADDIS
7 7 7 7 7 7
1 7 2 3 4 5 6

Figure 10.9 'An insertion into block 1 causes a split and the consequent addition of
block 7.The addition of a block in the sequence set requires a new separator in the index
set.Insertion of the AY separator into the node containing BO and CAM causes a node

split in the

index set B-tree and consequent promotion of BO to the root.

heé¢eps://hemanthrajhemu.github.io

438 Chapter 10 Indexed Sequential File Access and Prefix BY Trees

Note that the separator that formerly distinguished between blocks 1
and 2, the string BO, is now the separator for blocks 7 and 2. We need a
new separator, with a value of AY, to distinguish between blocks 1 and 7.
As we start to place this separator into the index set, we find that the node
into which we want to insert it, containing BO and CAM, is already full.
Consequently, insertion of the new separator causes a split and promo-

“tion, according to the usual rules for B-trees. The promoted separator, BO,
is placed in the root of the index set. |

Now let’s suppose we delete a record from block 2 of the sequence set
and that this causes an underflow condition and consequent merging of
blocks 2 and 3. Once the merging is complete, block 3 is no longer needed
in the sequence set, and the separator that once distinguished between
blocks 2 and 3 must be removed from the index set. Removing this sepa-
rator, CAM, causes an underflow in an index set node. Consequently, there
is another merging, this time in the index set, that results in the demotion
of the BO separator from the root, bringing it back down into a node with
the AY separator. Once these changes are complete, the simple prefix B+
tree has the structure illustrated in Fig. 10.10.

Although in these examples a block split in the sequence set results in
a node split in the index set and 2 merging in the sequence set results in a

_—

| AY BO | F FOLKS
AN A\ \ \ - A
ADAMS-AVERY) AYERS-BERNE)BOLEN-DUTTO§ ERVIN—EVANS> FABER—FOLK> FROST-GADDIS
/ 7 7/ VA V4

1 7 2 4 5 6

Figure 10.10 A deletion from block 2 causes underflow and the consequent merging of
blocks 2 and 3. After the merging, block 3 is no longer needed and can be placed on an
avail list. Consequently, the separator CAM is nc longer needed. Removing CAM from its
node in the index set forces a merging of index set nodes, bringing BO back down from
the root. '

heé¢eps://hemanthrajhemu.github.io

Index Set Block Size - - o 21 .439

. merging in the index set, there is not always this correspondence of action.
Insertions and deletions in the index set are handled as standard B-tree
operations; whether there is splitting or a simple insertion, merging or a
simple deletion, depends entirely on how full the index set node is.

Writing procedures to handle these kinds of operations is a straight-
forward task if you remember that the changes take place from the bottom
up. Record insertion and deletion always take place in the sequence set,
since that is where the records are. If splitting, merging, or redistribution
is necessary, perform the operation just as you would if there were no index
set at all. Then, after the record operations in the sequence set are

. complete, make changes as necessary in the'index set:

E [f blocks are split in the sequence set, a new separator must be insert-
ed into the index set;

W If blocks are merged in the sequence set, a separator must be removed
from the index set; and

M [f records are redistributed between blocks in the sequence set, the
value of a separator in the index set must be changed.

Index set operations are performed according to the rules for B-trees.
This means that node splitting and merging propagate up through the
higher levels of the index set. We see this in our examples as the BO sepa-
rator moves in and out of the root. Note that the operations on the
sequence set do not involve this kind of propagation. That is because the
sequence set is a linear, linked list, whereas the index set is a tree. It is easy
to lose sight of this distinction and to think of an insertion or deletion in
terms of a single operation on the entire simple prefix B+ tree. This is a
good way to become confused. Remember: insertions and deletions
happen in the sequence set because that is where the records are. Changes
to the index set are secondary; they are a byproduct of the fundamental
operations on the sequence set.

10.7 Index Set Block Size

Up to this point we have ignored the important issues of size and structure
of the index set nodes. Our examples have used extrémely small index set
nodes and have treated them as fixed-order B-tree nodes, even though the
separators are variable in length. We need to develop more realistic, useful
ideas about the size and structure of index set nodes.

heé¢eps://hemanthrajhemu.github.io

440 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

The physical size of a node for the index set is usually the same as the
physical size of a block in the sequence set. When this is the case, we speak
of index set blocks, rather than nodes, just as we speak of sequence set
blocks. There are a number of reasons for using a common block size for
the index and sequence sets:

®m The block size for the sequence set is usually chosen because there is a
good fit among this block size, the characteristics of the disk drive, and
the amount of memory available. The choice of an index set block size
is governed by consideration of the same factors; therefore, the block
size that is best for the sequence set is usually best for the index set.

W A common block size makes it easier to implement a buffering scheme
to create a virtual simple prefix B+ tree, similar to the virtual B-trees
discussed in the preceding chapter.

B The index set blocks and sequence set blocks are often mingled with-
in the same file to avoid seeking between two separate files while
accessing the simple prefix B+ tree. Use of one file for both kinds of
blocks is simpler if the block sizes are the same.

10.8 Internal Structure of Index Set Blocks:
A Variable-Order B-Tree '

Given a large, fixed-size block for the index set, how do we store the sepa-
rators within it? In the examples considered so far, the block structure is
such that it can contain only a fixed number of separators. The entire
motivation behind the use of shortest separators is the possibility of pack-
ing more of them into a node. This motivation disappears completely if
the index set uses a fixed-order B-tree in which there is a fixed number of
separators per node.

We want each index set block to hold a variable number of variable-
length separators. How should we go about searching through these sepa-
rators? Since the blocks are probably large, any single block can hold a
large number of separators. Once we read a block into memory for use, we -
want to be able to do a binary rather than sequential search on its list of
separators. We therefore need to structure the block so it can support a
binary search, despite the fact that the separators are of variable length.

In Chapter 7, which covers indexing, we see that the use of a separate
index can provide a means of performing binary searches lists of variable-

heé¢eps://hemanthrajhemu.github.io

Internal Structure of Index Set Blocks: A Variable-Order B-Tree 441

AsBaBroéChCnDcleEdiEn’FaFle 00 02 04 07 08 10 13 17 20 23 25
P—Concatenated ——->| lﬂ— Index to separators —bl
separators

Figure 10.11 Variable-length separators and corresponding index.

length entities. If the index consists of fixed-length references, we can use
binary searching on the index, retrieving the variable-length records or
fields through indirection. For example, suppose we are going to place the
following set of separators into an index block:

As, Ba, Bro, C, Ch, Cra, Dele, Edi, Err, Fa, Fle

(We are using lowercase letters rather than all uppercase letters so you can
find the separators more easily when we merge them.) We could merge
these separators and build an index for them, as shown in Fig. 10.11.

If we are using this block of the index set as a road map to help us find
the record in the sequence set for “Beck,” we perform a binary search on
the index to the separators, retrieving first the middle separator, “Cra,”
which starts in position 10. Note that we can find the length of this sepa-
rator by looking at the starting position of the separator that follows. Our
‘binary search eventually tells us that “Beck” falls between the separators
“Ba” and “Bro.” Then what do we do? ‘

The purpose of the index set road map is to guide us downward
through the levels of the simple prefix B+ tree, leading us to the sequence
set block we want to retrieve. Consequently, the index set block needs
some way to store references to its children, to the blocks descending from
it in the next lower level of the tree. We assume that the references are
made in terms of a relative block number (RBN), which is analogous to a
relative record number except that it references a fixed-length block rather
than a record. If there are N separators within a block, the block has N + 1
children and therefore needs space to store N+ 1 RBNs in addition to the
separators and the index to the separators.

There are many ways to combine the list of separators, the'index to
separators, and the list of RBNs into a single index set block. One possible
approach is illustrated in Fig. 10.12. In addition to the vector of separators,
the index to these separators, and the list of associated block numbers, this
block structure includes:

B Separator count: we need this to help us find the middle element in the
index to the separators so we can begin our binary search.

heé¢eps://hemanthrajhemu.github.io

442 Chapter 10 Indexed Sequential File Access and Prefix B Trees

Separator count
l_r Total length of separators

11| 28| AsBaBroCChCraDeleEdiErrFaFle | 00 02 04 67 0B 10 13 17 20 23 25| B0O B0l BOZ B03 B04 BOS B0O6 B0O7 BO8 B09 B10 BI1l

}ﬂ— Separators —’|<— Index to separators —>|4—————-Relative block num'bers—»l

Figure 10.12 Structure of an index set block.

B Total length of separators: the list of merged separators varies in length
from block to block. Since the index to the separators begins at the end
of this variable-length list, we need to know how long the list is so we
can find the beginning of our index.

Let’s suppose, once again, that we are looking for a record with the key
“Beck” and that the search has brought us to the index set block pictured
in Fig. 10.12. The total length of the separators and the separator count
allow us to find the beginning, the end, and consequently the middle of
the index to the separators. As in the preceding example, we perform a
binary search of the separators through this index, finally concluding thai
the key “Beck” falls between the separators “Ba” and “Bro.” Conceptually,
the relation between the keys and the RBNs is.illustrated in Fig. 10.13.

As Fig. 10.13 makes clear, discovering that the key falls between “Ba”
and “Bro” allows us to decide that the next block we need to retrieve has
the RBN stored in the B02 position of the RBN vector. This next block
could be another index set block and thus another block of the road map,
or it could be the sequence set block that we are looking for. In either case,
the quantity and arrangement of information in the current index set

“block is sufficient to let us conduct our binary search within the index
block and proceed to the next block in the simple prefix B+ tree.

There are many alternate ways to arrange the fundamental compo-
nents of this index block. (For example, would it be easier to build the
block if the vector of keys were placed at the end of the block? How would
you handlc the fact that the block consists of both character and integer

Separator .
subscript: 0 1 2 3 4 5 6 7 8 9 10

B00 As B0l Ba B02 Bro BO3 C B04 Ch B05 Cra BO6 Dele BO7 Edi B08 Err BO9 Fa BI0 Fle Bll

Figure 10.13 Conceptual relationship of separators and relative block numbers.

heé¢eps://hemanthrajhemu.github.io

Loading a Simple Prefix B* Tree 443

entities with no constant, fixed dividing point between them?) For our

purposes here, the specific implementation details for this particular index

block structure are not nearly as important as the block’s conceptual struc-
ture. This kind of index block structure illustrates two important points.

The first point is that a block is not just an arbitrary chunk cut out of
a homogeneous file; it can be more than just a set of records. A block can
have a sophisticated internal structure all its own, including its own inter-
nal index, a collection of variable-length records, separate sets of fixed-
length records, and so forth. This idea of building more sophisticated data
structures inside of each block becomes increasingly attractive as the block
size increases. With very large blocks it becomes imperative that we have
an efficient way of processing all of the data within a block once it has
been read into memory. This point applies not only to simple prefix B+
trees but to any file structure using a large block size.

The second point is that a node within the B-tree index set of our
simple prefix B+ tree is of variable order, since each index set block
contains a variable number of separators. This variability has interesting
implications: |
B The number of separators in a block is directly limited by block size
" rather than by some predetermined order (as in an order m B-tree).

The index set will have the maximum order, and therefore the mini-

mum depth, that is possible given the degree of compression used to

form the separators.

B Since the tree is of variable order, operations such as determining
when a block is full, or half full, are no longer a simple matter of
comparing a separator count against some fixed maximum or mini-
mum. Decisions about when to split, merge, or redistribute become
more complicated.

The exercises at the end of this chapter provide opportunities for
exploring variable-order trees more thoroughly.

10.9 Loadinga Simple Prefix B* Tree

In the previous description of the simple prefix B* tree, we focus first on
building a sequence set and subsequently present the index set as something
that is added or built on top of the sequence set. It is not only possible to
concetve of simple prefix B* trees this way, as a sequence set with an added
index, but one can also build them tiiis way.

heé¢eps://hemanthrajhemu.github.io

444 Chapter 10 Indexed Sequei.iial File Access and Prefix BT Trees

One way of building a simple prefix B+ tree, of course, is through a
series of successive insertions. We would use the procedures outlined in
section 10.6, where we discuss the maintenance of simple prefix B+ trees,
to split or redistribute blocks in the sequence set and in the index set as we
added blocks to the sequence set. The difficulty with this approach is that
splitting and redistribution are relatively expensive. They involve searching

" down through the tree for each insertion then reorganizing the tree as
necessary on the way back up. These operations are fine for tree mainte-
nance as the tree is updated, but when we are loading the tree we do not
have to contend with a random-order insertion and therefore do not need
procedures that are so-powerful, flexible, and expensive. Instead, we can
begin by sorting the records that are to be loaded. Then we can guarantee
that the next record we encounter is the next record we need to load.

Working from a sorted file, we can place the records into sequence set
blocks, one by one, starting a new block when the one we are working with
fills up. As we make the transition between two sequence set blocks, we can
determine the shortest separator for the blocks. We can collect these separa-
tors into an index set block that we build and hold in memory until it is full.

To develop an example of how this works, let’s assume that we have
sets of records associated with terms that are being compiled for a book
index. The records might consist of a list of the occurrences of each term.
In Fig. 10.14 we show four sequence set blocks that have been written out
to the disk and one index set block that has been built in memory from the
shortest separators derived from the sequence set block keys. As you can
see, the next sequence set block consists of a set of terms ranging from
CATCH through CHECK, and therefore the next separator is CAT. Let’s
suppose that the index set block is now full. We write if out to disk. Now
what do we do with the separator CAT?

Clearly, we need to start a new index block. However, we cannot place
CAT into another index block at the same level as the one containing the

ALWASPBET | 00} 03| 06 l L l | Next separator: CAT
A A\ \
Next _
ACCESS-ALSO / ALWAYS-ASK ASPECT-BEST BETTER-CAST sequence CATCH-GHECK
p set block:
7 4 /

Figure 10.14 Formation of the first index set block as the sequence set is loaded.

heé¢eps://hemanthrajhemu.github.io

Loading a Simple Prefix B* Tree 445

separators ALW, ASP, and BET because we cannot have two blocks at the
same leve] without having a parent block. Instead, we promote the CAT
separator to a higher-level block. However, the higher-level block cannot
point directly to the sequence set; it must point to the lower-level index
blocks. This means that we will now be building two levels of the index set
in memory as we build the sequence set. Figure 10.15 illustrates this work-
ing-on-two-levels phenomenon: the addition of the CAT separator requires
us to start a new, root-level index block as well as a lower-level index block.
(Actually, we are working on three levels at once since we are also construct-
ing the sequence set blocks in memory.) Figure 10.16 shows what the index
looks like after even more sequence set blocks are added. As you can see, the
lower-level index block that contained no separators when we added CAT
to the root has now filled up. To establish that the tree works, do a search
for the term CATCH. Then search for the two terms CASUAL and CATA-
LOG. How can you tell that these terms are not in the sequence set?

It is instructive to ask what would happen if the last record were
CHECK, so the construction of the sequence sets and index sets would
stop with the configuration shown in Fig. 10.15. The resulting simple
prefix B+ tree would contain an index set node that holds no separators.
This is not an isolated possibility. If we use this sequential loading

. method to build the tree, there will be many points during the loading
process at which there is an empty or nearly empty index set node. If the
index set grows to more than two levels, this empty riode problem can
occur at even higher levels of the tree, creating a potentially severe out-of-

CAT [oof-1]-
| [

Index block
-t {-1]—1 +— containing no

separators
\\ \

ACCESS-ALSO ’ ALWAYS—ASK> ASPECT—-BF_ST BETI'ER—CAST CATCH-CHECK
7/

ALWASPBET | 00 | 03| 06 l

-

/ 7

Figure 10.15 Simultaneous building of two index set levels as the sequence set
continues to grow.

heé¢eps://hemanthrajhemu.github.io

446 Chapter 10- Indexed Sequential File Access and Prefix 8% Trees

CATDR 00f o3 |-\ l l I
€
!
|
ALWASPBET | 00 03§ 06 I l | l cLcosoe f oo f o2 | os £FHIG | 00 | o2 { 03
AN \ \
ACCESS-ALSO ALWAYS—ASK> ASPEC‘F—BBT) nsrr:u.ms-r> e

/ / 4 7

\ \ \ \ \
- > CATCH-CHECK ! CLASS—COP\') CDST-DA HACE> DELFI‘E-DISK> L]
7 7 7 7 /

\

A \ \
.o > DRUM—EDITOR) EFFORT—GROW> HEAD—IDEAL> IGNORE-ITEM
7 7 / / '

Figure 10.16 Continued growth of index set built up from the sequence set.

balance problem. Clearly, these empty node and nearly empty node
conditions violate the B-tree rules that apply to the index set. However,
once-a tree is loaded and goes into regular use, the fact that a node is
violating B-tree conditions can be used to guarantee that the node will be
corrected through the action of normal B-tree maintenance operations. It
is easy to write the procedures for-insertion and deletion so a redistribu-
tion procedure is invoked when an underfull node is encountered.

The advantages of loading a simple prefix B+ tree in this way, as a
sequential operation following a sort of the records, almost always

heé¢eps://hemanthrajhemu.github.io

Bt Trees . 447

outweigh the disadvantages associated with the possibility of creating
blocks that contain too few records or too few separators. The principal
advantage is that the loading process goes more quickly because

® The output can be written sequentially;

B We make only one pass over the data, rather than the many passes
associated with random order insertions; and

K No blocks need to be reorganized as we proceed.

There are two additional advantages to using a separate loading process
such as the one we have described. These advantages are related to perfor-
~mance after the tree is loaded rather than performance during loading:

B Random insertion produces blocks that are, on the average, between 67
percent and 80 percent full. In the preceding chapter, when we were
discussing B-trees, we increased this number by using such mechanisms
as redistribution during insertion rather than just block splitting. But,
still, we never had the option of filling the blocks completely so we had
100 percent utilization. The sequential loading process changes this. If
we want, we can load the tree so it starts out with 100 percent utiliza-
tion. This is an attractive option if we do not expect to add very many
records to the tree. On the other hand, if we anticipate many insertions,
sequential loading allows us to select any other degree of utilization that
we want. Sequential loading gives us much more control over the
amount and placement of empty space in the newly loaded tree.

B In the loading example presented in Fig. 10.15, we write out the first
four sequence set blocks and then write out the index set block contain-
ing the separators for these sequence set blocks. If we use the same file
for both sequence set and index set blocks, this process guarantees that
an index set block starts out in physical proximity to the sequence set
blocks that are its descendants, In other words, our sequential loading
process is creating a degree of spatial locality within our file. This local-
ity can minimize seeking as we search down through the tree.

10.10 B*Trees

Our discussions up to this point have focused primarily on simple prefix

B+ trees. These structures are actually a variant of an approach to file orga-
nization known simply as a B* tree. The difference between a simple prefix

heé¢eps://hemanthrajhemu.github.io

448 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

B+ tree and a plain B+ tree is that the latter structure does not involve the
use of prefixes as separators. Instead, the separators in the index set are
simply copies of the actual keys. Contrast the index set block shown in Fig.
110.17, which illustrates the initial loading steps for a B* tree, with the index
block that is illustrated in Fig. 10.14, where we are building a simple prefix
B* tree.

The operations performed on B+ trees are essentially the same as those
discussed for simple prefix Bt trees. Both B* trees and simple prefix B*
trees consist of a set of records arranged in key order in a sequence set,
coupled with an index set that provides rapid access to the block contain-
ing any particular key/record combination. The only difference is that in
the simple prefix B+ tree we build an index set of shortest separators
formed from key prefixes.

One of the reasons behind our decision to focus first on simple prefix
B* trees, rather than on the more general notion of a B* tree, is that we
want to distinguish between the role of the separators in the index set and
keys in the sequence set. It is much more difficult to make this distinction
when the separators are exact copies of the keys. By beginning with simple
prefix B* trees, we have the pedagogical advantage of working with sepa-
rators that are clearly different from the keys in the sequence set.

But another reason for starting-with simple prefix B* trees is that they
are quite often a more desirable alternative than the plain B* tree. We want
the index set to be as shallow as possible, which implies that we want to
place as many separators into an index set block as we can. Why use
anything longer than the simple prefix in the index set? In general, the
answer to this question is that we do not, in fact, want to use anything
longer than a simple prefix as a separator; consequently, simple prefix B*
trees are often a good solution. There are, however, at least two factors that
might give favor to using a B* tree that uses full copies of keys as separators.

ALWAYSASPECTBETTER | 00|06 |12] I l Next separator: CATCH
A\ A\ A\
Next
ACCESS-ALSO ALWAYS—-ASK> Aspr:cr_m:n) BETTER-CAST sequence | CATCH-CHECK
set block:
7 7 7 .

Figure 10.17 Formation of the first index set block in a B* tree without the use of
shortest separators.

heé¢eps://hemanthrajhemu.github.io

B-Trees, B* Trees, and Simple Prefix B* Trees in Perspective 449

B The reason for using shortest separators is to pack more of them into
an index set block. As we have already said, this implies, ineluctably,
the use of variable-length fields within the index set blocks. For some
applications the cost of the extra overhead required to maintain and
use this variable-length structure outweighs the benefits of shorter
separators. In these cases one might choose to build a straightforward
B* tree using fixed-length copies of the keys from the sequence set as
separators.

B Some key sets do not show much compression when the simple prefix
method is used to produce separators. For example, suppose the keys
consist of large, consecutive alphanumeric sequences such as
34C18K756, 34C18K757, 34C18K758, and so on. In this case, to enjoy
appreciable compression, we need to use compression techniques that
remove redundancy from the front of the key. Bayer and Unterauer
(1977) describe such compression methods. Unfortunately, they are
more expensive and complicated than simple prefix compression. If
we calculate that tree height remains acceptable with the use of full
copies of the keys as separators, we might elect to use the no-compres-
sion option.

10.11 B-Trees, B* Trees, and Simple Prefix B* Trees
in Perspective

In this chapter and the preceding chapter we have looked at a number of
tools used in building file structures. These tools—B-trees, Bt trees, and
simple prefix Bt trees—have similar-sounding names and a number of
common features. We need a way to differentiate these tools so we can reli-
ably choose the most appropriate one for a given file structure job.

Before addressing this problem of differentiation, however, we should
point out that these are not the only tools in the toolbox. Because B-trees,
B+ trees, and their relatives are such powerful, flexible file structures, it is
easy to fall into the trap of regarding them as the answer to all problems.
This is a serious mistake. Simple index structures of the kind discussed in
Chapter 7, which are maintained wholly in memory, are a much simpler,
neater solution when they suffice for the job at hand. As we saw at the
beginning of this chapter, simple memory indexes are not limited to direct
access situations. This kind of index can be coupled with a sequence set of
blocks to provide effective indexed sequential access as well. It is only when

heé¢eps://hemanthrajhemu.github.io

450 Chapter 10 Indexed Sequential File Access and Prefix B Trees

the index grows so large that we cannot economically hold it in memory
that we need to turn to paged index structures such as B-trees and B+ trees.

In the chapter that follows we encounter yet another tool, known as
hashing. Like simple memory-based indexes, hashing is an important
alternative to B-trees, B+ trees, and so on. In many situations, hashing can
provide faster access to a very large number of records than the use of a
member of the B-tree family can.

So, B-trees, B* trees, and simple prefix B+ trees are not a panacea.
However, they do have broad applicability, particularly for situations that
require the ability to access a large file sequentially, in order by key, and
through an index. All three of these tools share the following characteristics:

M They are all paged index structures, which means that they bring entire
blocks of information into memory at once. As a consequence, 1t is
possible to choose between a great many alternatives (for example, the
keys for hundreds of thousands of records) with just a few seeks out to
disk storage. The shape of these trees tends to be broad and shallow.

m All three approaches maintain height-balanced trees. The trees do not
grow in an uneven way, which would result in some potentially long
searches for certain keys.

W In all cases the trees grow from the bottom up. Balance is maintained
through block splitting, merging, and redistribution.

m With all three structures it is possible to obtain greater storage effi-
ciency through the use of two-to-three splitting and of redistribution
in place of block splitting when possible. These techniques are
described in Chapter 9.

H All three approaches can be implemented as virtual tree structures in
which the most recently used blocks are held in memory. The advan-
tages of virtual trees were described in Chapter 9.

B Any of these approaches can be adapted for use with variable-length

records using structures inside a block similar to those outlined in this
chapter.

For all of this similarity, there are some important differences. These
differences are brought into focus through a review of the strengths and
unique characteristics of each of these file structures. -

B-Trees as Multilevel Indexes

The B-trees of Chapter 9 are multilevel indexes to data files that are entry-
sequenced. This is the simplest type of B-tree to implement and is a very

heé¢eps://hemanthrajhemu.github.io

B-Trees, B* Trees, and Simple Prefix B* Trees in Perspectivé a 451

efficient representation for most cases. The strengths of this approach are
the simplicity of implementation, the inherent efficiency of indexing, and
a maximization of the breadth of the B-tree. The major weakness of this
strategy is the lack of organization of the data file, resulting in an excessive
amount of seeking for sequential access.

B-Trees with Associated Information

This type of B-tree has not been discussed in any detail but was mentioned
briefly in Section 9.9. These B-trees contain information that is grouped as
a set of pairs. One member of each pair is the key; the other member is the
associated information. These pairs are distributed over all the nodes of the
B-tree. Consequently, we might find the information we are seeking at any
level of the B-tree. This differs from the B-trees of Chapter 9 and B+ trees,
which require all searches to proceed all the way down to the lowest,
sequence set level of the tree. Because this type of B-tree contains the actu-
al keys and associated information and there is therefore no need for addi-
tional storage to hold separators, a B-tree can take up less space than a
B+ tree.

~ Given alarge enough block size and an implementation that treats the
tree as a virtual B-tree; it is possible to use a B-tree for ordered sequential
access as well as for indexed access. The ordered sequential access is
obtained through an in-order traversal of the tree. The implementation as
a virtual tree is necessary so this traversal does not involve seeking as it
returns to the next highest level of the tree. This use of a B-tree for indexed
sequerntial access works only when the record information is stored with-
in the B-tree. If the B-tree merely contains pointers to records that are in
entry sequence off in some other file, then indexed sequential access is not
workable because of all the seeking required to retrieve the record infor-
mation.

B-trees are most attractive when the key comprises a large part of
each record stored in the tree. When the key is only a small part of the
record, it is possible to build a broader, shallower tree using the methods
of Chapter 9. '

B+ Trees

The primary. difference between the B+ tree and the B-tree is that in the B*
tree all the key and record information is contained in a linked set of
blocks known as the sequence set. The key and record information is notin
the upper-level, treelike portion of the B* tree. Indexed access to this

heé¢eps://hemanthrajhemu.github.io

452 Chapter 10 Indexed Sequential File Access and Prefix BT Trees

sequence set is provided through a conceptyally (though not necessarily
physically) separate structure called the index set. In a Bt tree the index set
consists of copies of the keys that represent the boundaries between
sequence set blocks. These copies of keys are called separators because they
separate a sequence set block from its predecessor.

There are three significant advantages that the B* tree structure
provides over the B-tree:

® The sequence set can be processed in a truly linear, sequential way,
providing efficient access to records in order by key; and

® The index is built with a single key or separator per block of data
records instead of one key per data record. The size of the lowest-level
index is reduced by the blocking factor of the data file. Since there are
fewer keys, the index is smaller and hence shallower.

In practice, the latter of these two advantages is often the more impor-
tant one. The impact of the first advantage is lessened by the fact that it is
often possible to obtain acceptable performance during an in-order traver-
sal of a B-tree through the page buffering mechanism of a virtual B-tree.

Simple Prefix B+ Trees

We just indicated that the primary advantage of using a B* tree instead of
a B-tree is that a B+ tree sometimes allows us to build a shallower tree
because we have fewer keys in the index. The simple prefix B+ tree builds
on this advantage by making the separators in the index set smaller than
the keys in the sequence set, rather than just using copies of these keys. If
the separators are smaller, we can fit more of them into a block to obtain a
higher branching factor out of the block. In a sense, the simple prefix B+
tree takes one of the strongest features of the B* tree one step farther.

The price we have to pay to obtain this separator compression and
consequent increase in branching factor is that we must use an index set
block structure that supports variable-length fields. The question of
whether this price is worth the gain is one that has to be considered on a
case-by-case basis.

SUMMARY

We begin this chapter by presenting a new problem. In previous chapters
we provided either indexed access or sequential access in order by key,
without finding an efficient way to provide both of these kinds of access.

heé¢eps://hemanthrajhemu.github.io

Summary 453

This chapter explores one class of solutions to this problem, a class based
on the use of a blocked sequence set and an associated index set.

The sequence set holds all of the file’s data records in order by key.
Since all insertion or deletion operations on the file begin with modifica-
tigns to the sequence set, we start our study of indexed sequential file
structures with an examination of a method for managing sequence set
changes. The fundamental tools used to insert and delete records while
still keeping everything in order within the sequence set are ones that we
encountered in Chapter 9: block splitting, block merging, and redistribu-
tion of records between blocks. The critical difference between the use
made of these tools for B-trees and the use made here is that there is no
promotion of keys during block splitting in a sequence set. A sequence set
is just a linked list of blocks, not a tree; therefore there is no place to
promote anything to.

In this chapter, we also discuss the question of how large to make
sequence set blocks. There is no precise answer we can give to this question
since conditions vary between applications and environments. In general
a block should be large, but not so large that we cannot hold several blocks
in memory or read in a block without incurring the cost of a seek. In prac-
tice, blocks are often the size of a cluster {on sector-formatted disks) or the
size of a single disk track.

Once we are able to build and maintain a sequence set, we turn to the
matter of building an index for the blocks in the sequence set. If the index
is small enough to fit in memory, one very satisfactory solution is to use a
simple index that might contain, for example, the key for the last record in
every block of the sequence set.

If the index set turns out to be too large to fit in memory, we recom-
mend the use of the same strategy we developed in the preceding chapter
when a simple index outgrows the available memory space: we turn the
index into a B-tree. This combination of a sequence set with a B-tree index
set is our first encounter with the structure known as a B* tree.

~ Before looking at B* trees as complete entities, we take a closer look at
the makeup of the index set. The index set does not hold any information
that we would ever seek for its own sake. Instead, an index set is used only
as a road map to guide searches into the sequence set. The index set
consists of separators that allow us to choose between sequence set blocks.
There are many possible separators for any two sequence set blocks, so we
might as well.choose the shortest separator. The scheme we use to find this
shortest separator consists of finding the common prefix of the two keys

on either side of a block boundary in the sequence set and then going one

heé¢eps://hemanthrajhemu.github.io

454 Chapter 10 Indexed Sequential File Access and Prefix BY Trees

letter beyond this common prefix to define a true separator. A B+ tree with
an index set made up of separators formed in this way is called a simple
prefix Bt tree.

We study the mechanism used to maintain the index set as insertions
and deletions are made in the sequence set of a B* tree. The principal
observation we make about all of these operations is that the primary
action is within the sequence set, since that is where the records are.
Changes to the index set are secondary; they are a byproduct of the funda-
mental operations on the sequence set. We add a new separator to the
index set only if we form a new block in the sequence set; we delete a sepa-
rator from the index set only if we remove a block from the sequence set
through merging. Block overflow and underflow in the index set differ
from the operations on the sequence set in that the index set is potentially
a multilevel structure and is therefore handled as a B-tree.

The size of blocks in the index set is usually the same as the size chosen
for the sequence set. To create blocks containing variable numbers of vari-
able-length separators while at the same time supporting binary searching,
we develop an internal structure for the block that consists of block head-
er Selds (for the separator count and total separator length), the variable-
length separators, an index to these separators, and a vector of relative
block numbers (RBNs) for the blocks descending from the index set block.
This illustrates an important general principle about large blocks within
file structures: they are more than just a slice out of a homogeneous set of
records; blocks often have a sophisticated internal structure of their own,
apart from the larger structure of the file.

We turn next to the problem of loading a B* tree. We find that if we
start with a set of records sorted by key, we can use a single-pass, sequen-
tial process to place these records into the sequence set. As we move from
block to block in building the sequence set, we can extract separators and
build the blocks of the index set. Compared with a series of successive
insertions that work down from the top of the tree, this sequential loading
process is much more efficient. Sequential loading also lets us choose the
percentage of space utilized, right up to a goal of 100 percent.

The chapter closes with a comparison of B-trees, B+ trees, and simple
prefix B* trees. These are the primary advantages that B+ trees offer over
B-trees:

B They support true indexed'seq'uential access; and

B The index set contains fewer elements (one per data block instead of
one per data record) and hence can be smaller and shallower.

heé¢eps://hemanthrajhemu.github.io

Key Terms - o 455

We suggest that the second of these advantages is often the more
important one, since treating a B-tree as a virtual tree provides acceptable
indexed sequential access in many circumstances. The simple prefix B*
tree takes this second advantage and carries it further, compressing the
separators and potentially producing an even shallower tree. The price for
this extra compression in a simple prefix B* tree is that we must deal with
variable-length fields and a variable-order tree.

KEY TERMS

B+ tree. A B+ tree consists of a sequence set of records that are ordered
sequentially by key, along with an index set that provides indexed
access to the records. All of the records are stored in the sequence set.
Insertions and deletions of records are handled by splittirig, concate-
nating, and redistributing blocks in the sequence set. The index set,
which is used only as a finding aid to the blocks in the sequence set, is
managed as a B-tree.

Index set. The index set consists of separators that provide information
about the boundaries between the blocks in the sequence set of a B*
tree. The index set can locate the block in the sequence set that
contains the record corresponding to a certain key.

Indexed sequential access. Indexed sequential access is not a single-access
method but rather a term used to describe situations in which a user
wants both sequential access to records, ordered by key, and indexed
access to those same records. B* trees are just one method for provid-
ing indexed sequential access.

Separator. Separators are derived from the.keys of the records on either
side of a block boundary in the sequence set. If a given key is in one of
the two blocks on either side of a separator, the separator reliably tells
the user which of the two blocks holds the key.

Sequence set. The sequence set is the base level of an indexed sequential
file structure, such as B+ tree. It contains all of the records in the file.
When read in logical order, block after block, the sequence set lists all
of the records in order by key.

Shortest separator. Many possible separators can be used to distinguish
between any two blocks in the sequence set. The class of shortest sepa-

rators consists of those.separators that take the least space, given a
particular compression strategy. We looked carefully at a compression

heé¢eps://hemanthrajhemu.github.io

456 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

strategy that consists of removing as many letters as possible from the
rear of the separators, forming the shortest simple prefix that can still
serve as a separator.

Simple prefix B+ tree. A B+ tree in which the index set is made up of
shortest separators that are simple prefixes, as described in the defini-
tion for shortest separator.

Variable order. A B-tree is of variable order when the number of direct
descendants from any given node of the tree is variable. This occurs
when the B-tree nodes contain a variable number of keys or separa-
tors. This form is most often used when there is variability in the
lengths of the keys or separators. Simple prefix B* trees always make
use of a variable-order B-tree as an index set so it is possible to take
advantage of the compression of separators and place more of them in

a block.

FURTHER READINGS

The initial suggestion for the B+ tree structure appears to have.come from
Knuth (1998), although he did not name or develop the approach. Most of
the literature that discusses B+ trees in detail (as opposed to describing
specific implementations is in the form of articles rather than textbooks.
Comer (1979) provides what is perhaps the best brief overview of B+ trees.
Bayer and Unterauer (1977) offer a definitive article describing techniques
for compressing separators. The article includes consideration of simple
prefix B+ trees as well as a more general approach called a prefix B+ tree.
McCreight (1977) describes an algorithm for taking advantage of the vari-
ation in the lengths of separators in the index set of a B+ tree. McCreight’s
algorithm attempts to ensure that short separators, rather than longer
ones, are promoted as blocks split. The intent is to shape the tree so blocks
higher up in the tree have a greater number of immediate descendents,
thereby creating a shallower tree.

Rosenberg and Snyder (1981) study the effects of initializing a com-
pact B-tree on later insertions and deletions. B-trees are compared with
more rigid indexed sequéntial file organizations (such as ISAM) in Batory
(1981). ‘

There are many coms:.rcial products that use methods related to the
B+ tree operations described in this chapter, but detailed descriptions of
their underlying file structures are scarce. An exception to this is IBM’s
Virtual Storage Access Method (VSAM), one of the most widely used

heé¢eps://hemanthrajhemu.github.io

Exercises 457

commercial products providing indexed sequential access. Wagner (1973)
and Keehn and Lacy (1974) provide interesting insights into the early
thinking behind VSAM. They also include considerations of key mainte-
nance, key compression, secondary indexes, and indexes to multiple data
sets. Good descriptions of VSAM can be found in several sources and from
a variety of perspectives: in Comer (1979) (VSAM as an example of a B+
tree), and Loomis (1989) (with examples from COBOL).

EXERCISES

1. Describe file structures that permit each of the following types of
access: (a) sequential access only; (b) direct access only; (c) indexed
sequential access.

2. A Bt tree structure is generally superior to a B-tree for indexed
sequential access. Since B+ trees incorporate B-trees, why not use a B+
tree whenever a hierarchical indexed structure is called for?

3. Consider the sequence set shown in Fig. 10.1(b). Show the sequence
set after the kevs DOVER and EARNEST are added; then show the
sequence set after the key DAVIS is deleted. Did you use concatenation
or redistribution for handling the underflow?

4. What considerations affect your choice of a block size for constructing
a sequence set? If you know something about expected patterns of
access (primarily sequential versus primarily random versus an even
division between the two), how might this affect your choice of block
size? On a sector-oriented drive, how might sector size and cluster size
affect your choice of a block size?

5. It is possible to construct an indexed sequential file without using a
tree-structured index. A simple index like the one developed in
Chapter 7 could be used. Under what conditions might one consider
using such an index? Under what conditions might it be reasonable to
use a binary tree (such as an AVL tree) rather than a B-tree for the
index?

6. The index set of a B+ tree is just a B-tree, but unlike the B-trees
discussed in Chapter 9, the separators do not have to be keys. Why the
difference?

7. How does block splitting in the sequence set of a simple prefix B+ tree
differ from block splitting in the index set?

heé¢eps://hemanthrajhemu.github.io

458 Chapter 10 Indexed Sequential File Access-and Prefix B+ Trees * = -

8. If the key BOLEN in the simple prefix Bt tree in Fig. 10.7 is deleted
from the sequence set node, how is the separator BO in the parent
node affected? '

9. Consider the simple prefix B+ tree shown in Fig. 10.7. Suppose a key
added to block 5 results in a split of block 5 and the consequent addi-
tion of block 8, so blocks 5 and 8 appear as follows:

\\ , \ \
. > FABER—FINGER> FINNEY—FOLK} .-
7 - 7 7
5 8

a. What does the tree look like after the insertion?

b. Suppose that, subsequent to the insertion, a deletion causes under-
flow and the consequent concatenation of blocks 4 and 5. What
does the tree look like after the deletion?

c. Describe a case in which a deletion results in redistribution rather
than concatenation, and show the effect it has on the tree.

10. Why is it often a good idea to use the same block size for the index set
and the sequence set in a simple prefix B+ tree? Why should the index
set nodes and the sequence set nodes usually be kept in the same file?

11. Show a conceptual view of an index set block, similar to the one illus-
trated in Fig. 10.11, that is loaded with the separators

Ab Arch Astron B Bea

Also show a more detailed view of the index block, as illustrated in
Fig. 10.12.

12. If the initial set of records is sorted by key, the process of loading a B+
tree can be handled by using a single-pass sequential process instead
of randomly inserting new records into the tree. What are the advan-
tages of this approach?

13. Show how the simple prefix B+ tree in Fig. 10.16 changes after the
addition of the node

ITEMIZE-JAR

Assume that the index set node containing the separators EF, H, and
IG does not have room for the new separator but that there is room in
the root. ‘

heé¢eps://hemanthrajhemu.github.io

Exercises ‘ 459

14. Use the data stored in the simple prefix B+ tree in Fig. 10.16 to
construct a B+ tree. Assume that the index set of the B+ tree is of order
four. Compare the resulting B* tree with the simple prefix B+ tree.

15. The use of variable-length separators and/or key compression
changes some of the rules about how we define and use a B-tree and
how we measure B-tree performance.

a. How does it affect our definition of the order of a B-tree?

b. Suggest criteria for deciding when splitting, concatenation, and
redistribution should be performed.

c. What difficulties arise in estimating simple prefix B+ tree height,
-maximum number of accesses, and space?

16. Make a table comparing B-trees, B* trees, and simple prefix B+ trees
in terms of the criteria listed below. Assume that the B-tree nodes do
not contain data records, only keys and corresponding RRNs of data
records. In some cases you will be able to give specific answers based
on a tree’s height or the number of keys in the tree. In other cases, the
answers will depend on unknown factors, such as patterns of access
or average separator length.

- a. The number of accesses required to retrieve a record from a tree of

height h (average, best case, and worst case).

b. The number of accesses required to insert a record (best and worst
cases).

c. The number of accesses required to delete a record (best and worst
cases).

d. The number of accesses required to process a file of n keys sequen-
tially, assuming that each node can hold a maximum of k keys and
a minimum of k/2 keys (best and worst cases).

e. The number of accesses required to process a file of n keys sequen-
tially, assuming that there are h + 1 node-sized buffers available.

17. Some commercially available indexed sequential file organizations are
based on block interval splitting approaches very similar to those
used with B+ trees. IBM’s Virtual Storage Access Method (VSAM)
offers the user several file access modes, one of which is called key-
sequenced access and results in a file being organized much like a B+
tree. Look up a description of VSAM and report on how its key-
sequenced organization relates to a B* tree, as well as how it offers the
user file-handling capabilities well beyond those of a straightforward
B+ tree implementation. (See the Further Readings section of this
chapter for articles and books on VSAM.)

heé¢eps://hemanthrajhemu.github.io

460 Chapter 10 Indexed Sequential File Access and Prefix BT Trees

18. Although B+ trees provide the basis for most indexed, sequential
access methods now in use, this was not always the case. A method
called ISAM (see Further Readings for this chapter) was once very
common, especially on large computers. ISAM uses a rigid tree-struc-
tured index consisting of at least two and at most three levels. Indexes
at these levels are tailored to the specific disk drive being used. Data
records are organized by track, so the lowest level of an ISAM index is
called the track index. Since the track index points to the track on
which a data record can be found, there is one track index for each
cylinder. When the addition of data records causes a track to over-
flow, the track is not split. Instead, the extra records are put into a
separate overflow area and chained together in logical order. Hence,
every entry in a track index may contain a pointer to the overflow
area, in addition to its pointer to the home track.

The essential difference between the ISAM organization and B*
tree—like organizations—Iis in the way overflow records are handled.
In the case of ISAM, overflow records are simply added to a chain of
overflow records—the index structure is not altered. In the B+ tree
case, overflow records are not tolerated. When overflow occurs, a
block is split, and the index structure is altered to accommodate the
extra data block. : .

Can you think of any advantages of using the more rigid index
structure of ISAM, with separate overflow areas to handle overflow
records? Why do you think B+ tree—like approaches—are replacing
those that use overflow chains to hold overflow records? Consider the
two approaches in terms of both sequential and direct access, as well
as the addition and deletion of records.

19. Design and implement a class SequenceSet in the style of class
BTree. Your. class should include methods Add, Search, and
Delete.

Write a program that accepts a sorted file of strings as input.
Your program should use this insert to build the strings into a
SequenceSet with the following characteristics:

* The strings are stored in 15-byte records,
* A sequence set block is 128 bytes long, and
* Sequence set blocks are doubly linked.

heé¢eps://hemanthrajhemu.github.io

Programming Project 461

20. Modify class BTree to support variable-sized keys, with the maxi-
mum number of keys per node determined by the actual size of the
keys rather than by some fixed maximum.

21. Design and implement class BplusTree, which puts together the
classes SequenceSet and BTree. B-tree characteristics should be
maintained in the index set; the sequence set should, as before, be
maintained so blocks are always at least half full. Consider the follow-
ing suggestions:

+ Do not compress the keys as you form the separators for.the index
set.

+ Keep BTree nodes in the same file as the sequence set blocks. The
header block should contain a reference to the toot of the BTree
as well as a reference to the beginning of the sequence set.

22. Write a test program that acts on the entire B+ tree that you created in
the preceding exercise. Search, add, and delete capabilities should be
tested, as they are in the earlier update program.

PROGRAMMING PROJECT

This is the eighth part of the programming project. We create a B+ tree of
student records and of course registration records: This project depends
on the successful completion of exercise 21.

23. Useclass BPlusTree to create a B-tree index of a student record file
with student identifier as key. Write a driver program to create a B-
tree file from an existing student record file.

24. Use class BTree to create a B-tree index of a course registration
record file with student identifier as key. Write a driver program to
create a B-tree file from an existing course registration record file.

25. Write a program that opens a B+ tree student file and a B+ tree
course registration file and retrieves information on demand. Prompt
a user for a student identifier and print all objects that match it.

The next part of the programming project is in Chapter 12.

heé¢eps://hemanthrajhemu.github.io

heé¢eps://hemanthrajhemu.github.io

