

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

File Structures

An Object-Oriented

Approach with C++

Michael J. Folk

University ofIllinois

Bill Zoellick

CAP Ventures

Greg Riccardi

Florida State University

Ayy ADDISON-WESLEY

Addison-Wesley is an imprint ofAddison Wesley Longman,Inc..

Reading, Massachusetts * Harlow, EnglandMenlo Park, California

Berkeley, California * Don Mills, Ontario + Sydney

Bonn + Amsterdam « Tokyo * Mexico City

https://hemanthrajhemu.github.io

Contents xix

9.11

9.12

9.13

9.14

9.15

9.16

Worst-Case Search Depth 401
Deletion, Merging, and Redistribution 403
9.12.1 Redistribution 406
Redistribution During Insertion: A Way to Improve Storage

Utilization 407
B* Trees 408

Buffering of Pages: Virtual B-Trees 409
9.15.1 LRU Replacement 410

9.15.2 Replacement Based on Page Height 411

9.15.3 Importance of Virtual B-Trees 412
Variable-Length Records and Keys 413

Summary 414 KeyTerms 416 FurtherReadings 417 Exercises 419

Programming Exercises 421 Programming Project 422

Chapter 10 Indexed Sequential File Access and Prefix B* Trees 423

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

Indexed Sequential Access 424

Maintaining a Sequence Set 425

10.2.1 The Use of Blocks 425
10.2.2 Thoice of Block Size 428
Adding a Simple Index to the Sequence Set 430
The Content of the Index;Separators Instead of Keys 432

The Simple Prefix B+ Tree 434 .
Simple Prefix B+ Tree Maintenance 435.

10.6.1 Changes Localized to Single Blocks in the Sequence Set 435
10.6.2 ChangesInvolving Multiple Blocks in the Sequence Set 436
Index Set Block Size 439

Internal Structure of Index Set Blocks: A Variable-Order

B-Tree 440

Loading a Simple Prefix Bt Tree 443
10.10 BtTrees 447

10.11 B-Trees, B+ Trees, andSimple Prefix B+ Treesin Perspective 449

Summary 452 KeyTerms 455 FurtherReadings 456 Exercises 457

Programming Exercises 460 Programming Project 461

Chapter 11 Hashing «463

11.1

11.2

Introduction 464

11.1.1 What Is Hashing? 465

11.1.2 Collisions 466

A Simple Hashing Algorithm 468

https://hemanthrajhemu.github.io

CHAPTER

Indexed
sequential File

Access and

Prefix B* Trees

|:

+
~

+.
+
>

CHAPTER OBJECTIVES

Introduce indexed sequentialfiles.

Describe operations on a sequenceset of blocks that maintains
recordsin orderby key. ,

Show how an index set can be built on top of the sequenceset to
produce an indexed sequential file structure.

Introduce the use of a B-tree to maintain the index set, thereby

introducing 8+ trees and simple prefix Bt trees.

Illustratehow the B-tree index set in a simple prefix B+ tree can be

of variable order, holding a variable numberofseparators.:

Compare the strengths and weaknesses of B* trees, simple prefix Bt
trees, and B-trees. :

423https://hemanthrajhemu.github.io

424

10.1

Chapter 10 Indexed Sequential File Access and Prefix 8 Trees

CHAPTER OUTLINE

10.1 Indexed Sequential Access
10.2. Maintaining a Sequence Set

10.2.1 The Use of Blocks

10.2.2 Choice of Block Size
10.3. Adding a Simple Index to the SequenceSet

10.4 The Content of the Index: Separators Insteadof Keys

10.5 The Simple Prefix Bt Tree
10.6 Simple Prefix Bt Tree Maintenance

10.6.1 ChangesLocalized to Single Blocks in the Sequence Set
10.6.2 ChangesInvolving Multiple Blocks in the Sequence Set

10.7 Index Set Block Size

10.8 Internal Structure of Index Set Blocks: A Variable-Order B-Tree

10.9 Loading a Simple Prefix B+ Tree
10.10 Bt Trees

10.11 B-Trees, B+ Trees, and Simple Prefix B* Trees in Perspective

Indexed Sequential Access

Indexed sequentialfile structures provide a choice between two alternative

views of a file:

m Indexed: the file can be seen as a set ofrecords that is indexed by key;

or |

mM Sequential: the file can be accessed sequentially (physically contiguous

records—noseeking), returning records in order by key.

The idea of having a single organizational methodthat provides both
of these views is a new one. Up to this point we have had to choose’
between them. As a somewhatextreme, thoughinstructive, example of the

potential divergence of these two choices, consider thefile structure of

Chapter 9 that consists of a file of entry-sequenced records indexed by a
separate B-tree. This structure provides excellent indexed access to any

individual record by key, even as records are added and deleted. Nowlet’s
suppose that we also wantto usethis file as part of a cosequential merge.

In cosequential processing we wantto retrieve all the records in order by
key. Since the records in this file system are entry sequenced, the only way

to retrieve them in order by key withoutsorting is through the index. For

a file of N records, following the Npointers from the indexinto the entry-

https://hemanthrajhemu.github.io

10.2

Maintaining a SequenceSet 425

sequencedset requires N essentially random seeks into the recordfile. This

is a muchless efficient process than the sequential reading of physically
adjacent records—so much so thatit is unacceptable for any situation in
which cosequential processing is'a frequent occurrence.

On the other hand, our discussions of indexing show us that file

consisting of a set of records sorted by key, though ideal for cosequential

processing, is an unacceptable structure when we want to access, insert,

and delete records by key in random order.
Whatif an application involves both interactive random access and

cosequential batch processing? There are many examples of such dual-mode
applications. Student record systems at universities, for example, require

keyed access to individual records while also requiring a large amount of
batch processing, as when grades are posted or whenfees are paid during

registration. Similarly, credit card systems require both batch processing of

charge slips and interactive checks of accountstatus. Indexed sequential
access methods were developedin responseto these kinds of needs.

Maintaining a Sequence Set

We set aside, for the moment, the indexed part of indexed sequential
access, focusing on the problem of keepinga set of records in physical

order by key as records are added and deleted. Werefer to this ordered set

of records as a sequence set. We will assume that once we have a good way
of maintaining a sequenceset, we will find some way to index it as well.
You will notice a strong parallel between these sequence set methods and

the methodspresented in Chapter9 for creating and maintaining B-trees.

10.2.1 The Use of Blocks

Wecan immediately rule out sorting and resorting the entire sequenceset

as records are added anddeleted, since we know thatsorting an entirefile

is an expensive process. We need instead to find a way to localize the
changes. Oneofthe best waysto restrict the effects of an insertion or dele-
tion to just a part of the sequenceset involves a tool wefirst encountered

in Chapters 3 and 4: we can collect the records into blocks.
When weblock records, the block becomesthe basic unit of input and

output. We read and write entire blocks at once. Consequently,thesize of

the buffers we use in a program is such that they can hold an entire block.

https://hemanthrajhemu.github.io

426 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees-

After reading in a block,all therecords in a block are in memory, where we

can work on them orrearrange them much morerapidly.
An example illustrates how the use of blocks can help us keep a

‘sequenceset in order. Suppose we have records that are keyed on last name
and collected together so there are four recordsin a block. We also include
link fields in each block that point to the preceding block andthefollow-
ing block. We need thesefields because, as you will see, consecutive blocks

are not necessarily physically adjacent.
As with B-trees, the insertion of newrecordsiinto a block can cause the

block to overflow. The overflow condition can be handled bya block-split-
ting process that is analogousto, but not the sameas, the block-splitting

process used in a B-tree. For example, Fig. 10.1(a) shows what our blocked
sequence set looks like before any insertions or deletions take place. We
showonly the forwardlinks. In Fig. 10.1(b) we have inserted a new record

with the key CARTER.This insertion causes block 2 to split. The second
half of what was originally block 2 is found in block 4 after the split. Note
that this block-splitting process operates differently from the splitting we
encountered in B-trees. In a B-tree a split results in the promotionofa key.
Herethings are simpler: we just divide the records between two blocks and
rearrange thelinks so we canstill move throughthefile in order bykey,

block after block.
Deletion of records can cause a block to be less than half full and

therefore to underflow. Onceagain,this problem andits solutionsare anal-

ogous to what we encounter when working with B-trees. Underflow in‘a

B-tree can lead to either of two solutions:

m Ifa neighboring nodeis also half full, we can merge the two nodes,
freeing one up forreuse.

m Ifthe neighboring nodes are morethanhalf full, we can redistribute

records between thenodes to makethe distribution more nearly even.

Underflow within a block of our sequenceset can be handled through
the same kindsofprocesses. As with insertion, the process for the sequence

set is simpler than the-process for B-trees since the sequencesetis nota
tree and there are, therefore, no keys and records ina parent node.In Fig.

10.1(c) we show the effects of deleting the record for DAVIS. Block 4

underflows and is then mergedwith its successor in logical sequence,

whichis block 3. The merging process frees up block 3 for reuse. We do

not show an example in which underflow leads to redistribution rather

than merging, becauseit is easy to see how the redistribution process

works. Records are simply moved betweenlogically adjacent blocks.

https://hemanthrajhemu.github.io

Maintaining a Sequence Set ~

Block 1

Block 2

Block 3

Block 1

Block 2

Block 3

Block 4

Block 1

Block 2

Block 3

Block 4

427

ADAMS ... BAIRD... BIXBY... BOONE...

BYNUM... CARSON... COLE... DAVIS...

DENVER . . . ELLIS. . .

(a)

ADAMS... BAIRD... BIXBY... BOONE.

BYNUM ... CARSON... CARTER...

DENVER ... ELLIS...

 COLE... DAVIS...

(b)

ADAMS ..:. BAIRD... BIXBY... BOONE.

BYNUM ...CARSON... CARTER...

feAvailable

for reuse

COLE... DENVER... ELLIS...

(c)

Figure 10.1 Block splitting and merging dueto insertions and deletionsin

the sequenceset.(a) Initial blocked sequence set. {b) Sequencesetafter
insertion of CARTER record—block2 splits, and the contents are divided
betweenblocks 2 and 4.(c) Sequencesetafter deletion of DAVIS record—

block 4 is less than half full, so it is concatenated with block 3.

https://hemanthrajhemu.github.io

428 Chapter 10 Indexed Sequential File Access and Prefix B* Trees

Given the separation of records into blocks, along with these funda-

mental block-splitting, merging, and redistribution operations, we can
keep a sequenceset in order by key without ever having to sort the entire

set of records. As always, nothing comes free; consequently, there are costs

associated with this avoidance of sorting:

m™ Once insertions are made, our file takes up more space than an
unblocked file of sorted records because of internal fragmentation

within a block. However, we can apply the same kindsofstrategies

used to increase space utilization in a B-tree (for example, the use of
redistribution in place of splitting during insertion, two-to-three split-
ting, and so on). Once again, the implementation of any of these

strategies must accountfor the fact that the sequenceset is not a tree
and therefore there is no promotion ofkeys.

m The order of the records is not necessarily physically sequential
throughout the file. The maximum guaranteed extent of physical

sequentiality is within a block. |

This last point leads us to the important question ofselecting a blocksize.

10.2.2 Choice of Block Size

As we work with our sequenceset, a block is the basic unit for our I/O
operations. When we read data from the disk, we never read less than a

block; when we write data, we always write at least one block. A block is
also, as we havesaid, the maximum guaranteed extent of physical sequen-
tiality. It follows that we should think in terms oflarge blocks, with each

block holding manyrecords. So the question of block size becomes one of
identifying the limits on block size: why not makethe block size so big we

can fit the entire file in a single block?
One answerto this is the sarne as the reason we cannot always use a

memory sort on file: we usually do not have enough memoryavailable.
So our first consideration regarding an upper boundfor blocksize is as
follows: .

Consideration 1: The block size should be such that we can hold several blocks

in memory at once. For example, in performing a block split
or merging, we wantto be able to hold at least two blocks in
memory at a time. If we are implementing two-to-threesplit-

ting to conserve disk space, we need to hold atleast three

blocks in memoryat a time.

https://hemanthrajhemu.github.io

Maintaining a Sequence Set 429

Although we are presently focusing on the ability to access our

sequenceset sequentially, we eventually want to consider the problem of
randomly accessing a single record from our sequenceset. We have to read
in an entire block to get at any onerecord within that block. We can there-
fore state a second consideration:

Consideration 2: Readingin or writing out a block should nottake very long.
Even if we had an unlimited amount of memory, we would

want to place an upperlimiton the block size so we would not

end up reading in the entirefile just to get at a single record.

This second consideration is morethan little imprecise. How longis

very long? We can refine this consideration by factoring in some of our
knowledge of the performance characteristics of disk drives:

Consideration 2 The block size should be such that we can access a block with-
(redefined): | out havingto bearthe cost of a disk seek within the block read

or block write operation.

This is not a mandatory limitation, but it is a sensible one: we are

interested in a block becauseit contains records that are physically adja-
cent, so let’s not extend blocks beyond the pointat which we can guaran-
tee such adjacency. And whereis that?

When we discussed sector formatted disks back in Chapter 3, we
introduced the term cluster. A cluster is the minimum numberofsectors

allocated at a time. If a cluster consists of eight sectors, then a file contain-
ing only | byte still uses up eight sectors on the disk. The reason for clus-
tering is that it guarantees a minimum amountof physical sequentiality.

As we movefrom cluster to cluster in reading a file, we may incur a disk
seek, but within a cluster the data can be accessed without seeking.

One reasonable suggestion for deciding on a block size, then, is to

make each block equal to the size of a cluster. Often the cluster size ona
disk system has already been. determined by the system administrator. But
whatif you are configuring a disk system for a particular application and
can therefore choose your owncluster size? You need to consider theissues

relating to cluster size raised in Chapter 3, along with the constraints

imposed by the amount of memoryavailable and the numberofblocks
you wantto hold in memoryat once. Asis so often the case, the final deci-
sion will probably be a compromise between a numberofdivergent

considerations. The important thing is that the compromise be a truly

informed decision, based on knowledge of how. I/O devices and file struc-
tures work rather than just a guess.

https://hemanthrajhemu.github.io

430

10.3

Chapter 10 indexed Sequential File Access and Prefix B* Trees

If you are working with a disk system that is not sector oriented but

allows you to choose the block size for a particularfile, a good starting

pointis to think of a block as an entire track of the disk. You may wantto

revise this downward,to half a track, for instance, depending on memory

constraints, record size, and otherfactors.

Adding a Simple Index to the Sequence Set

Wehavecreated a mechanism for maintaininga set of records so we can

access them sequentially in orderby key.It is based on the idea of group-
ing the records into blocks then maintaining the blocks, as records are

added and deleted, through splitting, merging, and redistribution. Now
let’s see whether we can find an efficient way to locate some specific block
containing a particular record, given the record’s key.

We can view each of our blocks as containing a range of records, as
illustrated in Fig. 10.2. This is an outside view of the blocks (we have not
actually read any blocks and so do not know exactly what they contain),

but it is sufficiently informative to allow us to choose which block might

have the record we are seeking. We cansee, for example,that if we are
looking for a record with the key BURNS,we wantto retrieve and inspect
the second block. ”

It is easy to see how wecould construct a simple, single-level index for
these blocks. We might choose, for example, to build an index of fixed-

length records that contain the key for the last record in each block,as
shown in Fig. 10.3. Note that we are using the largest key in the block as
the key of the whole block. In Chapter 9, we used the smallest key in a B-
tree node as the key of the whole block, again becauseitis a little simpler.

Yet another programmingexercise is included in Chapter 9 to make the

revisions required to use largest keys.
The combination ofthis kind of index with the sequenceset of blocks

provides complete indexed sequential access. If we need to retrieve a

\ \ _\ \ \

couns-aenne) rousn-cace CAMP-DUTTON) naeny-eaxs Fanen-FoLx FOLKS-GADDIS

¢f / ar / é

2 3 4 5 6

Figure 10.2. Sequence of blocks showing the rangeof keys in each block.

https://hemanthrajhemu.github.io

Adding a Simple Index to the Sequence Set 431

Key Block number

BERNE
CAGE
DUTTON
EVANS
FOLK
GADDIS O

o
O
F
N
e

Figure 10.3 Simple index for the sequencesetillustrated in Fig. 10.2.

specific record, we consult the index andthen retrieve the correct block;if

we need sequential access westart at the first block and read through the
linked list of blocks until we have read themall. As simple as this approach

is, it is a very workable one as long as the entire index can be held in

memory. The requirementthat the index be held in memoryis important
for two reasons: .

m@ Since this is a simple index of the kind we discussed in Chapter7, we
find specific records by meansof a binary search of the index. Binary
searching works well if the searching takes place in memory, but, as we

saw in the previous chapter on B-trees, it requires too many seeksif

the file is on a secondarystorage device.

mAs the blocks in the sequenceset are changed throughsplitting, merg-

ing, and redistribution, the index has to be updated. Updating a
simple,fixed-length record index of this kind works well if the index ts
relatively small and contained in memory. If, however, the updating
requires seeking to individual index records on disk, the process can
becomevery expensive. Once again,this is a point we discussed more

completely in earlier chapters.

What do wedo,then,if the file contains so many blocks that the block

index does not convenientlyfit intomemory? In the preceding chapter we
found that we could divide the index structure into pages, muchlike the

blocks we are discussing here, handling several pages, or blocks, of the

index in memoryat a time. Morespecifically, we found that B-trees are an

excellentfile structure for handling indexes that are too large to fit entire-
ly in memory. This suggests that we might organize the index to our
sequenceset as a B-tree.

The use of a B-tree index for our sequence set of blocks is a very
powerful notion. The resulting hybrid structure is known as a Bttree,
which is appropriate sinceit is a B-tree index plus a sequenceset that holds

https://hemanthrajhemu.github.io

432

10.4

Separators:

Chapter 10 Indexed Sequential File Access and Prefix B* Trees

the records. Before we can fully develop the notion of a Bt tree, we need to

think more carefully about whatit is we need to keep in the index.

The Content of the Index: Separators Instead
of Keys

The purpose of the index we are building is to assist us when we are
searching for a record with a specific key. The index must guideus to the
block in the sequence set that contains the record, if it exists in the
sequenceset at all. The index serves as a kind of road mapfor the sequence

set. We are interested in the contentof the index only insofaras it can assist
us in getting to the correct block in the sequenceset; the index set does not

itself contain answers, only information about whereto go to get answers.
Given this view of the index set as a road map, we can take the very

importantstep of recognizing that we do not need to have keys in the index

set. Our real need is for separators. Figure 10.4 shows one possibleset of

separatorsfor the sequenceset in Fig. 10.2.
Note that there are many potential separators capable of distinguish-

ing between two blocks. For example, all of the strings shown between
blocks 3 and 4 in Fig. 10.5 are capable of guiding us in our choice between
the blocks as we search for a particularkey. If a string comparison between
the key and any of these separators shows that the key precedes the sepa-
rator, we look for the key in block 3. If the key follows the separator, we

look in block 4.
If we are willing to treat the separators as variable-length entities with-

in our index structure (we talk about howto dothis later), we can save

space by placing the shortest separator in the index structure. Conse-

quently, we use E as the separator to guide our choice between blocks 3
and 4, Note that there is not always a unique shortest separator. For exam-

BO CAM E F FOLKS

N s| 4| A x

I

a, BOLEN-CAGE CAMP-DUTTON EMBRY-EVANS ranen-roux) FOLKS-GADDIS

4

7 7
5 6

7 /

2 3

Figure 10.4 Separators between blocks in the sequence set.

https://hemanthrajhemu.github.io

The Contentof the Index: Separators Instead of Keys 433

DUTU
DVXGHES]F

CAMP-DUTTON R EMBRY-EVANS

EBQX
3 ELEEMOSYNARY 4

Figure 10.5 A listof potential separators.

ple, BK, BN, and BOare separators thatare all the same length and are

equally effective as separators between blocks 1 and 2 in Fig. 10.4. We

choose BO andall of the other separators contained in Fig. 10.4 by using
. the logic embodied in the C++ function shownin Fig. 10.6.

Note that these functions can produce a separatorthatis the same as

the second key. This situation is illustrated in Fig. 10.4 by the separator
between blocks 5'and 6, whichis the same as the first key containedin
block 6. It follows that, as we use the separators as a road mapto the
sequence set, we must decide to retrieve the block to the right of the

separatoror the oneto the left of the separator accordingto the follow-
ing rule:

Relation ofsearch key and separator Decision

Key < separator Goleft

Key = separator Goright

Key > separator Goright

void FindSeparator (char * keyl, char * key2, char * sep)

{// keyl, key2, and sep point to the beginning of char arrays

while (1) // loop until break

{

}

*sep = *key2; sep ++; //move the current character into sep

(*key2 != *keyl) break; // stop when a difference is found

(*key2 == 0) break; // stop at end of key2

keyl ++; key2 ++; // move to the next character of keys

*sep = 0; // null terminate the séparator string

}

Figure 10.6 C++ functionto find a shortest separator,

https://hemanthrajhemu.github.io

434

10.5

Chapter 10 IndexedSequentialFile Access and Prefix B+ Trees-

Index

set

The Simple Prefix BtTree

Figure 10.7 showshow we can form the separators identified in Fig. 10.4

into a B-tree index of the sequence set blocks. The B-tree indexis called
the index set. Taken together withthe sequenceset, it forms a file structure
called a simple prefix Bt tree. The modifier simple prefix indicates that the

index set contains shortest separators, or prefixes of the keys rather than
copies of theactual keys. Our separators are simple because they are,

simply, prefixes. They are just the initial letters within the keys. More
complicated (not simple) methodsof creating separators from keyprefix-
es remove unnecessarycharacters from thefrontofthe separator as well as

fromthe rear. (See Bayer and Unterauer, 1977, for a more complete discus-

sion ofprefix B+ trees.)!

As was noted previously, the implementation of B-trees in Chapter 9
has the same numberofkeys and referencesin all nodes, even though for
interior nodes, the last key is not needed. We drop the extra key in the
following examples and discussion. If we. had as many separators as we

1. The literature on BY trees and simple prefix B* treesis remarkably inconsistent in the nomenclature

used for these structures. Bt trees are sometimes called B* trees; simple prefix B* trees are sonie-
times called simple prefix B-trees. Comer’s importantarticle in Computing Surveys in 1979 has
reduced someof the confusion by providing a consistent, standard nomenclature which we use here.

| BO CAM l F | FOLKS |

 \ \ \ \ \

coaus-aenae) roven-cacr. caM-0urT0%) euBRY-EVANS FABER-FOLK FOLKS—GADDIS

1

 7 7 7 7 7
9 3 4 5 6

Figure 10.7. A 8-treeindex set for the sequence set, forming a simple prefix Bt tree.

https://hemanthrajhemu.github.io

10.6

Simple Prefix B+ Tree Maintenance 435

have children (references), the last separator would be larger than the

largest key-in the subtree. In essence, it separates keys in the subtree from

those that are larger than the largest key in the subtree. This last separator

is truly not neededin a prefix tree.
Note that the indexsetis a B-tree, and a node containing N separators

branches to N+ 1 children.If we are searching for the record with the key
EMBRY,westart at the root of the index set, comparing EMBRYwith the

separator E. Since EMBRY comesafter E, we branchto the right, retrieving
the node containing the separators F and FOLKS. Since EMBRY comes

before even the first of these separators, we follow the branchthatis to the

left of the F separator, which leads us to block4, the correct block in the

sequenceset.

Simple Prefix Bt Tree Maintenance

10.6.1 Changes Localized to Single Blocks in the
Sequence Set .

Let’s suppose that we wantto delete the records for EMBRY and FOLKS

and that neitherof these deletions results in any mergingorredistribution
within the sequenceset. Since there is no merging or redistribution, the

effect of these deletions on the sequence set is limited to changes within
blocks 4 and 6. The record that was formerly the second record in block 4
(let’s say that its key is ERVIN) is nowthefirst record. Similarly, the former

second record in block 6 (we assumeit has a key of FROST)nowstarts
that block. These changes can be seen in Fig. 10.8.

The moreinteresting question is whateffect, if any, these deletions

have on the index set. The answeris that since the numberof sequenceset
blocks is unchanged and since no records are moved between blocks, the

index set can also remain unchanged. This is easy to see in the case of the
EMBRYdeletion: E is still a perfectly good separator for sequence set

blocks 3 and 4, so there is no reason to changeit in the indexset. The case
of the FOLKSdeletionis little more confusing because the string FOLKS
appears both as akey in the deleted record and as a separator within the
index set. To avoid confusion, rememberto distinguish clearly between

these two uses of the string FOLKS: FOLKS can continue to serve as a

separator between blocks 5 and 6 even though the FOLKSrecordis delet-

ed. (One could argue that although we do not need to replace the FOLKS

https://hemanthrajhemu.github.io

436 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

cal

jl BO CAM | | FOLKS

x \ /\

a, BOLEN-CAGE curoer) ERMAN FABER-FOLK FROST-GADDIS

/ Ff —_) /
2 3 4 5 6

Figure 10.8 The deletion of the EMBRY and FOLKSrecords from the sequenceset leaves

the index set unchanged. .

separator, we should do so anyway becauseit is now possible to construct,

a shorter separator. However, the cost of making such a change in the index
set usually outweighs the benefits associated with saving a fewbytes of
space.)

The effect of inserting into the sequence-set new records that do not
cause block splitting is much the same as the effect of these deletions that
do not result in merging: the index set remains unchanged. Suppose,for
example, that we insert a record for EATON.Followingthe path indicated

by the separators in the index set, we find that we will insert the new

record into block 4 of the sequence set. We assume,for the moment, that

there is room forthe record in the block. The new record becomesthefirst
record in block 4, but no change in the index set is necessary. This is not

surprising: we decided to insert the record into block 4 on thebasis of the

existing information in the index set. It follows that the existing informa-

tion in the indexsetis sufficient to allow usto find the record again.

10.6.2 Changes Involving Multiple Blocks in the
Sequence Set

What happens when the addition and deletion of records to and from the

sequence set does change the numberof blocks in the sequence set?

Clearly, if we have more blocks, we need additional separatorsin the index

set, and if we have fewer blocks, we need fewer separators. Changing the

https://hemanthrajhemu.github.io

Simple Prefix B+ Tree Maintenance 437

numberof separators certainly has an effect on the index set, where the
separatorsare stored.

Since the index set for a simple prefix Bt tree is just a normal B-tree,

the changesto the index set are handled accordingto the familiar rules for
B-tree insertion and deletion.? In the following examples, we assumethat
the index set is a B-tree of order three, which means that the maximum

number of separators we can store in a node is two. We use this small node

size for the indexsettoillustrate node splitting and merging while using
only a few separators. As you will see later, implementations of simple
prefix B* trees place a much larger numberofseparators in a nodeof the
index set.

Webegin with an insertion into thesequence set shownin Fig. 10.8.
Specifically, let’s assumie that there is an insertioninto the first block and
that this insertion causes the block to split. A new block (block 7) is

brought in to hold the second half of what wasoriginally the first block.

This new block is linked into the correct position in the sequenceset,

following block 1 and preceding block 2 (these are the physical block
numbers). These changes to the sequencesetareillustrated in Fig. 10.9.

“2. AS you study the material here, you may find it helptul to refer back to Chapter 9, where we discuss

B-tree operations in much more detail.

Pert

ae

AY | CAM | F FOLKS |

\ ‘ \ \ : \ \

of

1

/
5 6

/ f /

7 2 3

,avenssen) nouencact) canDuro) ERVIN-EVANS } raes-roik) FROST-GADDIS

/
4

Figure 10.9 An insertion into block 1 causes a split and the consequent addition of

block 7.The addition of a block in the sequenceset requires a new separatorin the index

set. Insertion of the AY separator into the node containing BO and CAM causes a node

split in the index set B-tree and consequent promotion of BO to the root.

https://hemanthrajhemu.github.io

438 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

Note that the separator that formerly distinguished between blocks1
and 2, the string BO,is nowthe separator for blocks 7 and 2. We need a

newSeparator, with a value of AY, to distinguish between blocks | and 7.
As we start to place this separator into the indexset, we find that the node
into which we wantto insert it, containing BO and CAM,is alreadyfull.

Consequently, insertion of the new separator causes a split and promo-

tion, accordingto the usual rules for B-trees. The promotedseparator, BO,

is placed in theroot.of the indexset. |
Nowlet’s suppose we delete a recordfrom block 2 of the sequenceset

and that this causes an underflow condition and consequent merging of

blocks 2 and 3, Once the mergingis complete, block 3 is no longer needed
in the sequenceset, and the separator that once distinguished between

blocks 2 and 3 must be removed from the index set. Removingthis sepa-
rator, CAM,causes an underflowin an index set node. Consequently, there
is another merging,this timein the indexset, that results in the demotion
of the BO separator fromtheroot, bringingit back down into a node with

the AY separator. Once these changes are complete, the simple prefix B*

tree hasthe structureillustrated in Fig. 10,10.
Although in these examples a block split in the sequence set results in

a node split in the index set and a mergingin the sequencesetresults in a

a

| AY BO fF FOLKS

4 \ \ ..; w\

a, cvens-aeane BOLEN-DUTTONJ ERVIN-EVANS ’ ranen-rouk FROST-CADDIS

/ f f f fF

1 7 2 4 5 6

Figure 10.10 A deletion from block 2 causes underflow and the consequent merging of
blocks 2 and 3. After the merging, block 3 is no longer needed and can be placed on an

avail list. Consequently, the separator CAM is no longer needed. Removing CAMfromits
nodein the index set forces a merging of index set nodes, bringing 8O back down from

the root. .

https://hemanthrajhemu.github.io

10.7

Index Set Block Size. - a cess 5 A3g

mergingin the indexset, there is not always this correspondenceofaction.
Insertions and deletions in the index set are handled as standard B-tree

operations; whether thereis splitting or a simple insertion, merging ora
simple deletion, dependsentirely on how full the index set node1s.

Writing procedures to handle these kinds of operations is a straight-
forward task if you rememberthat the changes take place from the bottom

up. Record insertion and deletion always take place in the sequenceset,

since that is where the recordsare.If splitting, merging, or redistribution

is necessary, perform the operation just as you would if there were no index

set at all. Then, after the record operations in the sequence set are

complete, make changes as necessary in theindexset:

m@ If blocks are split in the sequenceset, a new separator mustbeinsert-

ed into the indexset;

Ww If blocks aremerged in the sequenceset, a separator must be removed

from the index set; and

mM If records are redistributed between blocks in the sequenceset, the

value of a separator in the index set must be changed. °

Index set operations are performed accordingto the rules for B-trees.
This means that nodesplitting and merging propagate up through the

higherlevels of the index set. We see this in our examples as the BO sepa-
rator moves in and out of the root. Note that the operations on the
sequenceset do not involve this kind of propagation. That 1s because the

sequencesetis a linear, linked list, whereasthe indexsetis a tree. It is easy
to lose sight of this distinction and to think of an insertion or deletion in
terms of a single operation on the entire simple prefix B+ tree. This is a

good way to become confused. Remember:insertions and deletions

happen in the sequence set becausethat is where the records are. Changes
to the index set are secondary; they are a byproduct of the fundamental
operations on the sequenceset.

Index Set Block Size

Upto this point we have ignored the important issuesofsize and structure
of the index set nodes. Our examples have used extremely small index set
nodes andhavetreated them asfixed-order B-tree nodes, even though the
separators are variable in length. We need to develop morerealistic, useful

ideas aboutthe size and structure of index set nodes.

https://hemanthrajhemu.github.io

440

10.8

Chapter 10 Indexed Sequential File Access and Prefix B* Trees

The physical size of a node for the index set is usually the same as the

physicalsize of a block in the sequenceset. Whenthisis the case, we speak

of index set blocks, rather than nodes, just as we speak of sequenceset
blocks. There are a numberofreasons for using a commonblocksize for

the index and sequencesets:

m@ Theblock size for the sequenceset is usually chosen becausethere is a
good fit amongthis block size, the characteristics of the disk drive, and
the amount of memory available. The choice of an index set block size

is governed by consideration of the samefactors;therefore, the block
size that is best for the sequence set is usually best for the indexset.

m Acommonblock size makesit easier to implementa buffering scheme
to create a virtual simple prefix B* tree, similar to the virtual B-trees

discussed in the preceding chapter.

m The index set blocks and sequenceset blocks are often mingled with-

in the samefile to avoid seeking between two separate files while
accessing the simple prefix B+ tree. Use of onefile for both kinds of

blocks is simpler if the block sizes are the same.

Internal Structure of Index Set Blocks:

A Variable-Order B-Tree '

Given a large, fixed-size block for the index set, how do westore the sepa-

rators within it? In the examples consideredso far, the block structure is
such that it can contain only a fixed number ofseparators. The entire
motivation behind the use of shortest separators is the possibility of pack-

ing more of them into a node, This motivation disappears completelyif
the index set uses a fixed-order B-tree in which there is a fixed number of

separators per node.
We want each index set block to hold a variable numberof variable-

length separators.How should we go aboutsearching through these sepa-
rators? Since the blocks are probably large, any single block can hold a
large numberof separators. Once we read a block into memoryfor use, we ©

wantto be able to do a binary rather than sequential search onits list of
separators. We therefore need to structure the block so it can support a

binary search,despite the fact that the separatorsare of variable length.
In Chapter 7, which covers indexing, wesee that the useof a separate

index can provide a means of performing binary searcheslists of variable-

https://hemanthrajhemu.github.io

internal Structure of Index Set Blocks: A Variable-Order B-Tree 44]

AsBaBroCChCraDeleEdiErrFaFle 00 02 04 07 08 10 13 17 20 23 25

}+——Concatenated—+| le— Index to separators —|
separators

Figure 10.11 Variable-length separators and corresponding index.

length entities. If the index consists of fixed-length references, we can use

binary searching on the index, retrieving the variable-length records or
fields throughindirection. For example, suppose weare going to place the
followingset of separators into an index block:

As, Ba, Bro, C, Ch, Cra, Dele, Edi, Err, Fa, Fle

(We are using lowercase letters rather than all uppercase letters so you can
find the separators more easily when we merge them.) We could merge

these separators and build an indexfor them,as shownin Fig. 10.11.
If we are using this block of the index set as a road mapto help usfind

the record in the sequence set for “Beck,” we perform a binary search on

the index to the separators, retrievingfirst the middle separator, “Cra,”

whichstarts in position 10. Note that we can find the length of this sepa-
rator by lookingat the starting position of the separator thatfollows. Our

‘binary search eventually tells us that “Beck”falls between the separators
“Ba” and “Bro.” Then what do we do? .

The purpose of the index set road map is to guide us downward
through thelevels of the simple prefix Bt tree, leading us to the sequence
set block we want to retrieve. Consequently, the index set block needs

some wayto store referencesto its children, to the blocks descending from
it in the next lower level of the tree. We assume that the references are

madein terms ofa relative block number (RBN), which is analogous to a

relative record number exceptthat it references a fixed-length block rather
than a record.If there are Nseparators within a block,the block has N+ 1

children and therefore needs space to store N+ 1 RBNsin addition to the

separators and the index to the separators.
There are many ways to combinethelist of separators, the index to

separators, and the list of RBNsinto a single index set block. Onepossible
approachis illustrated in Fig. 10.12. In addition to the vector of separators,

the index to these separators, and the list of associated block numbers,this

block structure includes:

m Separator count: we need this tovhelp us find the middle elementin the
index to the separators so we can begin ourbinary search.

https://hemanthrajhemu.github.io

442 Chapter 10 Indexed Sequential File Access and Prefix B+ Trees

Separator count
[erTotal length of separators

11 28} AsBaBroCChCraDeleEdiEnFaFle 00 02 04 067 08 10 13 17 20 28 25] BOO BOl BO2 BO3 B04 BOS BOG BO7 BOS BO9 B10 Blt

——Separators ——+}e- Index to separators —+\«——Relative block numbers-———»

Figure 10.12 Structure of an index set block.

Separator
subscript:

m Total length ofseparators: the list ofmerged separators varies in length

from blockto block. Since the index to the separators begins at the end
of this variable-length list, we need to know how longthelist is so we

can find the beginningofour index.

Let's suppose, once again, that we are looking for a record with the key
“Beck” and that the search has broughtusto the index set block pictured
in Fig. 10.12. The total length of the separators and the separator count
allow us to find the beginning, the end, and consequently the middle of
the index to the separators. As in the preceding example, we perform a
binary search of the separators throughthis index,finally concluding that

the key “Beck”falls between the separators “Ba” and “Bro.” Conceptually,

the relation between the keys and the RBNsis.illustrated in Fig. 10.13.
As Fig. 10.13 makesclear, discovering that the key falls between. “Ba”

and “Bro”allowsus to decide that the next block we need to retrievehas

the RBN stored in the B02 position of the RBN vector. This next block
could be another index set block and thus another block of the road map,

or it could be the sequence set block that we are lookingfor. In either case,
the quantity and arrangementof information in the current index set

“block is sufficient to let us conduct our binary search within the index
block and proceed to the next block in the simple prefix Bt tree.

There are manyalternate ways to arrange the fundamental compo-
nents of this index block. (For example, wouldit be easier to build the

block if the vector of keys were placed at theend of the block? How would
you handlc the fact that the block consists of both character and integer

0 } 2 3 4 5 6 7 8 9 10

BOO As BO] Ba BO2 Bro BO3 C BOd Ch BOS Cra BOG Dele BO? Edi BOS Err BOO Fa BQ Fle B11

Figure 10.13 Conceptual relationship of separators and relative block numbers.

https://hemanthrajhemu.github.io

10.9

Loading a Simple Prefix Bt Tree 443

entities with no constant, fixed dividing point between them?) For our
purposeshere, the specific implementation details for this particular index

block structure are not nearly as important as the block’s conceptual struc-

ture. This kind of index block structure illustrates two important points.

The first point is that a block is not just an arbitrary chunk cut outof
a homogeneousfile; it can be more thanjust a set of records. A block can
have a sophisticated internalstructureall its own,including its own inter-

nal index, a collection of variable-length records, separate sets of fixed-

length records, and so forth. This idea of building more sophisticated data

structures inside of each block becomesincreasingly attractive as the block

size increases. With very large blocks it becomes imperative that we have
an efficient way of processing all of the data within a block once it has
been read into memory. This point applies not only to simple prefix Bt

trees but to any file structure using a large blocksize.

The second point is that a node within the B-tree index set of our

simple prefix B+ tree is of variable order, since each index set block

contains a variablenumberof separators, This variability has interesting

implications: |

@ The numberofseparators in a blockis directly limited by block size
' yather than by some predetermined order (as in an order mB-tree).

The index set will have the maximum order, and therefore the mini-

mum depth,that is possible given the degree of compression used to

form the separators.

m Since the tree is of variable order, operations such as determining
whena block is full, or half full, are no longer a simple matter of

comparing a separator count against some fixed maximum or mini-

mum. Decisions about whento split, merge, or redistribute become
more complicated.

The exercises at the end of this chapter provide opportunities for

exploring variable-order trees more thoroughly.

Loading a Simple Prefix Bt Tree

In the previous description of the simple prefix B+ tree, we focusfirst on
building a sequence set and subsequently presentthe index set as something

thatis addedor built on top of the sequenceset. It is not only possibleto

conceive of simple prefix B+ trees this way, as a sequence set with an added

index, but one can also build themtiis way.

https://hemanthrajhemu.github.io

444 Chapter 10 Indexed Seque:.iial File Access and Prefix Bt Trees

One wayof building a simple prefix B* tree, of course, isthrough a

series of successive insertions. We would use the procedures outlined in

section 10.6, where we discuss the maintenance of simple prefix Bt trees,

to split or redistribute blocks in the sequence set and in the index set as we
addedblocks to the sequenceset. The difficulty with this approachis that

splitting and redistribution arerelatively expensive. They involve searching
' down through thetree for each insertion then reorganizing the tree as
necessary on the way back up. These operationsarefine for tree mainte-
nance as the tree is updated, but when weare loadingthe tree we do not

have to contend with a random-order insertion andtherefore do not need
procedures that are so-powerful, flexible, and expensive. Instead, we can

begin by sorting the records that are to be loaded. Then we can guarantee

that the next record we encounteris the next record we needto load.
Working from sortedfile, we can place the records into sequenceset

blocks, one by one, starting a new block whenthe one we are working with

fills up. As we makethe transition between two sequenceset blocks, we can
determinethe shortest separatorfor the blocks. We can collect these separa-
tors into an indexset block that we build and hold in memoryuntilit is full.

To develop an example of how this works,let’s assume that we have

sets of records associated with terms that are being compiled for a book
index. The records might consist ofa list of the occurrences of each term.
In Fig. 10.14 we show four sequenceset blocks that have been written out
to the disk and one index set block that has been built in memory from the
shortest separators derived from the sequenceset block keys. As you can

see, the next sequence set block consists of a set of terms ranging from
CATCH through CHECK,andtherefore the next separator is CAT.Let’s
suppose that the index’set block is now full: We write it out to disk. Now,

what do we do with the separator CAT?

Clearly, we need to start a new index block. However, we cannot place

CAT into another index block at the same level as the one containing the

ALWASPRET 00 03] 06 { [| Next separator: CAT

_.\ \ \

Next

ACCESS-ALSO \ ALWAYS-ASK ASPECT--BEST) BETIER-CAST sequence CATCH-CHECK

set block:
 7 7 é

Figure 10.14 Formation ofthe first index set block as the sequencesetis loaded.

https://hemanthrajhemu.github.io

Loading a Simple Prefix B* Tree 445

separators ALW, ASP, and BET because we cannot have two blocksat the

samelevel without having a parent block. Instead, we promote the CAT

separator to a higher-level block. However, the higher-level block cannot
point, directly to the sequence set;-it must point to the lower-level index

blocks. This means that we will now be building twolevels of the indexset

in memoryas webuild the sequenceset. Figure 10.15 illustrates this work-

ing-on-two-levels phenomenon:the addition of the CAT separator requires
us to start a new, root-level index block as well as a lower-level index block.
(Actually, we are working on three levels at once since weare also construct-

ing the sequenceset blocks in memory.) Figure 10.16 shows whatthe index
lookslike after even more sequence set blocks are added. As you cansee, the

lower-level index block that contained no separators when we added CAT
to the root has nowfilled up. To establish that the tree works, do a search

for the term CATCH.Then search for the two terms CASUAL and CATA-
LOG. How can youtell that these terms are not in the sequenceset?

It is instructive to ask what would happen if the last record were

CHECK,so the construction of the sequence sets and index sets would

stop with the configuration shownin Fig. 10.15. The resulting simple

prefix B+ tree would contain an index set node that holds no separators.

This is not an isolated possibility. If we use this sequential loading
- method to build the tree, there will be many points during the loading
process at which there is an empty or nearly empty indexset node.If the
index set grows to more than twolevels, this empty node problem can

occur at even higherlevels of the tree, creating a potentially severe out-of-

caT [|oo}-1]-1 | |

Index block

ALWASPBET| 00 03 06 -i}-1[-1 +— containing no

| il separators

=)

accesso) ALWAYS-ASK J asrecrustJ BETTER-CAST CATCH-CHECK.

/7 9 f

Figure 10.15 Simultaneous building of two indexset levels as the sequenceset

continues to grow.

https://hemanthrajhemu.github.io

446 Chapter 10: Indexed Sequential File Access and Prefix B* Trees

CATDR 00; o8 -1

ALWASPBET

00} 03 06 | | | | CLCOSDE 00 02 05 | | EFHIG 00 Oz 03

\ \ \

ACCESS-ALSO =, onscrser >) os

/ / / 7

\ \ A

eons CATCH-CHECK CLASS~COPY conan oe) *

7 7 7 7 f

\

\ \ —\

. > susan) EFFORT-GROW) = IGNORE-ITEM

i é / / ,

Figure 10.16 Continued growthof index set built up from the sequenceset.

balance problem. Clearly, these empty node and nearly empty node

conditions violate the B-tree rules that apply to the iridex set. However,
once:a tree is loaded and goes into regularuse, the fact that a nodeis

violating B-tree conditions can beused to guarantee that the nodewill be

corrected through the action of normal B-tree maintenance operations.It
is easy to write the procedures for-insertion and deletion so a redistribu-

tion procedure is invoked when an underfull nodeis encountered.

The advantages of loading a simple prefix B+ tree in this way, as a

sequential operation following a sort of the records, almost always

https://hemanthrajhemu.github.io

Bt Trees . 447

outweigh the disadvantages associated with the possibility of creating
blocks that contain too few records or too few separators. The principal

advantageis that the loading process goes more quickly because

The output can be written sequentially;

We make only one pass over the data, rather than the many passes
associated with random orderinsertions; and

Noblocks need to be reorganized as we proceed.

There are two additional] advantages to using a separate loading process
such as the one we have described. These advantagesare related to perfor-
manceafter the tree is loaded rather than performance during loading:

Random insertion produces blocks thatare, on the average, between 67

percent and 80 percentfull, In the preceding chapter, when we were

discussing B-trees, we increased this numberbyusing such mechanisms

as redistribution during insertion rather than just block splitting. But,
still, we never had the option offilling the blocks completely so we had
100 percentutilization. The sequential loading process changesthis.If
we want, we can load the tree so it starts out with 100 percent utiliza-
tion. This is an attractive option if we do not expect to add very many
recordsto the tree.On the other hand, if we anticipate many insertions,

sequential loadingallowsusto select any other degree of utilization that
we want. Sequential loading gives us much more control over the

amount and placement of empty space in the newly loadedtree.

In the loading example presented in Fig. 10.15, we write out thefirst
four sequenceset blocks and then write out the index set block contain-
ing the separators for these sequenceset blocks. If we use the samefile

for both sequenceset and indexset blocks, this process guarantees that

an index set block starts out in physical proximity to the sequenceset
blocks that are its descendants, In other words, our sequential loading

process is creating a degree of spatial locality within ourfile. This local-

ity can minimize seeking as we search downthroughthetree.

10.10 Bt Trees

Ourdiscussions up to this point have focused primarily on simpleprefix

Bt trees. These structures are actually a variant of an approachtofile orga-
nization knownsimplyas a Bt tree. The difference between a simple prefix

https://hemanthrajhemu.github.io

448 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

B+ tree and a plain B*tree is that the latter structure does notinvolve the
use of prefixes as separators. Instead, the separators in the index set are

simply copiesofthe actual keys. Contrast the index set block shownin Fig.
10.17, which illustrates the initial loading steps for a Bt tree, with the index
block thatis illustrated in Fig. 10.14, where we are building a simple prefix

Bt tree.

The operations performed on Bttrees are essentially the sameas those
discussed for simple prefix B+ trees: Both Bt trees and simple prefix Bt
trees consist of a set of records arranged in key order in a sequenceset,

coupled with an index set that provides rapid access to the block contain-

ing any particular key/record combination. The only differenceis that in
the simple prefix B+ tree we build an index set of shortest separators

formed from keyprefixes.
Oneofthe reasons behind ourdecision to focusfirst on simple prefix

B+ trees, rather than on the more general notion of a B*tree, is that we
wantto distinguish betweentherole of the separators in the index set and

keys in the sequenceset. It is much moredifficult to makethis distinction
whenthe separators are exact copies ofthe keys. By beginning with simple

prefix Bt trees, we have the pedagogical advantage of working with sepa-
rators thatareclearly different from the keys in the sequenceset.

But anotherreason for starting-with simple prefix B* trees is that they
are quite often a more desirable alternative than the plain Bt tree. We want
the index set to be as shallow as possible, which implies that we want to
place as many separators into an index set block as we can. Why use

anything longer than the simple prefix in the indexset? In general, the
answer to this question is that we do not, in fact, want to use anything

longer than a simple prefix as a separator; consequently, simple prefix Bt
trees are often a good solution. There are, however, at least two factors that

mightgive favor to using a Bt tree that uses full copies of keys as separators.

ALWAYSASPECTBETTER 001 06 12 | | Next separator: CATCH

 ‘ \

Next

 set block:

_ uN

ACCESS-ALSO) So, ASPECT-BEST BETTER-CAST sequence CATCH-CHECK

otf f

Figure 10.17 Formation ofthefirst index set block in a B+ tree withoutthe use of
shortest separators.

https://hemanthrajhemu.github.io

10.11

B-Trees, Bt Trees, and Simple Prefix B* Trees in Perspective 449

m =The reason for using shortest separatorsis to pack more of them into

an index set block. As we have already said,this implies, ineluctably,

the use of variable-length fields within the index set blocks. For some
applications the cost of the extra overhead required to maintain and
use this variable-length structure outweighs the benefits of shorter

separators. In these cases one might chooseto build a straightforward

Bt tree using fixed-length copies of the keys from the sequencesetas
separators.

m Somekeysets do not show much compression whenthe simpleprefix
methodis used to produce separators. For example, supposethe keys

consist of large, consecutive alphanumeric sequences such as

34C18K756, 34C18K757, 34C18K758, and so on.In this case, to enjoy
appreciable compression, we need to use compression techniquesthat

remove redundancy from the front of the key. Bayer and Unterauer

(1977) describe such compression methods. Unfortunately, they are
more expensive and complicated than simple prefix compression.If
we calculate that tree height remains acceptable with the use of full
copies of the keys as separators, we might elect to use the no-compres-
sion option.

B-Trees, B* Trees, and Simple Prefix B* Trees

in Perspective

In this chapter and the preceding chapter we have looked at a numberof
tools used in building file structures. These tools—B-trees, B+ trees, and

simple prefix B+ trees—have similar-sounding names and a number of
common features. We need a wayto differentiate these tools so we can reli-

ably choose the most appropriate one for a givenfile structure job.
Before addressing this problem of differentiation, however, we should

point out that these are notthe only tools in the toolbox. Because B-trees,

B+ trees, and theirrelatives are such powerful,flexible file structures,it is

easy to fall into the trap of regarding them as the answerto all problems.
This is a serious mistake. Simple index structures of the kind discussed in

Chapter 7, which are maintained wholly in memory, are a much simpler,
neater solution when they suffice for the job at hand. As we saw at the

beginning ofthis chapter, sumple memoryindexesare not limited to direct

access situations. This kind of index can be coupled with a sequenceset of
blocks to provide effective indexed sequential access as well. It is only when

https://hemanthrajhemu.github.io

450 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

the index growsso large that we cannot economically hold it in memory
that we need to turn to paged index structures such as B-trees and B*trees.

In the chapter that follows we encounter yet another tool, knownas
hashing. Like simple memory-based indexes, hashing is an important

alternative to B-trees, B+ trees, and so on. In manysituations, hashing can

provide faster access to a very large numberofrecords than the use of a

memberof the B-tree family can.
So, B-trees, B+ trees, and simple prefix Bt trees are not a panacea.

However, theydo have broad applicability, particularly for situationsthat

require the ability to access a large file sequentially, in order by key, and_

through an index. All three ofthese tools share the following characteristics:

m Theyare all paged index structures, which meansthat they bring entire
blocks of information into memoryat once. As a consequence,it is
possible to choose between a great many alternatives (for example, the

keys for hundreds of thousandsofrecords) with just a few seeks out to
disk storage.The shape of these trees tends to be broad andshallow.

mw All three approaches maintain height-balancedtrees. The trees do not

grow in an uneven way, which would result in some potentially long

searches for certain keys.

m In all cases the trees grow from the bottom up. Balance is maintained

through block splitting, merging, and redistribution.

m With all three structures it is possible to obtain greater storage effi-
ciency throughthe use of two-to-three splitting and ofredistribution
in place of block splitting when possible. These techniques are

described in Chapter9.

m All three approaches can be implemented ds virtual tree structures in

which the most recently used blocks are held in memory. The advan-
tages of virtual trees were described in Chapter9.

m@ Any of these approaches can be adapted for use with variable-length
records using structures inside a block similar to those outlined in this

chapter.

Forall of this similarity, there are some important differences. These
differences are broughtinto focus through a review of the strengths and
unique characteristics of eachofthese file structures.°

B-Trees as Multilevel Indexes

The B-trees of Chapter 9 are multilevel indexes to datafiles that are entry-
sequenced. This is the simplest type of B-tree to implement andis a very

https://hemanthrajhemu.github.io

B-Trees, B* Trees, and Simple Prefix B* Trees in Perspective 451

efficient representation for most cases. The strengths of this approach are
the simplicity of implementation, the inherentefficiency of indexing, and

a maximization of the breadth of the B-tree. The major weakness ofthis
strategy is the lack of organization of thedata file, resulting in an excessive

amount of seeking for sequentialaccess.

B-Trees with Associated Information

This type of B-tree has not been discussed in anydetait but was mentioned

briefly in Section 9.9. These B-trees contain information thatis groupedas
a set of pairs. One memberofeachpairis the key; the other memberis the

associated information. These pairs are distributed over all the nodesof the

B-tree. Consequently, we mightfind the information weare seeking at any
level of the B-tree. This differs from the B-trees of Chapter 9 and Bttrees,

which require all searches to proceed all the way downto the lowest,

sequenceset level of the tree. Becausethis type of B-tree contains the actu-

al keys and associated information andthereis therefore no need for addi-
tional storage to hold separators, a B-tree can take up less space than a

Bt tree.

_ Given a large enough blocksize and an implementation thattreats the

tree as a virtual B-tree; it 1s possible to use a B-tree for ordered sequential

access as well as for indexed access. The ordered sequential access 1s
obtained throughan in-ordertraversalof the tree. The implementation as
a virtual tree is necessary so this traversal does not involve seekingasit

returns to the next highestlevel of the tree. This use of a B-tree for indexed

sequential access works only whenthe record information is stored with-
in the B-tree. If the B-tree merely contains pointers to recordsthat are in

entry sequenceoff in someotherfile, then indexed sequential access isnot

workable because ofall the seeking required to retrieve the record infor-

mation.

B-trees are most attractive when the key comprises a large part of
each record stored in the tree. When the key is only a small part of the

record,it is possible to build a broader, shallower tree using the methods

of Chapter 9.

B+ Trees

The primary. difference between the Bt tree and the B-treeis that in the Bt

tree all the key and record information is contained in a linked set of
blocks knownas the sequence set. The key and record information Is notin
the upper-level, treelike portion of the Bt tree. Indexed access to this

https://hemanthrajhemu.github.io

452 Chapter 10 Indexed Sequential Fite Access and Prefix Bt Trees

sequence set is provided through a conceptually (though not necessarily

physically) separate structure called the index set. In a Bt tree the index set

consists of copies of the keys that represent the boundaries between
sequence set blocks. These copies ofkeys are called separators because they

separate a sequenceset block from its predecessor,
There are three significant advantages that the Bt tree structure

provides over the B-tree:

m The sequence set can be processed in a truly linear, sequential way,

providingefficient access: to records in order by key; and

m The indexis built with a single key or separator per block of data
records instead of one key per data record. Thesize of the lowest-level
index is reduced by the blocking factor of the datafile. Since there are

fewer keys, the index is smaller and hence shallower.

In practice, the latter of these two advantagesis often the more impor-

tant one. The impactofthefirst advantageis lessened by thefact thatit is
often possible to obtain acceptable performance during an in-ordertraver-
sal of a B-tree through the page buffering mechanism ofa virtual B-tree.

Simple Prefix B+ Trees

Wejust indicated that the primary advantage of using a B+ tree instead of

a B-tree is that a Bt tree sometimesallows usto build a shallower tree
because we have fewer keys in the index. The simple prefix B+ tree builds
on this advantage by making the separators in the index set smaller than

the keys in the sequenceset, rather than just using copies of these keys.If
the separators are smaller, we can fit more of them into a block to obtain a

higher branching factor outofthe block. In a sense, the simple prefix Bt
tree takes oneof the strongest features of the Bt tree one step farther.

The price we have to pay to obtain this separator compression and
consequentincrease in branchingfactor is that we must use an indexset
block structure that supports variable-length fields. The question of
whetherthis price is worth thegain is one that has to be considered on a

case-by-case basis.

SUMMARY

Webegin this chapter by presenting a new problem.In previous chapters

we provided either indexed access or sequential access in order bykey,

without findingan efficient way to provide both of these kindsof access.

https://hemanthrajhemu.github.io

Summary 453

This chapter explores oneclass of solutions to this problem,a class based
on the useof a blocked sequence set and an associated indexset.

The sequence set holds all of the file’s data records in order by key.
Since all insertion or deletion operations on thefile begin with modifica-
tions to the sequence set, we start our study of indexed sequentialfile

structures with an examination of a method for managing sequenceset
changes. The fundamentaltools used to insert and delete records while
still keeping everything in order within the sequenceset are ones that we

encountered in Chapter9: block splitting, block merging, and redistribu-
tion of records between blocks. The critical difference between the use
made of these tools for B-trees and the use made hereis thatthere is no
promotion of keysduring blocksplitting in a sequenceset. A sequenceset

is just a linked list of blocks, not a tree; therefore there is no place to

promote anything to.

In this chapter, we also discuss the question of how large to make
sequence set blocks. There is no precise answer we can giveto this question
since conditions vary between applications and environments.In general

a block should be large, but not so large that we cannot hold several blocks
in memoryorread in a block withoutincurringthe costof a seek. In prac-

tice, blocks are often thesize of a cluster (on sector-formatted disks) or the

size of a single disk track.

Once we are able to build and maintain a sequenceset, we turn to the
matter of building an index for the blocks in the sequenceset. If the index
is small enoughto fit in memory, onevery satisfactory solutionis to use a
simple index that might contain, for example, the key for the last record in
every block of the sequenceset.

If the index set turns out to be too largeto fit in memory, we recom-
mend the use of the samestrategy we developed in the preceding chapter

when a simple index outgrowsthe available memory space: we turn the

index into a B-tree. This combination of a sequence set with a B-tree index
set is our first encounter with the structure known as a Bt tree.

_ Before looking at B* trees as complete entities, we take a closer look at
the makeup ofthe index set. The index set does not hold any information
that we would ever seek for its own sake. Instead, an indexsetis used only

as a road map to guide searches into the sequence set. The index set

consists of separatorsthat allow us to choose between sequenceset blocks.
There are many possible separators for any two sequenceset blocks, so we

might as well.choose the shortest separator. The scheme weuseto findthis

shortest separator consists of finding the commonprefix ofthe two keys

on either side of a block boundary in the sequenceset andthen going one

https://hemanthrajhemu.github.io

44 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

letter beyond this commonprefix to define a true separator. A B+ tree with
an index set made up of separators formedin this wayis called a simple

prefix Bt tree.

We study the mechanism used to maintain the indexset as insertions

and deletions are made in the sequence set of a B* tree. The principal
observation we make aboutall of these operations is that the primary

action is within the sequence set, since that is where the records are.
Changesto the indexset are secondary;they are a byproductof the funda-
mental operations on the sequence set. We add a newseparator to the
index set only if we form a new block in the sequenceset; we delete a sepa-

rator from the index set only if we remove a block from the sequence set
through merging. Block overflow and underflow in the index set differ
from the operations on the sequenceset in that the indexset is potentially

a multilevel structure and js therefore handled as a B-tree.
Thesize of blocks in the indexsetis usually the same as the size chosen

for the sequenceset. To create blocks containing variable numbers ofvari-

able-length separators while at the same time supporting binary searching,
we develop an internal structure for the block that consists of block head-

er fields (for the separator count and total separator length), the variable-
length separators, an index to these separators, and a vectorofrelative

block numbers (RBNs)for the blocks descending fromthe index set block.
This illustrates an important general principle about large blocks within.

file structures: they are more than just a slice out of a homogeneoussetof
records; blocks often have a sophisticated internal structure of their own,

apart from the larger structure of thefile.
We turn next to the problem of loading a B* tree. We find thatif we

start with a set of records sorted by key, we can use a single-pass, sequen-

tial process to place these records into the sequenceset. As we move from
block to block in building the sequenceset, we can extract separators and
build the blocks of the index set. Compared with a series of successive
insertions that work down from the topofthe tree, this sequential loading

process is much moreefficient. Sequential loading also lets us choose the
percentage of space utilized,right up to a goal of 100 percent.

The chapter closes with a comparison of B-trees, Bt trees, and simple

prefix B+ trees. These are the primary advantages that B+ trees offer over
B-trees:

mw They support true indexedsequential access; and

m The index set contains fewer elements (one per data block instead of

one per data record) and hence can be smaller and shallower.

https://hemanthrajhemu.github.io

Key Terms ° ™ “ 455

We suggestthat the second of these advantages is often the more
important one, since treating a B-tree as a virtual tree provides acceptable
indexed sequential access in many circumstances. The simple prefix B*

tree takes this second advantage and carries it further, compressing the

separators and potentially producing an even shallower tree. Theprice for

this extra compression in a simple prefix B* tree is that we must deal with
variable-length fields and a variable-ordertree.

KEY TERMS

Bt tree. A B* tree consists of a sequence set of records that are ordered
sequentially by key, along with an index set that provides indexed

access to the records. All of the records are stored in the sequence set.
Insertions and deletions of records are handled bysplitting, concate-

nating, and redistributing blocks in the sequenceset. The indexset,
whichis used only as a findingaid to the blocks in the sequenceset, is
managed as aB-tree.

Index set. The index set consists of separators that provide information
about the boundaries between the blocks in the sequenceset of a Bt
tree. The index set can locate the block in the sequence set that

contains the record correspondingto a certain key.

Indexed sequential access. Indexed sequential access is not a single-access

method but rather a term used to describe situations in which a user
wants both sequential access to records, ordered by key, and indexed
access to those samerecords. Bt trees are just one methodfor provid-
ing indexed sequential access.

Separator. Separators are derived from the.keys of the records on either

side of a block boundaryin the sequenceset.If a given key is in one of
the two blocks on either side of a separator, the separatorréliablytells

the user which of the two blocks holds the key.

Sequence set. The sequencesetis the base level of an indexed sequential

file structure, such as B* tree. It containsall of the recordsin thefile.

Whenreadin logical order, block after block, the sequencesetlists all
of the records in orderbykey.

Shortest separator. Many possible separators can be usedto distinguish
between any two blocks in the sequenceset. The class of shortest sepa-

rators consists of those.separators that take the least space, given a
particular compression strategy. We looked carefully at a compression

https://hemanthrajhemu.github.io

456 Chapter 10 Indexed Sequential File Access and Prefix 8+ Trees

strategy that consists of removing as manyletters as possible from the

rear of the separators, formingthe shortest simpleprefix that canstill

serve as a Separator.

Simple prefix B+ tree. A B+ tree in which the index set is made up of

shortest separators that are simpleprefixes, as describedin the defini-

tion for shortest separator.

Variable order. A B-tree is of variable order when the numberofdirect

descendants from any given nodeofthetree is variable. This occurs
when the B-tree nodes contain a variable numberof keys or separa-
tors. This form is most often used when there is variability in the

lengths of the keys or separators. Simple prefix B+ trees always make
use of a variable-order B-tree as an indexset so it is possible to take
advantage of the compression of separators and place more of them in

a block.

FURTHER READINGS

Theinitial suggestion for the Bt tree structure appears to have.come from
Knuth (1998), although he did not nameor develop the approach. Mostof

the literature that discusses B+ trees in detail (as opposed to describing
specific implementationsis in the form ofarticles rather than textbooks.
Comer (1979) provides whatis perhapsthebest brief overview of Bt trees.
Bayer and Unterauer (1977) offer a definitive article describing techniques
for compressing separators. The article includes consideration of simple

prefix B+ trees as well as a more general approachcalled a prefix Bt tree.

McCreight (1977) describes an algorithm for taking advantage of the vari-
ation in the lengths of separators in the index set of a B+ tree. McCreight’s
algorithm attempts to ensure that short separators, rather than longer
ones, are promoted as blockssplit. The intent is to shape the tree so blocks
higher up in the tree have a greater number of immediate descendents,

thereby creating a shallowertree.
Rosenberg and Snyder (1981) study theeffects ofinitializing a com-

pact B-tree on later insertions and deletions. B-trees are compared with

morerigid indexed sequential file organizations (such as ISAM) in Batory

(1981).
There are many com::.-rcial products that use methodsrelated to the

B+ tree operations described in this chapter, but detailed descriptions of
their underlying file structures are scarce. An exception to this is IBM’s
Virtual Storage Access Method (VSAM), one of the most widely used

https://hemanthrajhemu.github.io

Exercises 457

commercial products providing indexed sequential access. Wagner (1973)

and Keehn and Lacy (1974) provide interesting insights into the early
thinking behind VSAM.Theyalso include considerations of key mainte-
nance, key compression, secondary indexes, and indexes to multiple data

sets. Good descriptions ofVSAMcan be foundin several sources and from

a variety of perspectives: in Comer (1979) (VSAM as an example of a Bt

tree), and Loomis (1989) (with examples from COBOL).

EXERCISES

1. Describe file structures that permit each of the following types of
access: (a) sequential access only; (b) direct access only; (c) indexed

sequential access.

2. A Bt tree structure is generally superior to a B-tree for indexed
sequential access. Since B* trees incorporate B-trees, why not use a Bt
tree whenevera hierarchical indexed structureis called for?

3, Consider the sequence set shownin Fig. 10.1(b). Show the sequence

set after the keys DOVER and EARNESTare added; then ‘showthe
sequenceset after the key DAVISis deleted. Did you use concatenation
or redistribution for handling the underflow?

4, What considerationsaffect your choice of a block size for constructing
a sequence set? If you know something about expected patterns of
access (primarily sequential versus primarily random versus an even

division between the two), how mightthis affect your choice of block

size? On a sector-oriented drive, how mightsectorsize and clustersize
affect your choice of a block size?

5. Itis possible to construct an indexed sequential file without using a

tree-structured index. A simple index like the one developed in
Chapter 7 could beused. Under what conditions might one consider
using such an index? Under what conditions mightit be reasonable to
use a binary tree (such as an AVLtree) ratherthan a B-tree for the

index? |

6. The index set of a Bt tree is just a B-tree, but unlike the B-trees

discussed in Chapter 9, the separators do not have to be keys. Whythe
difference?

7. How does block splitting in the sequenceset of a simple prefix B*tree
differ from block splitting in the index set?

https://hemanthrajhemu.github.io

458 Chapter 10 Indexed Sequential File Access-and Prefix BYTrees * >~ -

10.

il.

12.

13.

If the key BOLENin the simple prefix B+ tree in Fig. 10.7 is deleted
from the sequence set node, howis the separator BO in the parent

nodeaffected? ,

Consider the simple prefix B+ tree shownin Fig. 10.7. Suppose a key

addedto block 5 results in a split of block 5 and the consequentaddi-
tion of block 8, so blocks 5 and 8 appearasfollows:

\ . \ \

.) FARER-FINGER) FINNEY-FOLK) Le

7 7 7

5 8

a. What doesthetree look like after the insertion?

b. Supposethat, subsequent to the insertion, a deletion causes under-

flow and the consequent concatenation of blocks 4 and5. What

does the tree look like after the deletion?

c. Describe a case in which a deletion results in redistribution rather

than concatenation, and show the effect it has on thetree.

Whyis it often a good idea to use the sameblocksize for the indexset

and the sequenceset in a simple prefix B+ tree? Why should theindex
set nodes andthe sequenceset nodesusually be kept in the samefile?

Show a conceptual view of an indexsetblock, similar to the one illus-

trated in Fig. 10.11, that is loaded with the separators

Ab Arch Astron B Bea

Also show a moredetailed view of the index block, as illustrated in

Fig. 10.12.
If the initial set of recordsis sorted by key, the process of loading a B+

tree can be handled by using a single-pass sequential process instead
of randomly inserting newrecordsinto the tree. Whatare the advan-

tages of this approach?

Show howthe simple prefix B+ tree in Fig. 10.16 changes after the
addition of the node

ITEMIZE-JAR

Assumethat the index set node containing the separators EF, H, and

IG does not have room for the new separator butthat there is room in

the root.

https://hemanthrajhemu.github.io

Exercises ' 459

14. Use the data stored in the simple prefix Bt tree in Fig. 10.16 to

‘15.

16,

17.

construct a B+ tree. Assumethat the indexset of the Bt tree is of order
four. Comparethe resulting Bt tree with the simple prefix B* tree.

The use of variable-length separators and/or key compression
changes someofthe rules about howwedefine and use a B-tree and
how we measure B-tree performance.

a. How doesitaffect our definition of the order of a B-tree?

b. Suggest criteria for deciding whensplitting, concatenation, and

redistribution should be performed.
c. Whatdifficulties arise in estimating simple prefix Bt tree height,

‘maximum numberofaccesses, and space?

Make a table comparing B-trees, Bt trees, and simple prefix B* trees
in termsofthe criteria listed below. Assumethat the B-tree nodes do
not contain data records, only keys and corresponding RRNsof data
records. In somecases you will beable to give specific answers based
on a tree’s height or the numberofkeysin the tree. In other cases, the

answers will depend on unknownfactors, such as patterns of access
or average separatorlength.

' a. The numberofaccesses required to retrieve a record from tree of

height h (average, best case, and worst case),

b. The numberofaccesses required to insert a record (best and worst

cases).

c, The numberofaccesses required to delete a record (best and worst
cases).

d. The numberofaccesses required to processa file of n keys sequen-
tially, assuming that each node can hold a maximum of k keys and

a minimum ofk/2 keys (best and worst cases),

e. The numberof accesses required to processa file of 1 keys sequen-
tially, assuming that there are h + 1 node-sized buffers available.

Some commercially available indexed sequentialfile organizationsare

based on block interval splitting approaches very similar to those

used with Bt trees. IBM’s Virtual Storage Access Method (VSAM)

offers the user several file access modes, one of whichis called key-

sequenced access and results in a file being organized much like a Bt
tree. Look up a description of VSAM and report on howits key-

sequenced organizationrelates to a Bt tree, as well as howit offers the

user file-handling capabilities well beyond thoseof a straightforward
Bt tree implementation. (See the Further Readings section of this
chapter for articles and books on VSAM.)

https://hemanthrajhemu.github.io

460 Chapter 10 Indexed Sequential File Access and Prefix Bt Trees

18. Although B+ trees provide the basis for most indexed, sequential

access methods now in use, this was not always the case. A method

called ISAM (see Further Readings for this chapter) was once very

common,especially on large computers. ISAM usesa rigid tree-struc-

tured index consisting of at least two and at mostthree levels. Indexes
at these levels are tailored to the specific disk drive being used. Data

records are organized by track, so the lowest level of an ISAM indexis

called the track index. Since the track index points to the track on
which a data record can bé found, thereis one track index for each
cylinder. When the addition of data records causes a track to over-

flow, the track isnot split. Instead, the extra records are put into a

separate overflow area and chained togetherin logical order. Hence,
every entry in a track index may contain a pointer to the overflow

area, in addition toits pointer to the hometrack.

The essential difference between the ISAM organization and Bt
tree—like organizations—is in the way overflow records are handled.
In the case of ISAM,overflow records are simply addedto a chain of
overflow records—the index structureis notaltered. In the Bt tree
case, overflow records are not tolerated. When overflow occurs, a
block is split, and the index structureis altered to accommodatethe

extra data block. ,

Can you think of any advantages of using the more rigid index
structure of ISAM, with separate overflow areas to handle overflow
records? Why do you think B+ tree—like approaches—are replacing
those that use overflow chains to hold overflow records? Consider the

two approaches in terms of both sequential and direct access,as well

as the addition anddeletion of records.

19, Design and implement a class SequenceSet in thestyle ofclass

BTree. Your. class should include methods Add, Search, and

Delete.

Write a program that accepts a sorted file of strings as input.

Your program should use this insert to build the strings into a

SequenceSetwith the following characteristics:

Thestrings are stored in 15-byte records,

* A sequenceset block is 128 bytes long, and

* Sequence set blocks are doubly linked.

https://hemanthrajhemu.github.io

Programming Project 461

20.

21.

22.

Modify class BTree to support variable-sized keys, with the maxi-

mum numberofkeys per node determined by the actualsize of the

keys rather than by somefixed maximum.

Design and implementclass BplusTree,which puts together the
classes SequenceSet and BTree. B-tree characteristics should be

maintained in the index set; the sequence set should, as before, be

maintained so blocksare alwaysatleast half full. Consider the follow-
ing suggestions:

+ Do not compress the keys as you form the separators for. the index
set.

- Keep BTree nodes in the samefile as the sequenceset blocks. The

header block should contain a reference to the root of the BTree
as well as a reference to the beginning of the sequenceset.

Write a test program that acts on the entire B+ tree that you created in
the preceding exercise. Search, add, and delete capabilities should be
tested, as they are in the earlier update program.

PROGRAMMING PROJECT |

This is the eighth part of the programming project. We create a B+ tree of
student records and of course registration records: This project depends
on the successful completion of exercise 21.

23.

24.

25.

Use class BPlusTreeto create a B-tree index of a studentrecord file

with student identifier as key. Write a driver program to create a B-
tree file from an existing student record file.

Use class BTree to create a B-tree index of a course registration
record file with student identifier as key. Write a driver program to
create a B-treefile from an existing course registration recordfile.

Write a program that opens a B+-tree student file and a B+ tree
courseregistrationfile and retrieves information on demand. Prompt

a user for a student identifier and printall objects that matchit.

The next part of the programmingproject is in Chapter 12.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

