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CHAPTER

Hashing

CHAPTER OBJECTIVES

‘0

Introduce the concept of hashing.

R

Examine the problem of choosing a good hashing algorithm,
present a reasonable one in detail, and describe some others.

o
Q’Q

¢+ Explore three approaches for reducing collisions: randomization of
o)
addresses, use of extra memory, and storage of several records per

address.

%+ Develop and use mathematical tools for analyzing performance
differences resulting from the use of different hashing techniques.

«+ Examine problems associated with file deterioration and discuss
some solutions.

%+ Examine effects of patterns of record access on performance.
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CHAPTER OUTLINE

11.1 Introduction
11.1.1 What Is Hashing?
11.1.2 Collisions ‘
11.2 A Simple Hashing Algorithm
11.3 Hashing Functions and Record Distributions
11.3.1 Distributing Records among Addresses
11.3.2 Some Other Hashing Methods
11.3.3 Predicting the Distribution of Records
11.3.4 Predicting Collisions for a Full File
11.4 How Much Extra Memory Should Be Used?
11.4.1 Packing Density
11.4.2 Predicting Collisions for Different Packing Densities
11.5 Collision Resolution by Progressive Overflow
11.5.1 How Progressive Overflow Works
11.5.2 Search Length
11.6 Storing More Than One Record per Address: Buckets
11.6.1 Effects of Buckets on Performance
11.6.2 Implementation Issues '
11.7 Making Deletions
11.7.1 Tombstones for Handling Deletions
11.7.2 implications of Tombstones for insertions
11.7.3 Effects of Deletions and Additions on Performance
11.8 Other Collision Resolution Techniques
11.8.1 Double Hashing
11.8.2 Chained Progressive Overflow
11.8.3 Chaining with a Separate Overflow Area
11.8.4 Scatter Tables: Indexing Revisited
11.9 Patterns of Record Access

11.1 Introduction

O(1) access to files means that no matter how big the file grows, access to
a record always takes the same, small number of seeks. By contrast,
sequential searching gives us O(N) access, wherein the number of seeks
grows Iin proportion to the size of the file. As we saw in the preceding
chapters, B-trees improve on this greatly, providing O(log; N) access; the
number of seeks increases as the logarithm to the base k of the number of
records, where k is a measure of the leaf size. O(log, N) access can provide
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Introduction 465

very good retrieval performance, even for very large files, but it is still not
O(1) access. A

In a sense, O(1) access has been the Holy Grail of file structure design.
Everyone agrees that O(1) access is what we want to achieve, but until
about ten years ago, it was not clear if one could develop a general class of
O(1) access strategies that would work on dynamic files that change great-
ly in size.

In this chapter we begin with a description of static hashing tech-
niques. They provide us with O(l) access but are not extensible as the file
increases in size. Static hashing was the state of the art until about 1980. In
the followmg chapter we show how research and design work during the
1980s found ways to extend hashmg, and O( ) access, to files that are
dynamic and increase in size over time.

11.1.1 What Is Hashing?

A hash function is like a black box that produces an address every time you
drop in a key. More formally, it is a function h(K) that transforms a key K
into an address. The resulting address is used as the basis for storing and
retrieving records. In Fig. 11.1, the key LOWELL is transformed by the
hash function to the address 4. That is, /(LOWELL) = 4. Address 4 is said
to be the home address of LOWELL.

Hashing is like indexing in that it involves assocmtm0 a key with a
relative record address Hashing dlffers from indexing in two important
ways:

B With hashing, the addresses generated appear to be random—there is
no immediately obvious connection between the key and the location
of the corresponding record, even though the key is used to determine
the location of the record. For this reason, hashing is sometimes
referred to as randomizing.

M With hashing, two different keys may be transformed to the same
address so two records may be sent to the same place in the file. When
this occurs, it is called a collision and some means must be found to

deal with it.

Consider the following simple example. Suppose you want to store
seventy-five records in a file in which the key to each record is a person’s

name. Suppose also that you set aside space for one thousand records. The
key can be hashed by taking two numbers from the ASCII representations
of the first two characters of the name, multiplying these together, then
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466 Chapter 11 Hashing

Address Record

0

1

2

= Key 5
K = LOWELLI
: LOWELL, . . +—LOWELL’s

l home address
K " =Address

5
4

6

Figure 11.1 Hashing the key LOWELL to address 4.

using the rightmost three digits of the result for the address. Table 11.1
shows how three names would produce three addresses. Note that even
though the names are listed in alphabetical order, there is no apparent
order to the addresses. They appear to be in random order. |

11.1.2 Collisions

Now suppose there is a key in the sample file with-the name OLIVIER.
Because the name OLIVIER starts with the same two letters as the name
LOWELL, they produce the same address (004). There is a collision
between the record for OLIVIER and the record for LOWELL. We refer to
keys that hash to the same address as synonyms.

Collisions cause problems. We cannot put two records in the same
space, so we must resolve collisions. We do this in two ways: by choosing
hashing algorithms partly on the basis of how few collisions they are like-
ly to produce and by playing some tricks with the way we store records.

The ideal solution to collisions is to find a transformation algorithm
that avoids collisions altogether. Such an algorithm is called a perfect hash-
ing algorithm. It turns out to be much more difficult to find a perfect hash-
ing algorithm than one might expect. Suppose, for example, that you want
to store 4000 records among 5000 available addresses. It can be shown
(Hanson, 1982) that of the huge number of possible hashing algorithms
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Table 11.1 Asimple hashing scheme

ASCII code

for first two Home
Name letters Product address
BALL 66 65 66 X 65 = 4290 290
LOWELL 76 79 76 % 79 = 6004 004
TREE 84 82 84 x 82 = 6888 888

for doing this, only one out of 10120000 avoids collisions altogether. Hence,
it is usually not worth trying.!

A more practical solution is to reduce the number of collisions to an
acceptable number. For example, if only one out of ten searches for a
record results in a collision, then the average number of disk accesses
required to retrieve a record remains quite low. There are several different
ways to reduce the number of collisions, including the following:

W Spread out the records. Collisions occur when two or more records
" “compete for the same address. If we could find a hashing algorithm
that distributes the records fairly randomly among the available
addresses, then we would not have large numbers of records clustering
around certain addresses. Our sample hash algorithm, which uses only
two letters from the key, is not good on this account because certain
combinations of two letters are quite common in starting names,
while others are uncommon (e.g., compare the number of names that
start with “JO” with the number that start with “XZ”). We need to find

a hashing algorithm that distributes records more randomly. |

B Use extra memory. It is easier to find a hash algorithm that avoids colli-
sions if we have only a few records to distribute among many address-
es than if we have about the same number of records as addresses. Qur
sample hashing algorithm is very good on this account since there are
one thousand possible addresses, and only seventy-five addresses
(corresponding to the seventy-five records) will be generated. The

1. It is not unreasonable to.try to generate perfect hashing functions for small (less than 500), stable
sets of keys, such as might be used to look up reserved words in a programming language. But files
generally contain more than a few hundred keys, or they contain sets of keys that change frequent-
ly, so they are not normally considered candidates for perfect hashing functions. See Knuth (1998),
Sager (1985), Chang (1984), and Chichelli (195"" for more on perfect hashing functions.
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468 Chapter 11 Hashing

obvious disadvantage to spreading out the records is that storage space
is wasted. (In the example, 7.5 percent of the available record space is
used, and the remaining 92.5 percent is wasted.) There is no simple
answer to the question of how much empty space should be tolerated
to get the best hashing performance, but some techniques are provid-
ed later in this chapter for measuring the relative gains in performance
for different amounts of free space.

W Put more than one record at a single address. Up to now we have
assumed tacitly that each physical record location in a file could hold
exactly one record, but there is usually no reason we cannot create our
file in such a way that every file address is big enough to hold several
records. If, for example, each record is 80 bytes long and we create a
file with 512-byte physical records, we can store up to six records at
each file address. Each address is able to tolerate five synonyms.
Addresses that can hold several records in this way are sometimes
called buckets.

In the following sections we elaborate on these collision-reducing
methods, and as we do so we present some programs for managmg hashed
files. '

11.2 A Simple Hashing Algorithm

~

' One goal in choosing any hashing algorithm should be to spread out
records as uniformly as possible over the range of addresses available. The
use of the term hash for this technique suggests what is done to achieve
this. Our dictionary reminds us that the verb to hash means “to chop into
small pieces . .. muddle or confuse.” The algorithm used previously chops
off the first two letters and then uses the resulting ASCII codes to produce
-a number that is in turn chopped to produce the address. It is not very
good at avoiding clusters of synonyms because so many names begin with
the same two letters. .

One problem with the algorithm is that it does not do very much
hashing. It uses only two letters of the key and does little with those two
letters. Now let us look at a hash function that does much more random-
izing, primarily becausc it uses more of the key. It is a reasonably good
basic algorithm and is likely to give good results no matter what kinds of
keys are used. It is also an algorithm that is not too difficult to alter in case--
“a specific instancé of the algorithm does not work well.
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This algorithm has three steps:

1. Represent the key in numerical form.
Fold and add.

3. -Divide by a prime number and use the remainder as the address.

Step 1. Represent the Key in Numerical Form

If the key is already a number, then this step is already accomplished. If it
is a string of characters, we take the ASCII code of each character and use
it to form a number. For example,

76 79 87 69 76 76 32 32 32 32 32 32

LOWELL = .
L O W E L L |& Blanks — |

In this algorithm we use the entire key rather than just the first two
letters. By using more parts of a key, we increase the likelihood that differ-
ences among the keys cause differences in addresses produced. The extra
processing time required to do this is usually insignificant when compared
with the potential improvement in performance.

Step 2. Fold and Add

Folding and adding means chopping off pieces of the number and adding
them together. In our algorithm we chop off pieces with two ASCII
numbers each:

76791876917676132321323213232

These number pairs can be thought of as integer variables (rather than
character variables, which is how they started out) so we can do arithmetic
on them. If we can treat them as integer variables, then we can add them.
This is easy to do in C because C allows us to do arithmetic on characters.
In Pascal, we can use the ord()-function to obtain the integer position of a
character within the computer’s character set.

Before we add the numbers, we have to mention a problem caused by
the fact that in most cases the sizes of numbers we can add together are
limited. On some microcomputers, for example, integer values that exceed
32 767 (15 bits) cause overflow errors or become negative. For example,
adding the first five of the foregoing numbers gives

7679 + 8769 + 7676 + 3232 + 3232 = 30 588
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470 Chapter 11 Hashing

Adding in the last 3232 would, unfortunately, push the result over the
maximum 32 767 (30 588 + 3232 = 33 820), causing an overflow error.
Consequently, we need to make sure that each successive sum is less than
32 767. We can do this by first identifying the largest single value we will
ever add in our summation and then making sure after each step that our

- intermediate result differs from 32 767 by that amount.

In our case, let us assume that keys consist only of blanks and upper-
case alphabetic characters, so the largest addend is 9090, correspondmg to
ZZ. Suppose we choose 19 937 as our largest allowable intermediate result.
This differs from 32 767 by much more than 9090, so we can be confident
(in this example) that no new addition will cause overflow. We can ensure
in our algorithm that no intermediate sum exceeds 19 937 by using the
mod operator, which returns the remainder when one integer is divided by
another:

7679 + 8769 — 16 448 — 16448 mod 19937  — 16448
16 448 + 7676 —24124 — 24 124 mod 19 937 — 4187
4187 +3232 — 7419 — mod 19 937 — 7419
7419 + 3232 — 10651 — mod 19937 — 10651
10651 +3232 — 13883 —13883mod 19937 — 13883

The number 13 883 is the result of the fold-and-add operation.

Why did we use 19 937 as our upper bound rather than, say, 20 000?
Because the division and subtraction operations associated with the mod
operator are more than just a way of keeping the number small; they are
part of the transformation work of the hash function. As we see in the
discussion for the next step, division by a prime number usually produces
a more random distribution than does transformation by a nonprime. The
number 19 937 is prime. |

Step 3. Divide by the Size of the Address Space

The purpose of this step is to cut down to size the number produced in
step 2 so it falls within the range of addresses of records in the file. This can
be done by dividing that number by a number that is the address size of
the file, then taking the remainder. The remainder will be the home
address of the record.

We can represent this operation symbolically as follows: if s represents
the sum produced in step 2 (13 883 in the example), 1 represents the divi-
sor (the number of addresses in the file), and a represents the address we
are trying to produce, we apply the formuld

a=smodn
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The remainder produced by the mod operator will be a number
between 0 and n— 1. o - o
"' Suppose, for example, that we decide to use the 100 addresses 099 for
our file. In terms of the preceding formula,

=13 883 mod 100
= 83

Since the number of addresses allocated for the file does not have to be
any specific size (as long as it is big enough to hold all of the records to be
stored in the file), we have a great deal of freedom in choosing the divisor
n. It is a good thing that we do, because the choice of n can have a major
effect on how well the records are spread out.

A prime number is usually used for the divisor because primes tend to
distribute remainders much more uniformly than do nonprimes. A
nonprime can work well in many cases, however, especially if it has no
prime divisors less than 20 (Hanson, 1982). Since the remainder is going
to be the address of a record, we choose a number as close as possible to
the desired size of the address space. This number determines the size of
the address space. For a file with 75 records, a good choice might be 101,
which would leave the file 74.3 percent full (74/101 = 0.743).

If 101 is the sizé of the address space, the home address of the record
in the example becomes

a=13 883 mod 101
=.46

Hence, the record whose key is LOWELL is assigned to record number 46
in the file. .

This procedure can be carried out with the function Hash in Fig. 11.2.
Function Hash takes two inputs: key, which must be an array of ASCII
codes for at least twelve characters, and maxAddress, which has the maxi-
mum address value. The value returned by Hash is the address.

int Hash (char key[12], int maxAddress)
{
int sum = 0;
for-(int 3 = 0; j < 12; j += 2)
sum = (sum * 100 * key[j] * key[j+1]) % 19937;
return sum % maxAddress;
)

Figure 11.2 Function Hash uses folding and prime number division to
compute a hash address for a twelve-character string.
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472 Chapter 11 Hashing

11.3 . Hashing Functions and Record Distributions

Of the two hash functions we have so far examined, one spreads out
records pretty well, and one does not spread them out well at all. In this
section we look at ways to describe distributions of records in files.
Understanding distributions makes it easier to discuss other hashing
methods.

11.3.1 Distributing Records among Addresses

Figure 11.3 illustrates three different distributions of seven records among
ten addresses. Ideally, 2 hash function should distribute records in a file so
there are no collisions, as illustrated by distribution (a). Such a distribu-
tion is called uniform because the records are spread out unlformly among
the addresses. We pointed out earlier that completely uniform distribu-
tions are so hard to find it is generally not con51dered worth trying to find
them.

Distribution (b) illustrates the worst possible kind of distribution. All
records share the same home address, resulting in the maximum number
of collisions. The more a distribution looks like this one, the more that
collisions will be a problem.

Distribution (c) illustrates a distribution in which the records are
somewhat spread out, but with a few collisions. This is the most likely case
if we have a function that distributes keys randomly. If a hash function is
random, then for a given key every address has the same likelihood of:
being chosen as every other address. The fact that a certain address_is
chosen for one key neither diminishes nor increases the likelihood that the
same address will be chosen for another key.

It should be clear that if a random hash function is used to generate a
large number of addresses from a large number of keys, then simply by
chance some addresses are going to be generated more often than others. If
you have, for example, a random hash function that generates addresses
between 0 and 99 and you give the function one hundred keys, you would
expect some of the one hundred addresses to be chosen more than once
and some to be chosen not at all. '

Although a random distribution of records among available addresses
is not ideal, it is an acceptable alternative given that it is practically impos-
sible to find a function that allows a uniform distribution. Uniform distri-
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. Best Worst Acceptable
Record Address . Record Address Record Address
1 1 1
A 2 A 2 A 2
3 3 3
B B B
4 4 4
C 5 C 5 C 5
D D D
6 6 6
E E E
7 7 7
F 8 F 8 F 8
¢ 9 ¢ 9 G 9
10 10 10

(a) (b) (c)

Figure 11.3 Different distributions. (a) No synonyms (uniform).(b) All
synonyms (worst case).(c) A few synonyms.

butions may be out of the question, but there are times when we can find
distributions that are better than random in the sense that, while they do
generate a fair number of synonyms, they spread out records among
addresses more uniformly than does a random distribution.

11.3.2 Some Other Hashing Methods

It would be nice if there were a hash function that guaranteed a better-
than-random distribution in all cases, but there is not. The distribution
generated by a hashing function depends on the set of keys that are actu-
ally hashed. Therefore, the choice of a proper hashing function should
involve some intelligent consideration of the keys to be hashed, and
perhaps some experimentation. The approaches to choosing a reasonable
hashing function covered in this section are ones that have been found to
work well, given the right circumstances. Further details on these and
other methods can be found in Knuth (1998), Maurer (1975), Hanson

(1982), and Sorenson et al. (1978).
Here are some methods that are potentially better than random:

B Exarmine keys for a pattern. Sometimes keys fall in patterns that natu-
rally spread themselves out. This is more likely to be true of numer-

ic keys than of alphabetic keys. For example, a set of employee
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474 Chapter 11 Hashing

identification numbers might be ordered according to when the
employees entered an organization. This might even lead to no
synonyms. If some part of a key shows a usable underlying pattern, a
hash function that extracts that part of the key can also be used.

B Fold parts of the key. Folding is one stage in the method discussed earli-

~er. It involves extracting digits from part of a key and adding the
extracted parts together. This method destroys the original key
patterns but in some circumstances may preserve the separation
between certain subsets of keys that naturally spread themselves out.

B Divide the key by a number. Division by the address size and use of the
remainder usually is involved somewhere in a hash function since the
purpose of the function is to produce an address within a certain
range. Division preserves consecutive key sequences, so you can take
advantage of sequences that effectively spread out keys. However, if
there are several consecutive key sequences, division by a number that
has many small factors can result in many collisions. Research has
shown that numbers with no divisors less than 19 generally avoid this
problem. Division by a prime is even more likely than division by a
nonprime to generate different results from different consecutive
sequences.

The preceding methods are designed to take advantage of natural
orderings among the keys. The next two methods should be tried when,
for some reason, the better-than-random methods do not work. In these
cases, randomization is the goal.

M Square the key and take the middle. This popular method (often
called the mid-square method) involves treating the key as a single
large number, squaring the number, and extracting whatever
number of digits is needed from the middle of the result. For exam-
ple, suppose you want to generate addresses between 0 and 99. If the
key is the number 453, its square is 205 209. Extracting the middle
two digits yields a number between 0 and 99, in this case 52. As long
as the keys do not contain many leading or trailing zeros, this
method usually produces fairly random results. One unattractive
feature of this method is that it often requires multiple prec151on
arithmetic.

M Radix transformation. This method involves converting the key to
some number base other than the one you are working in, then taking
the result modulo the maximum address as the hash address. For
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example, suppose you want to generate addresses between 0 and 99. If
_the key is the decimal number 453, its base 11 equivalent is 382; 382
mod 99 = 85, so 85 is the hash address.

Radix transformation is generally more reliable than the mid-square
method for approaching true randomization, though mid-square has been
found to give good results when applied to some sets of keys.

11.3.3 Predicting the Distribution of Records

Given that it is nearly impossible to achieve a uniform distribution of
records among the available addresses in a file, it is important to be able to
predict how records are likely to be distributed. If we know, for example,
that a large number of addresses arz likely to have far more records
assigned to them than they can hold, then we know that there are going to
be a lot of collisions.

Although there are no nice mathematical tools available for predicting
collisions among distributions that are better than random, there are
mathematical tools for understanding just this kind of behavior when
records are distributed randomly. If we assume a random distribution
(knowing that very likely it will be better than random), we can use these
tools to obtain conservative estimates of how our hashing method is like-

ly to behave.

The Poisson Distribution?

We want to predict the number of collisions that are likely to occur in a file
that can hold only one record at an address. We begin by concentrating on
what happens to a single given address when a hash function is applied to
a key. We would like to answer the following questions: When all of the
keys in a file are hashed, what is the likelthood that

®  None will hash to the given address?
M Exactly one key will hash to the address?
M Exactly two keys will hash to the address (two synonyms)?

2. This section develops a formula for predicting the ways in which records will be distributed among
addresses in a file if a random hashing function is used. The discussion assumes knowledge of
some elementary concepts of probability and combinatorics. You may want to skip the develop-
ment and go straight to the formula, which is introduced in the next section.
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B Exactly three, four, and so on keys will hash to the address?
m  All keys in the file will hash to the same given address?

Which of these outcomes would you expect to be fairly likely, and
which quite unlikely? Suppose there are N addresses ir a file. When a
single key is hashed, there are two possible outcomes with respect to the
given address:

A—The address is not chosen; or

B—The address is chosen.

How do we express the probabilities of the two outcomes? If we let
both p(A) and a stand for the probability that the address is not chosen,
and p(B) and b stand for the probability that the address is chosen, then

p(B)=b=—

since the address has one chance in N of being chosen, and

N 1 1 <
pA)=a=—-=1- —
N N
since the address has N — 1 chances in N of not being chosen. If there are
10 addresses (N = 10), the probability of our address being chosen is b =
1/10 = 0.1, and the probability of the address not being chosenisa=1 -
0.1=0.9.

Now suppose two keys are hashed. What is the probability that both
keys hash to our given address? Since the two applications of the hashing
function are independent of one another, the probablhty that both will
produce the given address is a product:

p(BB)=bxb=--x-L1 forN=10:b b=0.1x0.1=0.01
N N

Of course, other outcomes are possible when two keys are hashed. For
example, the second key could hash to an address other than the given
address. The probability of this is the product

p(BA)=bxa=-1—x1——1— for N=10:bxa=0.1 x0.9=0.09
N N

In general, when we want to know the probability of a certain
sequence of outcomes, such as BABBA, we can replace each A and Bby a
~and b, respectively, and compute the indicated product:
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p(BABBA)=bxax bx bxa=a2b3=(0.9)2(0.1)%.

This example shows how to find the probability of three Bs and two
As, where the Bs and As occur in the order shown. We want to know the
probability that there are a certain number of Bs and As, but without
regard to order. For example, suppose we are hashing four keys and we
want to know how likely it is that exactly two of the keys hash to our
given address. This can occur in six ways, all six ways having the same

probability:

Outcome Probability For N=10

BBAA bbaa = b2a? (0.1)2(0.9)2 = 0.0036
BABA " baba = b2a? (0.1)2(0.9)2 = 0.0036
BAAB baab = b2a? (0.1)2(0.9)2 = 0.0036
ABBA abba = b2a? (0.1)%(0.9)2 = 0.0036
ABAB abab = bia? (0.1)2(0.9)2 = 0.0036
AABB aabb = b2a? (0.1)2(0.9)2 = 0.0036

Since these six sequences are independent of one another, the proba-
bility of two Bs and two As is the sum of the probabilities of the individual
outcomes:

p(BBAA) + p(BABA) +. .. + p(AABB) = 6b2a? = 6 X 0.0036 = 0.0216.

The 6 in the expression 6b%a? represents the number of ways two Bs and
two As can be distributed among four places.

In general, the event “r trials result in r — x As and x Bs” can happen in
as many ways as r — x letters A can be distributed among r places. The
probability of each such way is

ar-xpx
and the number of such ways is given by the formula
_ r
(r—x)!x!

This is the well-known formula for the number of ways of selecting x
items out of a set of r items. It follows that when r keys are hashed, the
probability that an address will be chosen x times and not chosen r — x

times can be expressed as

p(x) = Car-xhx
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Furthermore, if we know that there are N addresses available, we can be
precise about the individual probabilities of A and B, and the formula

becomes
1 71
=Ci{l-— —
p=c (-]

where C has the definition given previously.

What does this mean? It means that if, for example, x = 0, we can
compute the probability that a given address will have 0 records assigned
to it by the hashing function using the formula

)

If x = 1, this formula gives the probability that one record will be-assigned

to a given address:
1 r-1 1 1
=5 [
P N

p(0)=C

N

This expression has the disadvantage that it is awkward to compute.
(Try it for 1000 addresses and 1000 records: N = r = 1000.) Fortunately,
for large values of N and r, there is a function that is a very good approx-
imation for p(x) and is much easier to compute. It is called the Poisson
function.

The Poisson Function Applied to Hashing

The Poisson function, which we also denote by p(x), is given by

(r/N)x e =(v/N)
x!

| plx)=

where N, r, x, and p(x) have exactly the same meaning they have in the
previous section. That is, if

N = the number of available addresses;
r = the number of records to be stored; and
x = the number of records assigned to a given address,

then p(x) gives the probability that a given address will have had x records

assigned to it after the hashing function has been applied to all # records.
Suppose, for example, that there are 1000 addresses (N = 1000) and

1000 records whose keys are to be hashed to the addresses (r=1000). Since
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r/N = 1, the probability that a given address will have no keys hashed to it
(x=0) becomes
10 g-1
p(0) = =0.368
0!
The probabilities that a given address will have exactly one, two, or
three keys, respectively, hashed to it are

11 -1

p(1) = =0.368
2 p-1 )

p(2) =2 = 0184
3 -1

p(3) =187 —0.061

- If we can use the Poisson function to estimate the probability that a
given address will have a certain number of records, we can also use it to
predict the number of addresses that will have a certain number of records
assigned. .

For example, suppose there are 1000 addresses (N = 1000) and 1000
records (= 1000). Multiplying 1000 by the probability that a given address
will have x records assigned to it gives the expected total number of
addresses with x records assigned to them. That is, 1000p(x) gives the
number of addresses with x records assigned to them.

In general, if there are N addresses, then the expected number of
addresses with x records assigned to them is

Np(x)

This suggests another way of thinking about p(x). Rather than think-
ing about p(x) as a measure of probability, we can think of p(x) as giving
the proportion of addresses having x logical records assigned by hashing.

Now that we have a tool for predicting the expected proportion of
addresses that will have zero, one, two, etc. records assigned to them by a
random hashing function, we can apply this tool to predicting numbers of
collisions.

11.3.4 Pre.dicting Collisions for a Full File

Suppose you have a hashing function that you believe will distribute records
randomly and you want to store 10 000 records in 10 000 addresses. How
many addresses do you expect to have no records assigned to them?
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Since r =10 000 and N = 10 000, /N = 1. Hence the proportion of
addresses with O records assigned should be

10 g-1

p(0) = = 0.3679

The number of addresses with no records assigned is
10 000 X p(0) = 3679

- How many addresses should have one, two, and three records
assigned, respectively?

10 000 X p(1) = 0.3679 x 10 000 = 3679
10 000 X p(2) = 0.1839 x 10 000 = 1839
10 000 x p(3) = 0.0613 x 10 000 =613

Since the 3679 addresses corresponding to x = 1 have exactly one
record assigned to them, their records have no synonyms. The 1839
addresses with two records apiece, however, represent potential trouble. If
each such address has space only for one record, and two records are
assigned to them, there is a collision. This means that 1839 records will fit
into the addresses, but another 1839 will not fit. There will be 1839 over-
flow records.

Each of the 613 addresses with three records apiece has an even
bigger problem. If each address has space for only one record, there will
be two overflow records per address. Corresponding to these addresses
will be a total of 2 x 613 = 1226 overflow records. This is a bad situation.
We have thousands of records that do not fit into the addresses assigned
by the hashing function. We need to develop a method for handling
these overflow.records. But ﬁrst let’s try to reduce the number of over-
flow records.

11.4 How Much Extra Memory Should Be Used?

We have seen the impoftance of choosing a good hashing aloorithm to

thereby decrease the average search length) is to use extra memory The
tools developed in the previous section can be used to help us determine
the effect of the use of extra memory on performance.
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11.4.1 Packing Density

The term packing density réfers to the ratio of the number of records to be
stored () to the number of available spaces (V)3

. . .
Number of records

L= packing densit
Number of spaces N 4

For example, if there are 75 records (n=75) and 100 addresses (N =100),
the packing density is

75
100

= 0. 75 75%

The packing density gives a measure of the amount of space in a file
that is used, and it is the only such value needed to assess performance in
a hashing environment, assuming that the hash method used gives a
reasonably random distribution of records. The raw size of a file and its
address space do not matter; what is important is the relative sizes of the
two, which are given by the packing density.

Think of packing density in terms of tin cans lined up on a 10-foot

length of fence. If there are ten tin cans and you throw a rock; there is a
certain likelihood that you will hit a can. If there are twenty cans on the
same length of fence, the fence has a higher packing density and your rock
is more likely to hit a can. So it is with records in a file. The more records
there are packed into a given file space, the more likely it is that a collision
will occur when a new record is added.’ '
B We need to decide how much space we are willing to waste to reduce
the number of collisions. The answer depends in large measure on partic-
ular circumstances. We want to have as few collisions as possible, but not,
for example, at the expense of requiring the file to use two disks instead
of one. '

11.4.2 Predicting Collisions for Different Packing Densities

We need a quantitative description of the effects of changing the packing
density. In particular, we need to be able to predict the number of colli-
sions that are likely to occur r for a given packing density. Fortunately, the
Poisson function prowdes us with just the tool to do this.

3. We assume here that only one record can be stored at each address. In fact, that is not necessarily
the case, as we see later.

heé¢eps://hemanthrajhemu.github.io



482 Chapter 11 Hashing

You may have noted already that the formula for packing density (r/N)

occurs twice in the Poisson formula
o) = (r/N)x ¢ ~(/N)
x!

Indeed, the numbers of records (r) and addresses (N) always occur togeth-
er as the ratio r/N. They never occur independently. An obvious implica-
tion of this is that the way records are distributed depends partly on the
ratio of the number of records to the number of available addresses, and
not on the absolute numbers of records or addresses. The same behavior is
exhibited by 500 records distributed among 1000 addresses as by 500 000
records distributed among 1 000 000 addresses.

Suppose that 1000 addresses are allocated to hold 500 records in a
randomly hashed file, and that each address can hold one record. The
packing density for the file is

RAE U

N 1000

Let us answer the following questions about the distribution of

records among the available addresses in the file:

® How many addresses should have no records assigned to them?

B How many addresses should have exactly one record assigned (no
synonyms)? . |

B How many addresses should have one record plus one or more
synonyms? - -

M Assuming that only one record can be assigned to each home address,
how many overflow records can be expected?

M What percentage of records should be ovérflow records?

1. How many addresses should have no records assigned to them? Since
p(0) gives the proportion of addresses with no records assigned, the
number of such addresses is

0,-05
Np(0) = 1000 x (—0—5)—f—-

= 1000 x 0.607
= 607

2. How many addresses should have exactly one record assigned (no
synonyms)?
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1,05
Np(1) = 1000 x@é)—f—
= 1000 x 0.303

=303

3. How many addresses should have one record plus one or more
synonyms? The values of p(2), p(3), p(4), and so on give the propor-
tions of addresses with one, two, three, and so on ‘synonyms
assigned to them. Hence the sum

p2)+p(3) +p(4) +...

gives the proportion of all addresses with at least one synonym.
This may appear to require a great deal of computation, but it
doesn’t since the values of p(x) grow quite small for x larger than
3. This should make intuitive sense. Since the file is only 50
percent loaded, one would not expect very many keys to hash to
any one address. Therefore, the number of addresses with more
than about three keys hashed to them should be quite small. We
need only compute the results up to p(5) before they become
insignificantly small:

p(2) + p(3) + p(4) + p(5) = 0.0758 + 0.0126 + 0.0016 + 0.0002
= 0.0902

The number of addresses with one or more synonyms is just the
product of N and this result:

Nip(2) + p(3) +...] =1000 x 0.0902
=90

4. Assuming that only one record can be assigned to each home address,
how many overflow records could be expected? For each of the
addresses represented by p(2), one record can be stored at the
address and one must be an overflow record. For each address
represented by p(3), one record can be stored at the address, two are
overflow records, and so on. Hence, the expected number of over-
flow records is given by

IX Nxp(2) +2x Nxp(3) +3x Nx p(4) + 4 x Nx p(5)
=Nx[1xp(2)+2xp(3)+3xp(4) +4xp(5)]
= 1000 x [1A>‘< 0.0758 + 2% 0.0126 + 3 x 0.0016 + 4 x 0.0002]
=107
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5. What percentage of records should be overflow records? If there are 107
overflow records and 500 records in aH then the proportion of
overflow records is

107 =0.124 =21.4%

Conclusion: if the packing density is 50 percent and each address can
hold only one record, we can expect about 21 percent of all records to be
stored somewhere other than at their home addresses.

Table 11.2 shows the proportion of records that are not stored in their
home addresses for several different packing densities. The table shows
that if the packing density is 10 percent, then about 5 percent of the time
we try to access a record, there is already another record there. If the densi-
ty is 100 percent, then about 37 percent of all records collide with other

' records at their home addresses. The 4.8 percent collision rate that results
when the packing density is 10 percent looks very good until you realize
that for every record in your file there will be nine unused spaces!

The 36.8 percent that results from 100 percent usage looks good when
viewed in terms of 0 percent unused space. Unfortunately, 36.8 percent
doesn’t tell the whole story. If 36.8 percent of the records are not at their

Table 11.2 Effect of packing density on the proportlon
of records not stored at their home addresses

~ Packing Synonyms as
density (percent) percent of records

10 4.8

20 9.4

30 13.6

40 17.6

50 214

60 248

70" 28.1

30 31.2

90 34.1

100 36.8
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home addresses, then they are somewhere else, probably in many cases
using addresses that are home addresses for other records. The more home-
less records there are, the more contention there is for space with other
homeless records. After a while, clusters of overflow records can form, lead-
ing in some cases to extremely long searches for some of the records.
Clearly, the placement of records that collide is an important matter. Let us
now look at one simple approach to placing overflow records.

11.5 Collision Resolution by Progressive Overflow

Even if a hashing algorithm is very good, it is likely that collisions will
occur. Therefore, any hashing program must incorporate some method for
dealing with records that cannot fit into their home addresses. There are a
number of techniques for handling overflow records, and the search for
ever better techniques continues to be a lively area of research. We exam-
ine several approaches, but we concentrate on a very simple one that often
works well. The technique has various names, including progressive over-
flow and linear probing.

11.5.1 How Progressive Overflow Works

Anexample of a situation in which a collision occurs is shown in Fig. 11.4.
In the example, we want to store the record whose key is York in the file.
Unfortunately, the name York hashes to the same address as the name
Rosen, whose record is already stored there. Since York cannot fit in its
home address, it is an overflow record. If progressive overflow is used, the
next several addresses are searched in sequence until an empty one is
found. The first free address becomes the address of the record. In the
example, address 9 is the first record found empty, so the record pertain-
ing to York is stored in address 9. |

Eventually we need to find York’s record in the file. Since York still
hashes to 6, the search for the record begins at address 6. It does not find
York’s record there, so it proceeds to look at successive records until it gets
to address 9, where it finds York.

An interesting problem occurs when there is a search for an open
space or for a record at the end of the file. This is illustrated in Fig. 11.5, in
which it is assumed that the file can hold 100 records in addresses 0-99.
Blue is hashed to record number 99, which is already occupied by Jello.
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0

[

5 Novak . . . )

6 Rosen . . . l«— York’s home
address (busy)

7 Jasper. . . le—2nd try (busy)

8 Moreley . . . _ [ ¢—3rd try (busy)

9 le——4th try (open)
York’s actual
address

Figure 11.4 Collision resolution with progressive overflow.

Since the file holds only 100 records, it is not possible to use 100 as the next
address. The way this is handled in progressive overflow is to wrap around.
the address space of the file by choosing address 0 as the next address.
Since address 0 is not occupied in this case, Blue gets stored in address 0.
 What happens if there is a search for a record but the record was never
placed in the file? The search begins, as before, at the record’s home
address, then proceeds to look for it in successive locations. Two things can
happen: |

W Ifan open address is encountered, the searching routine might assume
this means that the record is not in the file; or

B If the file is full, the search comes back to where it began. Only then is
it clear that the record is not in the file. When this occurs, or even
when we approach filling our file, searching can become intolerably
slow, whether or not the record being sought is in the file.

The greatest strength of progressive overflow is its simplicity. In many
cases, it is a perfectly adequate method. There are, however, collision-
handling techniques that perform better than progressive overflow, and we
examine some of them later in this chapter. Now let us look at the effect of
progressive overflow on performance. 7

heé¢eps://hemanthrajhemu.github.io



Collision Resolution by Progressive Overflow 487

0 —
1
2
3
—Key
Blue l
Hash 38
ini —Address
outize, —Lb 99 | Jello.
Wrapping around

Figure 11.5 Searching for an address beyond the end of a file.

11.5.2 Search Length

The reason to avoid overflow is, of course, that extra searches (hence, extra
disk accesses) have to occur when a record is not found in its home
address. If there are a lot of collisions, there are going to be a lot of over-
flow records taking up spaces where they ought not to be. Clusters of
records can form, resulting in the placement of records a long way from
home, so many disk accesses are required to retrieve them.

Consider the following set of keys and the corresponding addresses
produced by some hash function.

Key - Home Address
Adams 20
Batés 21
Cole 21
Dean 22
‘Evans 20

If these records are loaded into an empty file and progressive overflow
is used to resolve collisions, only two of the records will be at their home
addresses. All the others require extra accesses to retrieve. Figure 11.6
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Number of-

-Actual Home accesses needed.
address address to retrieve

0

20 Adams. . . | 20 1.

21 Bates: . . 21 1'

22 Cole.. . . 21 2

23 Dean. . . 22 2

24 Evans. . . 20 5

25

Figure 11.6 illustration of the effects of clustering of records. As keys are clus-
tered, the number of accesses required to access later keys can become large.

shows where each key is stored, together with information on how many
+ accesses are required to retrieve it. |

The term search length refers to the number of accesses required to
retrieve a record from secondary memory. In the context of hashing, the
search length for a record increases every time there is a collision. If a
record is a long way from its horne address, the search length may be unac-
search length The average search length is the average number of times
you can expect to have to access the disk to retrieve a record. A rough esti-
mate of average search length may be computed by finding the total search
length (the sum of the search lengths of the individual records) and divid-
ing this by the number of records:

Average search length = fotal search length .
cam total number of records

In the example, the average search length for the five records is
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1+1+2+2+5
5

=22

With no collisions at all, the-average search length is 1, since only one
access is needed to retrieve any record. (We indicated earlier that an algo-
rithm that distributes records so evenly no collisions occur is appropriate-
ly called a perfect hashing algorithm, and we mentioned that,
unfortunately, such an algorithm is almost impossible to construct.) On
the other hand, if a large number of the records in a file results in colli-
sions, the average search length becomes quite long. There are ways to esti-
rhate the expected average search length, given various file specifications,
and we discuss them in a later section.

It turns out that, using progressive overflow, the average search length
increases very rapidly as the packing density increases. The curve in Fig.
11.7, adapted from Peterson (1957), illustrates the problem. If the packing
density is kept as low as 60 percent, the average record takes fewer than two
tries to access, but for a much more desirable packing density of 80 percent
or more, it increases very rapidly.

Average search lengths of greater than 2.0 are generally considered
unacceptable, so it appears that it is usually necessary to use less than 40
percent of your storage space to get tolerable performance. Fortunately, we
can improve on this situation substantially by making one small change to

5
4
Average 3 o <
search .
1
ength 9
1

20 40 60 80 100

Figure 11.7 Average search length versus packing density in a hashed file in
which one record can be stored per address, progressive overflow is used to
resolve collisions, and the file has just been loaded.
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our hashing program. The change involves putting more than one record
at a single address.

11.6 Storing More Than One Record per
Address: Buckets

Recall that when a computer receives information from a disk, it is just
- about as easy for the I/O system to transfer several records as it is to trans-
fer a single record. Recall too that sometimes it might be advantageous to
think of records as being grouped together in blocks rather than stored
individually. Therefore, why not extend the idea of a record address in a
file to an address of a group of records? The word bucketis sometimes used
to describe a block of records that is retrieved in one disk access, especial-
ly when those records are seen as sharing the same address. On sector-
addressing disks, a bucket typically consists of one or more sectors; on
block-addressing disks, a bucket might be a block. '
Consider the following set of keys, which is to be loaded into a

hash file.
Key Home Address
Grleen 30
Hall 30
Jenks 32
King 33
Land 33
Marx 33
Nutt 33

Figure 11.8 illustrates part of a file into which the records with these keys
are loaded. Each-address in the file identifies a bucket capable of holding
the records corresponding to three synonyms. Only the record corre-
sponding to Nutt cannot be accommodated in a home address.

When a record is to be stored or retrieved, its home bucket address is
determined by hashing. The entire bucket is loaded into primary memory.
An in-memory search through successive records in the bucket can then
be used to find the desired record. When a bucket is filled, we still have to
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Bucket contents

Green . . . Hall . . .
Jenks . . .
(Nutt. . .is
King . . . Land. . . Marks . . . an overflow
‘ record)

Figure 11.8 Anillustration of buckets.Each bucket can hold up to three
records. Only one synonym (Nutt) results in overflow.

worry about the record overflow problem (as in the case of Nutt), but this
occurs much less often when buckets are used than when each address can
hold only one record.

11.6.1 Effects of Buckets on Performance

When buckets are used, the formula used to compute packing density is
changed slightly since each bucket address can hold more than one record.
To compute how densely packed a file is, we need to consider both the
number of addresses (buckets) and the number of records we can put at
each address (bucket size). If N is the number of addresses and b is the
number of records that fit in a bucket, then bNis the number of available
locations for recbrds. If ris still the number of records in the file, then

Packing density = T
g £y N
Suppose we have a file in which 750 records are to be stored. Consider

the following two ways we might organize the file.

B We can store the 750 data records among 1000 locations, where each
location can hold one record. The packing density in this case is

_75_0_:75%

1000
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B We can store the 750 records among 500 locations, where each loca-
tion has a bucket size of 2. There are still 1000 places (2 X 500) to store
the 750 records, so the packing density is still

r —

=0.75 = 75%

Since the packing density is not changed, we might at first not expect
the use of buckets in this way to improve performance, but in fact it does
improve performance dramatically. The key to the improvement is that,
although there are fewer addresses, each individual address has more room
for variation in the number of records assigned to it.

Let’s calculate the difference in performance for these two ways of
storing the same number of records in the same amount of space. The
starting point for our calculations is the fundamental description of each
file structure.

File without buckets File with buckets

Number of records r=750 r=750
Number of addresses N=1000 N=500
Bucket size b=1 b=2
Packing density 0.75 0.75
Ratio of records to addresses r/N=10.75 r/IN=1.5

To determine the number of overflow records that are expected in the
case of each file, recall that when a random hashing function is used, the
Poisson function
(r/N)x e "‘(r/N)

x!

plx)=

gives the expected proportion of addresses assigned x records. Evaluating
the function for the two different file organizations, we find that records
are assigned to addresses according to the distributions that are shown in
Table 11.3.

We see from the table that when buckets are not used, 47.2 percent of-
the addresses have no records assigned, whereas when two-record buckets-
are used, only 22.3 percent of the addresses have no records assigned. This
should make intuitive sense—since in the two-record case there are only
half as many addresses to choose from, it stands to reason that a greater
proportion of the addresses are chosen to contain at least one record.
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Table 11.3 Poisson distributions for two different
file organizations.

File without ‘File with

buckets “buckets
p(x) (/N =0.75) (r/N=15)
p(0) 0.472 0.223
p(1) 0.354 0.335
p(2) 0.133 0.251
p(3) 0.033 0.126
p(4) 10.006 0.047
p(5) 0.001 0.014
p(6) — 0.004
p(7) — 0.001

Note that the bucket column in Table 11.3 is longer than the nonbuck-
et column. Does this mean that there are more synonyms in the bucket
case than in the nonbucket case? Indeed it does, but half of those syno-
nyms do not result in overflow records because each bucket can hold two
records. Let us examine this further by computing the exact number of
overflow records likely to occur in the two cases.

In the case of the file with bucket size 1, any address that is assigned
exactly one record does not have any overflow. Any address with more
than one record does have overflow. Recall that the expected number of
overflow records is given by

Nx[1xp(2)+2xp(3)+3xp(4) +4xp(5)+...]
which, for /N'=0.75 and N = 1000, is approximately

1000 x [1 X 0.1328 + 2 X 0.0332 + 3 x 0.0062 + 4 X 0.0009 + 5 % 0.0001]
=222

The 222 overflow records represent 29.6 percent overflow.

In the case of the bucket file, any address that is assigned either one or
two records does not have overflow. The value of p(1) (with /N = 1.5)
gives the proportion of addresses assigned exactly one record, and p(2)
(with r/N = 1.5) gives the proportion of addresses assigned exactly two

records. It is not until we get to p(3) that we encounter addresses for which
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there are overflow records. For each address represented by p(3), two

records can be stored at the address, and one must be an overflow record.

Similarly, for each address represented by p(4), there are two overflow

records, and so forth. Hence, the expected number of overflow records in
_ the bucket file is

Nx[1xp(3)+2xp(4) +3xp(5) +4xp(6) +...]
which for;7/N= 1.5 and N = 500 is approximately

500 x [1" X 0.1255 + 2 x 0.0471 + 3 X 0.0141 + 4 x 0.0035 + 5 X 0.0008]
= 140

The 140 overflow records represent 18.7 percent overflow.

We have shown that with one record per address and a packing densi-
ty of 75 percent, the expected number of overflow records is 29.6 percent.
When 500 buckets are used, each capable of holding two records, the pack-
ing density remains 75 percent, but the expected number of overflow
records drops to 18.7 percent. That is about a 37 percent decrease in the
number of times the program has to look elsewhere for a record. As the
bucket size gets larger, performance continues to improve. - '

Table 11.4 shows the proportions of collisions that occur for different
packing densities and for different bucket sizes. We see from the table, for
example, that if we keep the packing density at 75 pércent and increase
the bucket size to 10, record accesses result in overflow only 4 percent of
the time. |

It should be clear that the use of buckets can improve hashing perfor-
mance substantially. One might ask, “How big should buckets be?” Unfor-
tunately, there is n'O»si'mpl*e answer to this question because it depends a
great deal on a number of different characteristics of the system, including
the sizes of buffers the operating system can manage, sector and track
capacities on disks, and access times of the hardware (seek, rotation, and
data transfer times). _

As a rule, it is probably not a good idea to use buckets larger than a
track (unless records are very large). Even a track, however, can sometimes
be too large when one considers the amount of time it takes to transmit an
entire track, as compared with the amount of time it takes to transmit a
few sectors. Since hashing almost always involves retrieving only one
record per search, any extra-transmission time resulting from the use of
extra-large buckets is essentially wasted.

In many cases a single cluster is the best bucket size. For example,
suppose that a file with 200-byte records is to be stored on a disk system
that uses 1024-byte clusters. One could consider each cluster as a bucket,
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Table 11.4 Synon.yms causing collisions as a percent of records for different
packing densities and different bucket sizes

Packing i Bucket size

density :

(%) 1 2 5 10 100
10 4.8 0.6 00 0.0 0.0
20 9.4 2.2 0.1 0.0 0.0
30 13.6 45 0.4 0.0 0.0
40 17.6 7.3 1.1 0.1 0.0
50 21.3 11.4 2.5 0.4 0.0
60 24.8 13.7 4.5 1.3 0.0
70 28.1 17.0 7.1 2.9 0.0
75 29.6 18.7 8.6 4.0 0.0
80 31.2 20.4 11.3 5.2 0.1
90 34.1 23.8 13.8 8.6 0.8
100 36.8 27.1 17.6 12.5 4.0

store five records per cluster, and let the remaining 24 bytes go unused.
Since it is no more expensive, in terms of seek time, to access a five-record
cluster than it is to access a single record, the only losses from the use of
buckets are the extra transmission time and the 24 unused bytes.

The obvious question now is, “How do improvements in the number
of collisions affect the average search time?” The answer depends in large
measure on characteristics of the drive on which the file is loaded. If there
are a large number of tracks in each cylinder, there will be very little seek
time because overflow records will be unlikely to spill over from one cylin-
der to another. If, on the other hand, there is only one track per cylinder,
seek time could be a major consumer of search time.

A less exact measure of the amount of time required to retrieve a
record is average search length, which we introduced earlier. In the case of
buckets, average search.length represents the average number of bucke‘;é
that must be accessed to retrieve a record. Table 11.5 shows the expected
average search lengths for files with different packing densities and bucket
sizes, given that progressive overflow is used to handle collisions. Clearly,
the use of buckets seems to help a great deal in decreasing the average
search length. The bigger the bucket, theshorter the search length.
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Table 11.5 Average number of accesses requ1red in a successful search by
progressnve overflow,

Packing Bucket size
density
(%) 1 2 5 10 100
10 1.06 1.01 1.00 1.00 1.00
30 1.21 1.06 1.00 1.00 1.00
.40 1.33 1.10 1.01 1.00 1.00
50 1.50 1.18 1.03 1.00 1.00
60 1.75 1.29 1.07 1.01 1.00
70 2.17 1.49 1.14 1.04 1.00
30 3.00 1.90 1.29 1.11 1.01
90 5.50 3.15 1.78 1.35 1.04
95 10.50 5.60 2.70 1.80 1.10

Adapted from Donald Knuth, The Art of Computer Programming, Vol. 3, ©1973, Addison-Wesley,
Reading, Mass. Page 536. Reprinted with permission..

11.6.2 Implementation Issues

In the early chapters of this text, we paid quite a bit of attention to issues
involved in producing, using, and maintaining random-access files with
fixed-length records that are accessed by relative record number (RRN).
Since a hashed file is a fixed-length record file whose records are accessed
by RRN, you should already know much about implementing hashed files.
Hashed files differ from the files we discussed earlier in two important
respects, however:

1. Since a hash function depends on there being a fixed number of avail-
able addresses, the logical size of a hashed file must be fixed before the
file can be populated with records, and it must remain fixed as long as
the same hash function is used. (We use the phrase logical size to leave
open the possibility that physical space be allocated as needed.)

2. Since the home RRN of a record in a hashed file is uniquely related to
its key, any procedures that add, delete, or change a record must do so
without breaking the bond between a record and its home address. If
this bond is broken, the record is no longer accessible by hashing.

We must keep these.special needs in mind when we write programs to
work with hashed files.
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Bucket Structure

The only difference between a file with buckets and one in which each
address can hold only one key is that with a bucket file each address has
enough space to hold more than one logical record. All records that are
housed in the same bucket share the same address. Suppose, for example,
that we want to store as many as five names in one bucket Here are three
such buckets with different numbers of records.

An empty bucket: |0/ / /"1 11117 A AN il torid

Two entries: 2| JONES ARNSWORTH| / / /71 / 11710 N

A full bucket: 51 JONES ARNSWORTH { STOCKTON | BRICE THROOP

Each bucket contains a counter that keeps track of how many records
it has stored in it. Collisions can occur only when the addition of a new
record causes the counter to exceed the number of records a bucket can
hold.
~ The counter tells us how many data records are stored in a bucket, but
it does not tell us which slots are used and which are not. We need a way to
tell whether a record slot is empty. One simple way to do this is to use a
'special marker to indicate an empty record, just as we did with deleted
records earlier. We use the key value ///// to mark empty records in the
preceding illustration.

nitializing a File for Hashing

Since the logical size of a hashed file must remain fixed, it makes sense in
most cases to allocate physical space for the file before we begin storing
data records in it. This is generally done by creating a file of empty spaces
for all records, then filling the slots as they are needed with the data
records. (It is not necessary to construct a file of empty records before
putting data in it, but doing so increases the likelihood that records will be
stored close to one another on the disk, avoids the error that occurs when
an attempt is made to read a missing record, and makes it easy to process
the file sequentially, without having to treat the empty records in any
special way.)
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Loading a Hash File

A program that loads a hash. file is similar in many ways to earlier
programs we used for populating fixed-length record files, with two differ-
ences. First, the program uses the function hash to produce a home
address for each key. Second, the program looks for a free space for the
record by starting with the bucket stored at its home address and then, if
the home bucket is full, continuing to look at successive buckets until one
is found that is not full. The new record is inserted in this bucket, and the
bucket is rewritten to the file at the location from which it was loaded.

If, as it searches for an empty bucket, a loading program passes the

maximum allowable address, it must wrap around to the beginning
address. A potential problem occurs in loading a hash file when so many
records have been loaded into the file that there are no empty spaces left.
A naive search for an open slot can easily result in an infinite loop.
Obviously, we want to prevent this from occurring by having the program
make sure that there is space available for each new record somewhere in
the file.
* Another problem that often arises when adding records to files occurs
when an attempt is made to add a record that is already stored in the file.
If there is a danger of duplicate keys occurring, and duplicate keys are not
allowed in the file, some mechanism must be found for dealing with this.
problem.

11.7 Making Deletions

Deleting a record from a hashed file is more complicated than adding a
record for two reasons:

B The slot freed by the deletion must not be allowed. to hinder later
searches; and

R It should be possible to reuse the freed slot for later additions.

When progressive overflow is used, a search for a record terminates if
an open address is encountered. Because of this, we do not want to leave
open addresses that break overflow searches improperly. The following
example illustrates the problem. ' |

Adams, Jones, Morris, and Smith are stored in a hash file in which
each address can hold one record. Adams and Smith both are hashed to
address 5, and Jones and Morris are hashed to address 6. If they are loaded
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Home Actual
Record address address
4
Adams 5 5
Jones 6 6 5 Adams . . .
Morris 6 7 6 Jones . . .
Smith 5 8 7 Morris . . .
8 Smith . . .

Figure 11.9 File organization before deletions.

in alphabetical order using progressive overflow for collisions, they are
stored in the locations shown in Fig. 11.9.
A search for Smith starts at address 5 (Smith’s home address), succes-
“sively looks for Smith at addresses 6, 7, and 8, then finds Smith at 8. Now
suppose Morris is deleted, leaving an empty space, as illustrated in Fig.
11.10. A search for Smith again starts at address 5, then looks at addresses
6 and 7. Since address 7 is now empty, it is reasonable for the program to
conclude that Smith’s record is not in the file.

11.7.1 Tombstones for Handling Deletions

In Chapter 6 we discussed techniques for dealing with the deletion prob-
lem. One simple technique we use for identifying deleted records involves
replacing the deleted record (or just its key) with a marker indicating that
a record once lived there but no longer does. Such a marker 1s sometimes
referred to as a tombstone (Wiederhold, 1983). The nice thing about the
use of tombstones is that it solves both of the problems described previ-

ously:

B The freed space does not break a sequence of searches for a record;
and '

® The freed space is obviously available and may be reclaimed for later
additions.

Figure 11.11 illustrates how the sample file might look after the tomb-
stone ###### 1s inserted for the deleted record. Now a search for Smith
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4 5 Adams . .
5 Adams . . . 6 Jones . . .
6 Jones . . . ‘7 HE#RAAH
7 ] Smith . . .
8 Smith . . .

Figure 11.11 The same file
as in Fig.11.9 after the
Figure 11.10 The same insertion of a tombstone
organization as in Fig.11.9, for Morris.

with Morris deleted.

does not halt at the empty record number 7. Instead, it uses the ###### as
an indication that it should continue the search.

It is not necessary to insert tombstones every time a deletion occurs.
For example, suppose in the preceding example that the record for Smith
is to be deleted. Since the slot following the Smith record is empty, noth-
ing is lost by marking Smith’s slot as empty rather than inserting a tomb-
stone. Indeed, it is unwise to insert a tombstone where it is not needed. (If,
after putting an unnecessary tombstone in Smith’s slot, a new record is
added at address 9, how would a subsequent unsuccessful search for Smith
be affected?)

11.7.2 Implications of Tombstones for Insertions

‘With the introduction of the use of tombstones, the insertion of records
becomes slightly more difficult than our earlier discussions imply.
Whereas programs that perform initial loading simply search for the first
occurrence of an empty record slot (signified by the presence of the key
/1111), it is now permissible to insert a record where either ///// or ######
occurs as the key.

This new feature, which is desirable because it yields a shorter average
search length, brings with it a certain danger. Consider, for example, the
earlier example in which Morris is deleted, giving the file organization
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shown in Fig. 11.11. Now suppose you want a program to insert Smith
into the file. If the program simply searches until it encounters a ###i###,
it never notices that Smith is already in the file. We almost certainly don’t
want to put a second Smith record into the file, since doing so means that
later searches would never find the older Smith record. To prevent this
from occurring, the program must examine the entire cluster of contigu-
ous keys and tombstones to ensure that no duplicate key exists, then go
back and insert the record in the first available tombstone, if there is one.

11.7.3 Effects of Deletions and Additions on Perfdrmance

The use of tombstones enables our search algorithms to work and helps in
storage recovery, but one can still expect some deterioration in perfor-
mance after a number of deletions and additions occur within a file.

Consider, for example, our little four-record file of Adams, Jones,
Smith, and Morris. After deleting Morris, Smith is one slot further from its
home address than it needs to be. If the tombstone is never to be used to
store another record, every retrieval of Smith requires one more access
than is necessary. More generally, after a large number of additions and
deletions, one can expect to find many tombstones occupying places that
could be occupied by records whose home records precede them but that
are stored after them. In effect, each tombstone represents an unexploited
6pportunity to reduce by one the number of locdtions that must be
scanned while searching for these records.

.Some experimental studies show that after a 50 percent to 150 percent
turnover of records, a hashed file reaches a point of equilibrium, so aver-
age search length is as likely to get better as it is to get worse (Bradley, 1982;
Peterson, 1957). By this time, however, search performance has deteriorat-
ed to the point at which the average record is three times as far (in terms
of accesses) from its home address as it would be after initial loading. This
means, for example, that if after original loading the average search length
is 1.2, it will be about 1.6 after the point of equilibrium is reached.

‘There are three types of solutions to the problem of deteriorating
average search lengths. One involves doing a bit of local reorganizing every
time a deletion occurs. For example, the deletion algorithm might exam-
ine the records that follow a tombstone to see if the search length can be
shortened by moving the record backward toward its home address.
Another solution involves completely reorganizing the file after the aver-
age search length reaches an unacceptable value. A third type of solution

involves using an altogether different collision resolution algorithm.
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11.8  Other Collision Resolution Techniques

Despite its simplicity, randomized hashing using progressive overflow with
reasonably sized buckets generally performs well. If it does not perform
well enough, however, there are a number of variations that may perform
even better. In this section we discuss some refinements that can often
improve hashing performance when using external storage.

11.8.1 Double Hashing

One of the problems with progressive overflow is that if many records
hash to buckets in the same vicinity, clusters of records can form. As the
packing density approaches one, this clustering tends to lead to extremely
long searches for some records. One method for avoiding clustering is to
store overflow records a long way from their home addresses by double
hashing, With double hashing, when-a collision occurs, a second hash
function is applied to the key to produce a number c that is relatively
prime to the number of addresses.# The value ¢ is added to the home
address to produce the overflow address. If the overflow address is already
occupied, cis added to it to produce another overflow address. This proce-
dure continues until a free overflow address is found.

Double hashing does tend to spread out the records in a file, but it
suffers from a potential problem that is encountered in several improved
overflow methods: it violates locality by deliberately moving overflow
records some distance from their home addresses, increasing the likeli-
hood that the disk will need extra time to get to the new overflow address.
If the file covers more than one cylinder, this could require an expensive
extra head movement. Double hashing programs can solve this problem if
tthey are able to generate overflow addresses in such a way that overflow
records are kept on the same cylinder as home records.

11.8.2 Chained Progressive Overflow

Chained progressive overflow is another technique designed to avoid the
problems caused by clustering. It works in the same manner as progressive
overflow, except that synonyms are linked together with pointers. That is,
each home address contains a number indicating the location of the next

4. If Nis the number of addresses, then cand N are relatively prime if they have no common divisors.
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Home Actual Search
Key , address address length
Adams 20 20 1
Bates 21 2] 1
Cole 20 22 3
Dean - Coel 23 3
Evans 24 24 1
Flint 120, 25 6

Average search length = (1 + 1 + 3 + 3 + | + 6)/6 = 2.5

Figure 11.12 Hashing with progressive overflow.

record with the same home address. The next record in turn contains a
pointer to the following record with the same home address, and so forth.
The net effect of this is that for each set of synonyms there is a linked list
connecting their records, and it is this list that is searched when a record is
sought.

The advantage of chained progressive overflow over simple progres-
sive overflow is that only records with keys that are synonyms need to be
accessed in any given search. Suppose, for example, that the set of keys
shown in Fig. 11.12 is to be loaded in the order shown into a hash file with
bucket size 1, and progressive overflow is used. A search for Cole involves
an access to Adams (a synonym) and Bates (not a synonym). Flint, the
worst case, requires six accesses, only two of which involve synonyms.

Since Adams, Cole, and Flint are synonyms, a chaining algorithm
forms a linked list connecting these three names, with Adams at the head
of the list. Since Bates and Dean are also synonyms, they form a second
list. This arrangement is illustrated in Fig. 11.13. The average search length
decreases from 2.5 to '_ -

1+1+2+2+1+3
6

=17

The use of chained progressive overflow requires that we attend to
some details that are not required for simple progressive overflow. First, a
link field must be added to each record, requiring the use of a little more
storage. Second, a chaining algorithm must guarantee that it is possible to
get to any synonym by starting at its home address. This second require-
ment is not a trivial one, as the following example shows.

Suppose that in the example Dean’s home address is 22 instead of 21.
Since, by the time Dean is loaded, address 22 is already occupied by Cole,

heé¢eps://hemanthrajhemu.github.io



504 Chapter 11 Hashing

Home Actual Address of Search
address address Data next synonym  length
20 20 Adams . . . 22: 1
21 21 Bates. .. g8 1
20 22 Cole . . . 25 2
21 23 | Dean. . . -1 2
24 24 Evans . . . -1 1
20 25 Flint . . . | —1 3

Figure 11.13 Hashing with chained progressive overflow. Adams, Cole, and
Flint are synonyms; Bates and Dean are synonyms.

Dean still ends up at address 23. Does this mean that Cole’s pointer should
point to 23 (Dean’s actual address) or to 25 (the address of Cole’s synonym
Flint)? If the pointer is 25, the linked list joinirig Adams, Cole, and Flint is
kept intact, but Dean is lost. If the pointer is 23, Flint is lost.

The problem here is that a certain address (22) that should be‘occu-
pied by a home record (Dean) is occupied by a different record. One solu-
tion to the problem is to require that every address qualifying as a home
‘address for some record in the file actually hold a home record. The prob-
lem can be handled easily when a file is first loaded by using a technique
called two-pass loading.

Two—pass loading, as the name implies, involves loading a hash file in
two passes. On the first pass, only home records are loaded. All records that
are not home records are kept in a separate file. This guarantees that no
potential home addresses are occupied by overflow records. On the second
pass, each overflow record is loaded and stored in one of the free addresses
according to whatever collision resolution technique is being used.-

Two-pass loading guarantees that every potential home address actu-
ally is a home address, so it solves the problem in the example. It does not
guarantee that later deletions and additions will not re-create the same
problem, however. As lon« as the file is used to store both home records
and overflow records, there remains the problem of overflow records
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displacing new records that hash to an address occupied by an overflow
record.

The methods used for handling these problems after initial loading are
somewhat complicated and can, in a very volatile file, require many extra
disk accesses. (For more information on techniques for maintaining point-
ers, see Knuth, 1998 and Bradley, 1982.) It would be nice if we could some-
how altogether avoid this problem of overflow lists bumping into one
another, and that is what the next method does. -

11.8.3 Chaining with a Separate Overfiow Area

One way to keep overflow records from occupying home addresses where
they should not be is to move them all to a separate overflow area. Many
hashing schemes are variations of this basic approach. The set of home
addresses is called the prime data area, and the set of overflow addresses is
called the overflow area. The advantage of this approach is that it keeps all
unused but potential home addresses free for later additions.

In terms of the file we examined in the preceding section, the records
for Cole, Dean, and Flint could have been stored in a separate overflow
area rather than in potential home addresses for later-arriving records
(Fig. 11.14). Now no problem occurs when a new record is added. If its
home address has room, it is stored there. If not, it is moved to the over-
flow file, where it is added to the linked list that starts at the home address.

Home Primary Overflow
address data area area
20 Aflams Cee 0 4=————p 0 Cole . . . 2
21 Bates . . . ']~--—-—} 1 Dean . . . -1
22 2 Flint . . . -1 jg—
23 3 |
24 Evans . . . -1

Figure 11.14 Chaining to a separate overflow area. Adams, Cole; and Flint are
synonyms; Bates and Dean are synonyms.
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If the bucket size for the primary file is large enough to prevent exces-
sive numbers of overflow records, the overflow file can be a simple entry-
sequenced file with a bucket size of 1. Space can be allocated for overflow
records only when it is needed. |

The use of a separate overflow area simplifies processing somewhat
and would seem to improve performance, especially when many additions
and deletions occur. However, this is not always the case. If the separate
overflow area is on a different cylinder than is the home address, every
search for an overflow record will involve a very costly head movement.
Studies show that access time is generally worse when overflow records are
stored in a separate overflow area than when they are stored in the prime
overflow area (Lum, 1971).

One situation in which a separate overflow area is required occurs
when the packing density is greater than one—there are more records than
home addresses. If, for example, it is anticipated that a file will grow
beyond the capacity of the initial set of home addresses and that rehashing
the file with a larger address space is not reasonable, then a separate over-
flow area must be used.

11.8.4 Scatter Tables: Indexing Revisited

_Suppose you have a hash file that contains no records, only pointers to
recoxds The file is obviously just an index that is searched by hashmg
rather than by some other method. The term scatter table (Severance,
1974) is often applied to this approach to file organization. Figure 11.15
illustrates the organization of a file using a scatter table.

. - Adams e q-—* COICA- . . :‘- Fliﬂt « o —i

Bates . . . 4+~ Dean . . . —1

Evans. . .|—1

Figure 11.15 Example of a scatter table structure. Because the hashed part is an index,
the data file may be organized in any way that is appropriate.
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The scatter table organization provides many of the same advantages
simple indexing generally provides, with the additional advantage that the
search of the index itself requires only one access. (Of course, that one

~access 1s one more than other forms of hashing require, unless the scatter

: table can be kept in primary memory.) The data file can be implemented

in many different ways. For example, it can be a set of linked lists of

synonyms (as shown in Fig. 11.15), a sorted file, or an entry-sequenced

file. Also, scatter table organizations conveniently support the use of vari-

a[blé_-length records, For more information on scatter tables, see Severance
(1974).

11.9 Patterns of Record Access

ngntir percent of the fishermen catch 80 percent of the fish.
Twenty percent of the burglars steal 80 percent of the loot.
' L.M. Boyd

The use of different collision resolution techniques is not the only nor
necessarily the best way to improve performance in a hashed file. If we
know something about the patterns of record access, for example, then it
is often possible to use simple progressive overflow techniques and still
achieve very good performance.

Suppose you have a grocery store with 10 000 different categories of
grocery items and you have on your computer a hashed inventory file with
a record for each of the 10 000 items that your company handles. Every
time an item 1is purchased, the record that corresponds to that item must
be accessed. Since the file is hashed, it is reasonable to assume that the
10 000 records are distributed randomly among the available addresses that
make up the file. Is it equally reasonable to assume that the distribution of
accesses to the records in the inventory are randomly distributed? Probably
not. Milk, for example, will be retrieved very frequently, brie seldom.

There is a principle used by economists called the Pareto Principle, or
The Concept of the Vital Few and the Trivial Many, which in file terms says
that a small percentage of the records in a file account for a large percent-
age of the accesses. A popular version of the Pareto Principle is the 80/20
Rule of Thumb: 80 percent of the accesses are performed on 20 percent of
the records. In our groceries file, milk would be among the 20 percent
high-activity items, brie among the rest.

heé¢eps://hemanthrajhemu.github.io



508 Chapter 11 Hashing

We cannot take advantage of the 80/20 principle in a file structure
unless we know something about the probable -distribution of record
accesses. Once we have this information, we need to find a way to place the
high-activity items where they can be found with as few accesses as possi-
ble. If, when items are loaded into a file, they can be loaded in such a way
that the 20 percent (more or less) that are most likely to be accessed are
loaded at or near their home addresses, then most of the transactions will
access records that have short search lengths, so the effective average search
length will be shorter than the nominal average search length that we
defined earlier.

For example, suppose our grocery store’s file handling program keeps
track of the number of times each item is accessed during a one-month
period. It might do this by storing with each record a counter that starts at
zero and is incremented every time the item is accessed. At the end of the
month the records for all the items in the inventory are dumped onto a file
that is sorted in descending order according to the number of times they
have been accessed. When the sorted file is rehashed and reloaded, the first
records to be loaded are the ones that, according to the previous month’s
experience, are most likely to be accessed. Since they are the first ones
loaded, they are also the ones most likely to be loaded into their home
addresses. If reasonably sized buckets are used, there will be very few, if
any, high-activity items that are not in their home addresses and therefore
retrievable in one access.

SUMMARY

There are three major modes for accessing files: sequentially, ‘which
provides O(N) performance, through tree structures, which can produce
O(logN) performance, and directly. Direct access provides O(1) perfor-
‘mance, which means that the number of accesses required to retrieve a
record is constant and independent of the size of the file. Hashing is the
primary form of organization used to provide direct access.

Hashing can provide faster access than most of the other organiza- .
tions we study, usually with very little storage overhead, and it is adapt-
able to most types of primary keys. Ideally, hashing makes it possible to
find any record with only one disk access, but this ideal is rarely achieved.
The primary disadvantage of hashing is that hashed files may not be sort-
ed by key.
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Hashing involves the application of a hash function h(K) to a record
key K to produce an address. The address is taken to be the home address
of the record whose key is K, and it forms the basis for searching for the
record. The addresses produced by hash functions generally appear to be
random.

When two or more keys hash to the same address, they are called
synonyms. If an address cannot accommodate all of its synonyms, collisions
result. When collisions occur, some of the synonyms cannot be stored in
the home address and must be stored elsewhere. Since searches for records
begin with home addresses, searches for records that are not stored at their
home addresses generally involve extra disk accesses. The term average
search length is used to describe the average number of disk accesses that
are required to retrieve a record. An average search length of 1 is ideal.

Much of the study of hashing deals with techniques for decreasing the
number and effects of collisions. In this chapter we look at three general
approaches to reducing the number of collisions:

m Spreading out the records;
B Using extra memory; and
m  Using buckets.

Spreading out the records involves choosing a hashing function that
distributes the records at least randomly over the address space. A uniform
distribution spreads out records evenly, resulting in no collisions. A
random or nearly random distribution is much easier to achieve and is
usually considered acceptable.

In this chapter a simple hashing algorithm is developed to demon-
strate the kinds of operations that take place in a hashing algorithm. The
three steps in the algorithm are:

1. Represent the key in numerical form;
2. Fold and add; and
3. Divide by the size of the address space, producing a valid address.

When we examine several different types of hashing algorithms, we see
that sometimes algorithms can be found that produce better-than-random
distributions. Failing this, we suggest some algorithms that generally
produce distributions that are approximately random.

The Poisson distribution provides a mathematical tool for examining
in detail the effects of a random distribution. Poisson functions can be
used to predict the numbers of addresses likely to be assigned 0, 1, 2, and
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so on, records, given the number of records to be hashed and the number
of available addresses. This allows us to predict the number of collisions
likely to occur when a file is hashed, the number of overflow records like-
ly to occur, and sometimes the average search length.

~ Using extra memory is another way to avoid collisions. When a fixed
number of keys is hashed, the likelihood of synonyms occurring decreases
as the number of possible addresses increases. Hence; a file organization
that allocates many more addresses than are likely to be used has fewer
synonyms than one that allocates few extra addresses. The term packing
density describes the proportion of available address space that actually
holds records, The Poisson function is used to determine how differences
in packing density influence the percentage of records that are likely to be
Synonyms. :

Using buckets is the third method for avoiding collisions. File address-
es can hold one or more records, depending on how the file is organized by
the file designer. The number of records that can be stored at a given
address, called bucket size, determines the point at which records assigned
to the address will overflow. The Poisson function can be used to explore
the effects of variations in bucket sizes and packing densities. Large buck-

‘ets, combined with a low packing density, can result in very small average
search lengths.

Although we can reduce the number of collisions, we need some.
means to deal with collisions when they do occur. We examined one
simple collision resolution technique in detail—progressive overflow. 1f
an attempt to store a new record results in a collision, progressive over-
flow involves searching through the addresses that follow the record’s
home address in order until one is found to hold the new record. If a
record is sought and is not found in its home address, successive address-
es are searched unti] either the record is found or an empty address is
encountered. »

Progressive overflow is simple and sometimes works very well.
However, progressive overflow creates long search lengths when the pack-
ing density is high and the bucket size is low. It also sometimes produces
clusters of records, creating very long search lengths for new records whose
home addresses are in the clusters.

Three problems associated with record deletion in hashed files are

1. The possibility that empty slots created by deletions will hinder later
searches for overflow records; ‘
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2. The need to recover space made available when records are deleted;
and

3. The deterioration of average search lengths caused by empty spaces
keeping records further from home than they need be.

The first two problems can be solved by using rombstones to mark
spaces that are empty (and can be reused for new records) but should not
halt a search for a record, Solutions to the deterioration problem include
local reorganization, complete. file reorganization, and the choice of a
collision-resolving algorithm that does not cause deterioration to occur.

Because overflow records have a major influence on performance,
many different overflow handling techniques have been proposed. Four
such techniques that are appropriate for file applications are discussed
briefly:

1. Double hashing reduces local clustering but may place some overflow
records so far from home that they require extra seeks.

2. Chained progressive overflow reduces search lengths by requiring that
only synonyms be examined when a record is being sought. For
chained overflow to work, every address that qualifies as a home
record for some record in the file must hold a home record..
Mechanisms for making sure that this occurs are discussed.

3. Chaining with a separate overflow area simplifies chaining substantial-
ly and has the advantage that the overflow afea may be organized in
ways more appropriate to handling overflow records. A danger of this
approach is that it might lose locality.

4. Scatter tables combine indexing with hashing. This approach provides
much more flexibility in organizing the data file. A disadvantage of
using scatter tables is that, unless the index can be held in memory, it
requires one extra disk access for every search.

Since in many cases certain records are accessed more frequently than
others (the 80/20 rule of thumb), it is often worthwhile to take access
patterns into account. If we can identify those records that are most likely
to be accessed, we can take measures to make sure they are stored closer to
home than less frequently accessed records, thus decreasing the effective
average search length. One such measure is to load the most frequently
accessed records before the others.
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KEY TERMS

————

Average search length, We define average search length as the sum of the
number of accesses required for each record in the file divided by the
number of records in the file. This definition does not take into account
the number of accesses required for unsuccessful searches, nor does jt
account for the fact that some records are likely to be accessed more
often than others. See 80/20 rule of thumb.

Better-than-random. This term is applied to distributions in which the
records are spread out more uniformly than they would be if the hash
function distributed them randomly. Normally, the distribution
produced by a hash function is a little bit better than random.

Bucket. An area of space on the file that is treated as a physical record for
storage and retrieval purposes but is capable of storing several logical
records. By storing and retrieving logical records in buckets rather
than individually, access times can, in many cases, be improved
substantially.

Collision. Situation in which a record is hashed to an address that does
not have sufficient room to store the record. When a collision occurs,
some means has to be found to resolve the collision.

Double hashing. A collision resolution scheme in which collisions are
handled by applying a second hash function to the key to produce a
number ¢, which is added to the original address (modulo the number
of addresses) as many times as necessary until either the desired
record is located or an empty space is found. Double hashing helps
avoid some of the clustering that occurs with progressive overflow.

The 80/20 rule of thumb. An assumption that a large percentage (e.g., 80
percent) of the accesses are performed on a small percentage (e.g., 20
percent) of the records in a file. When the 80/20 rule applies, the effec-
tive average search length is determined largely by the search lengths of
the more active records, so attempts to make these search lengths short

o can result in substantially improved performance.

Fold and add. A method of hashing in which the encodings of fixed-sized
parts of a key are extracted (e.g., every two bytes) and are added. The
resulting sum can be used to produce an address.

Hashing. A technique for generating a unique home address for a given.
key. Hashing is used when rapid access to a key (or its corresponding
record) is required. In this chapter applications of hashing involve
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" direct access to records in a file, but hashing is also often used to access
items in arrays in memory. In indexing, for example, an index might
be organized for hashing rather than for binary search if extremely fast
searching of the index is desired.

Home address. The address generated by a hash function for a given key.
If a record is stored at its home address, then the search length for the
record is 1 because only one access is required to retrieve the record, A
record not at its home address requires more than one access to
retrieve or store.

Indexed hash. Instead of using the results of a hash to produce the address
of a record, the hash can be used to identify a location in an index that
in turn points to the address of the record. Although this approach
requires one extra access for every search, it makes it possible to orga-
nize the data records in a way that facilitates other types of processing,
such as sequential processing.

Mid-square method. A hashing method in which a representation of the
key is squared and some digits from the middle of the result are used
to produce the address.

Minimum hashing. Hashing scheme in which the number of addresses is
exactly equal to the number of records. No storage space is wasted.

Open addressing. See progressive overflow.

Overflow. The situation that occurs when a record cannot be stored in its
home address.

Packing density. The proportion of allocated file space that actually holds

" records. (This is sometimes referred to as load factor.) If a file is half
full, its packing density is 50 percent. The packing density and bucket
size are the two most important measures in determining the likeli-
hood of a collision occurring when searching for a record in a file.

Perfect hashing function. A hashing function that distributes records
uniformly, minimizing the number of collisions. Perfect hashing func-
tions are very desirable, but they are extremely difficult to find for
large sets of keys.

Poisson distribution. Distribution generated by the Poisson function,
which can be used to approximate the distribution of records among
addresses if the distribution is random. A particular Poisson distribu-
tion depends on the ratio of the number of records to the number of

available addresses. A particular instance of the Poisson function, p(x),
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gives the proportion of addresses that will have x keys assigned to
them. See better-than-random.

Prime division. Division of a number by a prime number and use of the
remainder as an address. If the address size is taken to be a prime
number p, a large number can be transformed into a valid address by
dividing it by p. In hashing, division by primes is often preferred to
division by nonprimes because primes tend to produce more random
remainders. A

‘Progressive overflow. An overflow handling technique in which collisions
are resolved by storing a record in the next available address after its
home address. Progressive overflow is not the most efficient overflow
handling technique, but it is one of the simplest and is adequate for
many applications. |

Randomize. To produce a number (e.g., by hashing) that appears to be
random.

Synonyms. Two or more différent keys that hash to the same address.
When each file address can hold only one record, synonyms always
result in collisions. If buckets are used, several records whose keys are
synonyms may be stored without collisions.

Tombstone. A special marker placed in the key field of a record to mark it
as no longer valid. The use of tombstones solves two problems associ-
ated with the deletion of records: the freed space does not break a
sequential search for a record, and the freed space is easily recognized
as available and may be reclaimed for later additions.

Uniform. A distribution in which records are spread out evenly among
addresses. Algorithms that produce uniform distributions are better.
than randomizing algorithms in that they tend to avoid the numbers
of collisions that would occur with a randomizing algorithm.

FURTHER READINGS. _

There are a number of good surveys of hashing and issues related to hash-
ing generally, including Knuth (1998), Severance (1974), Maurer (1975),
and Sorenson, Tremblay, and Deutscher (1978). Textbooks concerned with
- file design generally contain substantial amounts of material on hashing,
and they often provide extensive references for further study. Loomis
(1989) also covers hashing generally, with additional emphasis on pro-
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gramming for hashed files in COBOL. Cormen, Leiserson and Rivest
(1990), Standish (1995), Shaffer (1997), and Wiederhold (1983) will be
useful to practitioners interested in analyses of trade-offs among the basic
hashing methods.

~ One of the applications of hashing that has stimulated a great deal of
interest recently is the development of spelling checkers. Because of special
characteristics of spelling checkers, the types of hashing involved are quite
different from the approaches we describe in this text. Papers by Bentley
(1985) and Dodds (1982) provide entry into the literature on this topic.
(See also exercise 14.)

1. Use the function hash (KEY, MAXAD) described in the text to

answer the following questions.

a. What is the value of hash (*Jacobs", 101)?

b. Find two different words of more than four characters that are
synonyms.

¢. It is assumed in the text that the function hash does not need to
generate an integer greater than 19 937. This could present a prob-
lem if we have a file with addresses larger than 19 937. Suggest some
ways to get around this problem.

2. In understanding hashing, it is important to understand the relation-
ships between the size of the available memory, the number of keys to
be hashed, the range of possible keys, and the nature of the keys. Let us
give names to these quantities, as follows:

+ M= the number of memory spaces available (each capable of hold-
ing one record);
r = the number of records to be stored in the memory spaces; n =
the number of unique home addresses produced by hashing the r
record keys; and

* K= a key, which may be any combination of exactly five uppercase
characters.

Suppose 11(K) is a hash function that generates addresses between 0

and M- 1.
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a. How many unique keys are pbssible? (Hint: If K were one upper-
case letter rather than five, there would be 26 possible unique
keys.)

b. How are nand rrelated?

c. How are rand M related?

d. If the function h were a minimum perfect hashing function, how
would n, r, and M be related?

3. The following table shows distributions of keys resulting from three
different hash functions on a file with 6000 records and 6000 ad-

dresses.
Function A Function B Function C

d(0) 0.71 0.25 0.40
d(1) 0.05 0.50 0.36
d(2) 0.05 0.25 0.15
d(3) 10.05 0.00 0.05
d(4) 0.05 0.00 0.02
d(5) 0.04 0.00 0.01
d(6) 0.05 0.00 0.01
d(7} 0,00 0.00 0.00

a. Which of the three functions (if any) generates a distribution of
records that is approximately random?

b. Which generates a distribution that is nearest to uniform?

¢. Which (if any) generates a distribution that is worse than random?

d. Which function should be chosen?

4. There is a surprising mathematical result called the birthday paradox
that says that if there are more than 23 people in a room, there is a
better than 50-50 chance that two of them have the same birthday.
How is the birthday paradox illustrative of a major problem associat-
ed with hashing?

5. Suppose that 10 000 addresses are allocated to hold 8000 records in a
randomly hashed file and that each address can hold one record.
Compute the following values:

a. The packing density for the file;

b. The expected number of addresses with no records assigned to
them by the hash function;

c. The expected number of addresses with one record assigned (no
synonyms);
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“d. The expected number of addresses with one record plus one or
more Synonyms;
e. The expected number of overflow records; and
f. The expected percentage of overflow records.

6. Consider the file described in the preceding exercise. What is the
expected number of overflow records if the 10 000 locations are reor-
ganized as

a. 5000 two-record buckets; and
b. 1000 ten-record buckgts?

7. Make a table showing Poisson function values for /N=10.1,0.5,0.8, 1,
2,5, and 11. Examine the table and discuss any features and patterns
that provide useful information about hashing.

8. There is an overflow handling technique called count-key progressive
overflow (Bradley, 1982) that works on block-addressable disks as
follows. Instead of generating a relative record number from a key, the.
hash function generates an address consisting of three values: a cylin-
der, a track, and a block number. The corresponding three numbers
constitute the home address of the record. .

Since block-organized drives (see Chapter 3) can often scan a
track to find a record with a given key, there is no need to load a block
into memory to find out whetheér it contains a particular record. The
I/O processor can direct the disk drive to search a track for the desired
record. It can even direct the disk to search for an empty record slot if
a record is not found in its home position, effectively implementing-
progressive overflow.

a. What is it about this technique that makes it superior to progressive
overflow techniques that might be 1mp1ernented on sector-orga-
nized drives?

b. The main disadvantage of this technique is that it can be used only
with a bucket size of 1. Why is this the case, and why is it a disad-
vantage?

9. In discussing implementation issues, we suggest initializing the data
file by creating real records that are marked empty before loading the
file with data. There are some good reasons for doing this. However,
there might be some reasons not to do it this way. For example,
suppose you want a hash file with a very low packing density and
cannot afford to have the unused space allocated. How might a file
management system be designed to work with a very large Jogical file
but allocate space only for those blocks in the file that contain data?
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10. This exercise (inspired by an example in Wiederhold, 1983, p. 136)
concerns the problem of deterioration. A number of additions and
deletions are to be made to a file. Tombstones are to be used where
necessary to preserve search paths to overflow records.

a. Show what the file looks like after the following operations, and
compute the average search length.

Operation Home Address
Add Alan 0
Add Bates 2
Add Cole 4
Add Dean 0
Add Evans 1
Del Bates

Del Cole

Add Finch 0
Add Gates 2
Del Alan

Add Hart 3

* How has the use of tombstones caused the file to deteriorate?

» What would be the effect of reloading the remaining items in the
file in the order Dean, Evans, Finch, Gates, Hart?

b. What would be the effect of reloading the remaining items using
two-pass loading?

11. Suppose you have a file in which 20 percent of the records account for
80 percent of the accesses and that you want to store the file with a
packing density of 0 and a bucket size of 5. When the file is loaded,
you load the active 20 percent of the records first. After the active 20
percent of the records are loaded and before the other records are
loaded, what is the packing density of the partially filled file? Using
this packing density, compute the percentage of the active 20 percent
that would be overflow records. Comment on the results.

"12. In our computations of average search lengths, we consider only the
times it takes for successful searches. If our hashed file were to be used
in such a way that searches were often made for items that are not in
the file, it would be useful to have statistics on average search length
for an unsuccessful search. If a large percentage of searches to a hashed
file are unsuccessful, how do you expect this to affect overall perfor-
mance if overflow is handled by
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a. Progressive overflow; or
b. Chaining to a separate overflow area?
(See Knuth, 1973b, pp. 535-539 for a treatment of these differences.)

13. Although hashed files are not generally designed to support access to
records in any sorted order, there may be times when batches of
transactions need to be performed on a hashed data file. If the data
file is sorted (rather than hashed), these transactions are normally
carried out by some sort of cosequential process, which means that
the transaction file also has to be sorted. If the data file is hashed, the
transaction file might also be presorted, but on the basis of the home
addresses of its records rather than some more “natural” criterion.

Suppose you have a file whose records are usually accessed direct-
ly but is periodically updated from a transaction file. List the factors
you would have to consider in deciding between using an indexed
sequential organization and hashing. (See Hanson, 1982, pp.
280-285, for a discussion of these issues.)

14. We assume throughout this chapter that a hashing program should
be able to tell correctly whether a given key is located at a certain
address. If this were not so, there would be times when we would
assume that a record exists when in fact it does not, a seemingly disas-
trous result. But consider what Doug Mcllroy did in 1978 when he
was designing a spelling checker program. He found that by letting
his program allow one out of every four thousand misspelled words
to sneak by as valid (and using a few other tricks), he could fit a 75
000-word spelling dictionary into 64 kilobytes of memory, the1eby
improving performance enormously. ,

Mcllroy was willing to tolerate one undetected Imsspelled word
out of every four thousand because he observed that drafts of papers
rarely contained more than twenty errors, so one could expect at
most one out of every two hundred runs of the program to fail to
detect a misspelled word. Can you think of some other cases in
which it might be reasonable to report that a key exists when in fact
it does not?

Jon Bentley (1985) provides an excellent account of Mcllroy’s
program, plus several insights on the process of solving problems of
this nature. D. J. Dodds (1982) discusses this general approach to
hashing, called check-hashing. Read Bentley’s and Dodds’s articles and
report on them to your-class. Perhaps they will inspire you to write a
spelling checker.
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__ PROGRAMMING EXERCISES

15. Implement and test a version of the. function hash.

16. Create a hashed file with one record for every city in California. The
key in each record is to be the name of the corresponding city. (For.
the purposes of this exercise, there need be no fields other than the
key field.) Begin by creating a sorted list of the names of all of the
cities and towns in California. (If time or space is limited, just make a
list of names starting with the letter S.)

a. Examine the sorted list. What patterns do you notice that might
affect your choice of a hash function?

b. Implement the function hash in such-a way that you can alter the
number of characters that are folded. Assuming a packing density
of 1, hash the entire file several times, each time folding a different
number of characters and producing the following statistics for
each run:

* The number of collisions; and

* The number of addresses assigned 0, 1,2, ..., 10, and 10-or-more
records.

Discuss the results of your experiment in terms of the effects of

folding different numbers of characters and how they compare

with the results you might expect from a random distribution.

c. Implement and test one or more of the other hashing methods
described in the text, or use a method of your own invention.

17. Using a set of keys, such as the names of California towns, do the
following:
a. Write and test a program for loading the keys into three different

hash files using bucket sizes of 1, 2, and 5, respectively, and a pack-
ing density of 0.8. Use progressive overflow for handling collisions.

b. Have your program maintain statistics on the average search
length, the maximum search length, and the percentage of records
that are overflow.records.

c. Assuming a Poisson distribution, compare your results with the
expected values for average search length and the percentage of
records that are overflow records. ‘

18. Repeat exercise 17, but use double hashing to handle overflow.
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19. Repeat exercise 17, but handle overflow using chained overflow into a
separate overflow area. Assume that the packing density is the ratio of
number of keys to available home addresses.

20. Write a program that can perform insertions and deletions in the file
created in the previous problem using a bucket size of 5. Have the
program keep running statistics on average search length. (You might
also implement a mechanism to indicate when search length has dete-
riorated to a point where the file should be reorganized.) Discuss in
detail the issues you have to confront in deciding how to handle inser-
tions and deletions. '
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CHAPTER OBJECTIVES

Describe the problem solved by extendible hashing and related
approaches.

Explain how extendible hashing works; show how it combines tries
with conventional, static hashing.

Use the buffer, file,and index classes of previous chapters to
implement extendible hashing, including deletion.

Review studies of extendible hashing performance.

Examine alternative approaches to the same problem, including
dynamic hashing, linear hashing, and hashing schemes that control
splitting by allowing for overflow buckets.

23,
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CHAPTER OUTLINE

12.1 Introduction
12.2 How Extendible Hashing Works
12.2.1 Tries
12.2.2 Turning the Trie into a Directory
12.2.3 Splitting to Handle Overflow
12.3 Implementation
12.3.1 Creating the Addresses
12.3.2 Classes for Representing Bucket and Directory Objects
12.3.3 Bucket and Directory Operations
12.3.4 Implementation Summary
12.4 Deletion
12.4.1 Overview of the Deletion Process
12.4.2 A Procedure for Finding Buddy Buckets
12.4.3 Collapsing the Directory -
12.4.4 Implementing the Deletion Operations
12.4.5 Summary of the Deletion Operation
12.5 Extendible Hashing Performance
12.5.1 Space Utilization for Buckets
12.5.2 Space Utilization for the Directory
12.6 Alternative Approaches
12.6.1 Dynamic Hashing
12.6.2 Linear Hashing
12.6.3 Approaches to Controlling Splitting

12.1 Introduction

In Chapter 9 we began with a historical review of the work that led up to
B-trees. B-trees are such an effective solution to the problems that stimu-
lated their development that it is easy to wonder if there is any more
important thinking to be done about file structures. Work on extendible
hashing during the late 1970s and early 1980s shows that the answer to
that question is yes. This.chapter tells the story of that work and descrlbes
some of the file structures that emerge from it.

B-trees do for secondary storage what AVL trees do for storage in
memory: they provide a way of using tree structures that works well with
dynamic data. By dynamic we mean that records are added and deleted
from the data set. The key feature of both AVL trees and B-trees is that
they are self-adjusting structures that include mechanisms to mamtalp
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themselves. As we add and delete records, the tree structures use limited,
local restructuring to ensure that the additions and deletions do_not
degrade performance beyond some predetermined level.

Robust, self-adjusting data and file structures are crmcally important
to data storage and retrieval. Iudgmg from the historical record, they are
also hard to develop. It was not until 1963 that Adel’son-Vel’skii and
Landis developed a self-adjusting structure for tree storage in memory,
and it took another decade of work before computer scientists found, in B-
trees, a dynamic tree structure that works well on secondary storage.

B-trees provide O(log,N) access to the keys in a file. Hashing, when
there is no overflow, provides access to a record with a single seek. But as a
file grows larger, looking for records that overflow their buckets degrades
performance. For dynamic files that undergo a lot of growth, the perfor-
mance of a static hashing system such as we described in Chapter 11 is
typically worse than the performance of a B-tree. So, by the late 1970s,
after the initial burst of research and design work revolving around B-trees
was over, a number of researchers began to work on finding ways to modi-
fy hashing so that it, too, could be self-adjusting as files grow and shrink.
As often happens when a number of groups are working on the same
problem, several different, yet essentially similar, approaches emerged to
extend hashing to dynamic files. We begin our discussion of the problem
by looking closely at the approach called “extendible hashing” described by
Fagin, Nievergelt, Pippenger, and Strong (1979). Later in this chapter we
compare this approach with others that emerged more recently.

12.2. How Extendible Hashing Works

12.2.1 Tries

The key idea behind extendible hashing is to combine conventional hash-
ing with another retrieval approach called the trie. (The word trie is
pronounced so that it rhymes with sky.) Tries are also sometimes referred
to as radix searching because the branching factor of the search tree is
equal to the number of alternative symbols (the radix of the alphabet) that
can occur in each position of the key. A few examples will illustrate how
this works.

Suppose we want to build a trie that stores the keys able, abrahms,
adams, anderson, andrews, and baird. A schematic form of the trie Is
shown in Fig. 12.1. As you can see, the searching proceeds letter by letter
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able

abrahms

anderson

andrews

Figure 12.1 Radix 26 trie that indexes names according to the letters of the
alphabet,

‘through the key. Because there are twenty-six symbols in the alphabet, the
potential branching factor at every node of the search is twenty-six. If we
used the digits 0-9 as our search alphabet rather than the letters a-z, the
radix of the search would be reduced to 10. A search tree usmg digits
might look like the one shown in Fig. 12.2.

Notice that in searching a trie we sometimes use only a portion of the
key. We use more of the key as we need more information to complete the
search. This use-more-as-we-need-more capability is fundamental to the
structure of extendible hashing. |

12.2.2 Turning the Trie into a Directory

We use tries with a radix of 2 in our approach to extendible hashing:
search decisions are made on a bit-by-bit basis. Furthermore, since we are
retrieving from secondary storage, we will not work in terms of individual
keys but in terms of buckets containing keys, just as in conventional hash-
ing. Suppose we have bucket A containing keys that, when hashed, have
hash addresses that begin with the bits 01. Bucket B contains keys with
hash addresses beginning with 10, and bucket C contains keys with ad-
dresses that start with 11. Figure 12.3 shows a trie that allows us to retrieve
these buckets.
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Figure 12.2 Radix 10 trie that indexes numbers according to the digits they
contain. ‘ '

How should we represent the trie? If we represent it as a tree struc-
ture, we are forced to do a number of comparisons as we descend the tree.
Even worse, if the trie becomes so large that it, too, is stored on disk, we
are faced once again with all of the problems associated with storing trees
on disk. We might as well go back to B-trees and forget about extendible
hashing.

So, rather than representing the trie as a tree, we flatten it into an array
of contiguous records, forming a directory of hash addresses and pointers
to the corresponding buckets. The first step in turning a tree into an array
involves extending it so it is a complete binary tree with all of its leaves at

Figure 12.3 Radix 2 trie
that provides an index to
buckets.
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00 .
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01 ’

o
!

(a) (b)

Figure 12.4 The trie from Fig.12.3 transformed first into a complete binary tree, then
flattened into a directory to the buckets. '

the same level as'shown in Fig. 12.4(a). Even though the initial 0is enough
to select bucket A, the new form of the tree also uses the second address bit
50 both alternatives lead to the same bucket. Once we have extended the
tree this way, we can collapse it into the directory structure shown in Fig.
12.4(b). Now we have a structure that provides the kind of direct access
associated with hashing: given an address beginning with the bits 10, the
10,th directory entry gives us a pointer to the associated bucket.

12.2.3 Splitting to Handle Overflow

A key issue in any hashing system is what happens when a bucket overflows.
The goal in an extendible hashing system is to find a way to increase the
address space in response to overflow rather than respond by creating long
sequences of overflow records and buckets that have to be searched linearly.

Suppose we insert records that cause bucket A in.Fig. 12.4(b) to over-
flow. In this case the solution is simple: since addresses beginning with 00
and 01 are mixed together in bucket A, we can split bucket A by putting all
the 01 addresses in a new bucket D, while keeping only the 00 addresses in
A. Put another way, we already have 2 bits of address information but are
throwing 1 away as we access bucket A. So, now that bucket A is overflow-
ing, we must use the full 2 bits to divide the addresses between two buck-
ets. We do not need to extend the address space; we simply make full use of
the address information that we already have. Figure 12.5 shows the direc-
tory and buckets after the split.
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00 | Figure 12.5 The directory
. - from Fig.12.4(b) after bucket
A overflows. '
D

11

Let’s consider a more complex case. Starting once again with the
directory and buckets in Fig. 12.4(b), suppose that bucket B overflows.
How do we split bucket B and where do we attach the new bucket after
the split? Unilike our previous example, we do not have additional, unused.
bits of address space that we can press into duty as we split the bucket. We
now need to use 3 bits of the hash address in order to divide up the
records that hash to bucket B. The trie illustrated in Fig. 12.6(a) makes
the distinctions required to complete the split. Figure 12.6(b) shows what
this trie looks like once it is extended into a completely fill binary tree
with all leaves at the same level, and Fig. 12.6(c) shows the collapsed,
directory form of:the trie.

By building on the trie’s ability to extend the amount of information
used in a search, we have doubled the size of our address space (and, there-
fore, of our directory), extending it from 22 to 23 cells. This ability to grow
(or shrink) the address space gracefully is what extendible hashing is all
about. ' '

We have been concentrating on the contribution that tries make to
extendible hashing; one might well ask where the hashing comes into play.
Why not just use the tries on the bits in the key, splitting buckets and
extending the address space as necessary? The answer to this question
grows out of hashing’s most fundamental characteristic: a good hash func-
tion produces a nearly uniform distribution of keys across an address
space. Notice that the trie shown in Fig. 12.6 is poorly balanced, resulting
in a directory that is twice as big as it needs to be. If we had an uneven
distribution of addresses that placed even more records in buckets B and
D without using other parts of the address space, the situation would get
even worse. By using a good hash function to create addresses with a near-
ly uniform distribution, we avoid this problem.
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Figure 12.6 The results of an overflow of bucket 8 in Fig. 12.4(b), represented first as a
trie, then as a complete binary tree, and finally as a directory.

12.3 Implementation

12.3.1 Creating the Addresses

Now that we have a high-level overview of how extendible hashing works,
let’s look at an object-oriented implementation. Appendix ] contains the
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int Hash (char* key)

{
int sum = 0;
int len = strlen(key);
if (len & 2 == 1) len ++; // make len even

// for an odd length, use the trailing '\0' as part of key
for (int j = 0; j < len; Jj+=2)

sum = (sum + 100 * key[j] + key[j+1)) % 19937;
return sum;

)

Figure 12.7 Function Hash (key) returns an integer hash value for key for a 15-bit

full class definitions and method bodies for extendible hashing. The place
to start our discussion of the implementation is with the functions that
create the addresses, since the notion of an extendible address underlies all
other extendible hashing operations.

The function Hash given in Fig. 12.7, and file hash . cpp of Appen-
dix J, is a simple variation on the fold-and-add hashing algorithm we used
in Chapter 11. The only difference is that we do not conclude the opera-
tion by returning the remainder of the folded address divided by the
address space. We don’t need to do that, since in extendible hashing we
don’t have a fixed address space, instead we use as much of the address as
we need. The division that we perform in this function, when we take the
sum of the folded character values modulo 19 937, is to make sure that the
character summation stays within the range of a signed 16-bit integer. For
machines that use 32-bit integers, we could divide by a larger number and
create an even larger initial address.

Because extendible hashing uses more bits of the hashed address as
they are needed to distinguish between buckets, we need a function
MakeAddress that extracts just a portion of the full hashed address. We
also use MakeAddress to reverse the order of the bits in the hashed
address, making the lowest-order bit of the hash address the highest-order
bit of the value used in extendible hashing. To see why this reversal of bit
order is desirable, look at Fig. 12.8, which is a set of keys and binary hash
addresses produced by our hash function. Even a quick scan of these
addresses reveals that the distribution of the least significant bits of these
integer values tends to have more variation than the high-order bits. This
is because many of the addresses do not make use of the upper reaches of
our address space; the high-order bits often turn out to be 0.

heé¢eps://hemanthrajhemu.github.io



532 Chapter 12 Extendible Hashing

pill 0000 0011 0110 1100

lee 0000 0100 0010 1000,
pauline 0000 1111 0110 0101
alan 0100 1100 1010 0010
julie 0010 1110 0000 1001
mike 0000 0111 0100 1101
elizabeth 0010 1100 0110 1010
mark 0000 1010 0000 0111

Figure 12.8 Output from the hash function for a number of keys.

By reversing the bit order, working from right to left, we take advan-
tage of the greater variability of low-order bit values. For example, given a
4-bit address space, we want to avoid having the addresses of bill, lee, and
pauline turn out to be 0000, 0000, and 0000. If we work from right to left,
starting with the low-order bit in each address, we get 0011 for bill, 0001
for lee, and 1010 for pauline, which is a much more useful result.

Function MakeAddress, given in Fig. 12.9 and file hash.cpp of
Appendix ], accomplishes this bit extraction and reversal. The depth
argument tells the function the number of address bits to return.

int MakeAddress (char * key, int depth)
{
int retval = 0;
int hashval = Hash(key);
// reverse the bits
for (int 3 = 0; j < depth; j++)
{
retval = retval << 1;
int lowbit = hashVal & 1;
retval = retval | lowbit;
hashVal = hashval >> 1;
}
return retval;
}

Figure 12,9 Function MakeAddress (key, depth) gets a hashed address,
reverses the order of the bits, and returns an address of depth bits.
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12.3.2 Classes for Representing Bucket
and Directory Objects

Our extendible hashing scheme consists of a set of buckets stored in a file
and a directory that references them. Each bucket is a record that contains
a particular set of keys and information associated with the keys. A direc-
tory is primarily an array containing the record addresses of the buckets.

We have chosen to use a data record reference for the information
associated with the keys in this implementation. That is, the set of buckets
forms an index of the file of actual data records. This is certainly not the
only way to configure the bucket file. We have left it as an exercise to
extend the bucket class so that the associated information could be the rest
of the data record. In this case, the bucket file is the data file. For the rest of
the discussion of the implementation of extended hashing, we will treat
the buckets as sets of key-reference pairs.

The basic operations on buckets are exactly the same-as those of index
records: add a key-reference pair toa bucket, search for a key and return its
reference, and remove a key. Hence, we have chosen to make class Bucket
a derived class of the class Text Index from Chapter 5 and Appendix E.
The definition of class Bucket is given in Fig. 12.10 and file bucket .h
in Appendix J. These bucket records are stored in a file; we retrieve them as
necessary. Each Bucket is connected to a directory and can be accessed
only in that context. This access restriction is enforced by making the
members of the class protected so that no outside access is allowed, then
granting special access rights to class Directory by including the
friend class Directory statement. Making class Directory a
friend of Bucket allows methods of class Directory to access all of
the private and protected members of class Bucket. The included meth-
ods of class Bucket will be explained below.

Class Directory is given in Fig. 12.11 and in file direct . h of
Appendix J. Each cell in the directory consists of the file address of a
Bucket record Because we use direct access to find directory cells, we
implement the directory as an array of these cells in memory. The address
values returned by MakeAddress are treated as subscripts for this array,
ranging from 0 to one less than the number of cells in the directory.
Additional members are included to support the file operations required
to store the directory and the related buckets. You may notice a striking
similarity with classes IndexedFile (Chapter 5) and BTree (Chapter
9). Each of these classes supports open, create, and close operations as well
as insert, search, and remove. Objects of class Buf ferFile are used to
provide the I/O operations.
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class Bucket: protected TextIndex
{protected:
// there are no public members,
// access to Bucket members is only through class Directory
Bucket (Directory & dir, int maxKeys = defaultMaxKeys) ;
int -Insert (char * key, int recAddr);
int Remove (char * key);
Bucket * Split ();// split the bucket and redistribute the keys
int NewRange (int & newStart, int & newknd);
// calculate the range of a new (split) bucket
int Redistribute (Bucket & newBucket); // redistribute keys
int FindBuddy ();// find the bucket that is the buddy of this
int TryCombine (); // attempt to combine buckets ,
int Combine (Bucket * buddy, int buddyIndex); //combine buckets
int Depth; //number of bits used 'in common' by keys in bucket
Directory & Dir; // directory that contains the bucket
int BucketAddr; // address in file
friend class Directory;
friend class BucketBuffer;

};

Figure 12.10 Main members of class Bucket.

In order to use a Directory object, it must be constructed and then
attached to a file for the directory and one for the buckets. Fig 12.12 (page
536) is a sample test program, t sthash . cpp. The two steps for initial-
ization are the declaration of the Directory object, and the call to
method Create, that creates the two files and the initial empty bucket.
The program proceeds to insert a set of key-reference pairs. Notice that the
reference values have no particular significance in this program.

The constructor and method Create are given in Fig. 12.13 (page
537). The constructor creates all of the objects that support the I/O oper-
ations: a buffer and a file for the directory and a buffer and a file for the
buckets. The directory is stored in memory while the directory is open..
The Open method reads the directory from the file and the CLose writes.
it back into the file.
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class Directory
{public:
Directory (int maxBucketKeys = -1);°
~Directory ();
int Open (char * name);
int Create (char * name);
int Close {();
int Insert (char * key, int recAddr};
int Delete .(char * key, int recAddr = -1);
int Search (char * key):; // return RecAddr for key
ostream & Print {(ostream & stream);
“protected: )
int -Depth; // depth of directory
int NumCells; // number of cells, = 2**Depth
int * Bucketaddr; // array of bucket addresses

// protected methods
int DoubleSize (); // double the size of the directory
int Collapse (); // collapse, halve the size
int InsertBucket (int bucketAddr, int first, int last);
int Find (char * key); // return BucketAddr for key
int StoreBucket (Bucket * bucket); '

// update or append bucket in file
int LoadBucket (Bucket * bucket, int bucketAddr);

// load bucket from file
// members to support directory and bucket files
int MaxBucketKeys;
BufferFile * DirectoryFile;
LengthFieldBuffer * DirectoryBuffer;
Bucket * CurrentBucket;// object to hold one bucket
BucketBuffer * theBucketBuffer;// buffer for buckets
BufferFile * BucketFile;
int Pack () const;
int Unpack ();
Bucket' * PrintBucket;// object to hold one bucket for printing
friend class Bucket;

}i

Figure 12.11 Definition of class Directory.
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main ()
{
int result;
Directory Dir (4);
result = Dir . Create {"hashfile");

if (result == 0) {return 0;} // unable to create files

char * keys{]={"bill", "lee", "pauline", "alan", "julie",
"mike", "elizabeth", "mark", "ann", "peter";
"christina", "john", "charles", "mary", "emily"};

const int numkeys = 15;
for (int 1 = 0; i<numkeys; i++)

{
result = Dir . Insert (keys([i], 100 + 1i);
if (result == 0) .
cout << "insert for "<<keys[i]<<" failed"<<endl;
Dir . Print {cout);
}
return 1;

}

Figure 12,12 Test program tsthash.cpp inserts a sequence of key-referehce pairs into
a directory.

Note that member Depth is directly related to the size of the directo-
ry, since

2Depth = the number of cells in the directory.

If we are starting a new hash directory, the directory depth is 0, which
means that we are using no bits to distinguish between addresses; all the
keys go into the same bucket, no matter what their address. We get the
address of the initial, everything-goes-here bucket and assign it to the
single directory cell in this line from Directory: :Create:

BucketAddr[0] = StoreBucket (CurrentBucket);

The method StoreBucket appends the new bucket to the bucket file
and returns its address.

12.3.3 Directory and Bucket Operations

Now that we have a way to open and close the file, we are ready to add
records to the directory. The Insert, Search, and Find methods are

heé¢eps://hemanthrajhemu.github.io



Implementation 537

Directory::Directory (int maxBucketKeys)

{
Depth = 0; // depth of directory
NumCells = 1; // number of entries, = 2**Depth
BucketAddr = new int [NumCells]; // array of bucket addresses
// create I/0 support objects
MaxBucketKeys = maxBucketKeys;
DirectoryBuffer = new LengthFieldBuffer; // default size
DirectoryFile = new BufferFile(*DirectoryBuffer);
CurrentBucket = new Bucket (*this, MaxBucketKeys);
theBucketBuffer = new BucketBuffer (MaxKeySize, MaxBucketKeys);
.BucketFile = new BufferFile (*theBucketBuffer);
PrintBucket = new Bucket (*this, MaxBucketKeys) ;

) ‘

int Directory::Create (char * name)

{ // create the two files, create a single bucket
// and add it to the directory and the bucket file
int result;
char * directoryName, * bucketName; ,
makeNames (name, directoryNamel bucketName);// create file names
result.= DirectoryFile—>Create(directoryName,ios::inlios:;out);
if (!result) return 0;
result = BucketFile->Create(bucketName, ios::inlios::out);
1f (!result) return 0; _
// store the empty bucket in the BucketFile; add to Directory
Bucketaddr [0] = StoreBucket (CurrentBucket):;
return result;

}

Figure 12.13 Constructor and method Create of class Directory.

shown in Fig. 12.14. The Insert method first searches for the key.
Search arranges for the CurrentBucket member to contain the
proper bucket for the key. If the key is not already in the bucket, then the
Bucket : : Insert method is called to perform the insertion. In method
Directory: : Search, as in most search functions we have seen, the
Find method determines where the key would be if it were in the struc-
ture. In this case, Find determines which bucket is associated with the
key. As noted previously, MakeAddress finds the array index of the
directory cell that contains the file address of the appropriate bucket.
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int Directory::Insert (char * key, int recAddr)
{
int found = Search (key);
if (found != -1) return 0; // key already in directory
return CurrentBucket->Insert (key, recAddr);
}
int Directory::Search {char * key)
// return RecAddr for key, also put current bucket into variable
{ '
int bucketAddr = Find(key) ;
LoadBucket (CurrentBucket, bucketAddr);
return CurrentBucket->Search (key);
}
int Directory::Find (char * key)
// find BucketAddr associated with key
{ return BucketAddr[MakeAddress (key, Depth)];}

Figure 12.14 Methods Insert, Search, and Find of class Directory.

int Bucket::Insert (char * key, int recAddr)
{
if (NumKeys < MaxKeys)

{
int result = TextIndex::Insert (key, recAddr);

Dir.StoreBucket (this);
return result;
}
else // bucket is full
{
Split ();
return Dir.Insert {key, recaddr);

}

Figure 12.15 Method Insert of class Bucket adds the key to the existing
bucket if there is room. If the bucket is full, it splits it and then adds the key.

Method Bucket::Insert, given in Fig. 12.15 and in file
buffer.cpp of Appendix J, is called with a key-reference pair. If the
bucket is not full, Insert simply calls TextIndex: : Insert to add
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the key-reference pair to the bucket and stores the bucket in the file. A full
bucket, however, requires a split, which is where things start to get inter-
esting. After the split is done, the Directory: :Insert is called
(recursively) to try again to insert the key-reference pair.

What we do when we split a bucket depends on the relationship
between the number of address bits used in the bucket and the number
used in the directory as a whole. The two numbers are often not the same.
To see this, look at Fig. 12.6(a). The directory uses 3 bits to define its
address space (8 cells). The keys in bucket A are distinguished from keys in
other buckets by having an initial 0 bit. All the other bits in the hashed key
values in bucket A can be any value; it is only the first bit that matters.
Bucket A is using only 1 bit and has depth 1.

The keys in bucket C all share a common first 2 bits; they all begin
with 11. The keys in buckets B and D use 3 bits to establish their identi-
ties and, therefore, their bucket locations. If you look at Fig. 12.6(c), you
can see how using more or fewer address bits changes the relationship.
between the directory and the bucket. Buckets that do not use as many
address bits as the directory have more than one directory cell pointing
to them.

If we split one of the buckets that is using fewer address bits than the
direétor‘,_', and therefore is referenced from more than one directory cell,
we can use half of the directory cells to point to the new bucket after the
split. Suppose, for example, that we split bucket A in Fig. 12.6(c). Before
the split only 1 bit, the initial 0, is'used to identify keys that belong in
bucket A. After the split, we use 2 bits. Keys starting with 00 (directory cells
000 and 001) go in bucket A; keys starting with 0! (directory cells 010and
011) go in the new bucket. We do not have to expand the directory because
the directory already has the capacity to keep track of the additional
address information required for the split.

If, on the other hand, we split a bucket that has the same address depth
as the directory, such as'buckets B or D in Fig. 12.6(c), then there are no
additional directory cells that we can use to reference the new bucket.
Before we can split the bucket, we have to double the size of the directory,
creating a new directory entry for every one that is currently there so we
can accommodate the new address information.

Figure 12.16 gives an implementation of method Split. First we
compare the number of bits used for the directory with the number used
for the bucket to determine whether we need to double the directory. If the

depths are the same, we double the directory before proceeding.
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Bucket * Bucket::Split ()

{// split this into two buckets, store the new bucket, and
// return (memory) address of new bucket
int newStart, newEnd; .
if (Depth == Dir.Depth)// no room to split this bucket

Dir.DoubleSize();// increase depth of directory

Bucket * newBucket = new Bucket (Dir, MaxKeys);
Dir.StoreBucket (newBucket); // append to file
NewRange (newStart, newEnd); // determine directory addresses
Dir.InsertBucket (newBucket->Bucketaddr, newStart, newEnd);
Depth ++; // increment depth of this
newBucket->Depth = Depth;
Redistribute (*newBucket); // move some keys into new bucket
Dir.StoreBucket (this);
Dir.StoreBucket (newBucket);
return newBucket;

}

Figure 12.16 Methiod Split of class Bucket divides keys between an existing bucket and
a new bucket. If necessary, it doubles the size of the directory to accommodate the new
bucket.

Next we create the new bucket that we need for the split. Then we find
the range of directory addresses that we will use for the new bucket. For
instance, when we split bucket A in Fig. 12.6(c), the range of directory
addresses for the new bucket is from 010 to 011. We attach the new buck-
et to the directory over this range, adjust the bucket address depth infor-

“mation in both buckets to reflect the use of an additional address bit, then
redistribute the keys from the original bucket across the two buckets.

The most complicatéd operation supporting the Split method is
NewRange, which finds the range of directory cells that should point to
the new bucket instead of the old one after the split. It is given in Fig.
12.17. To see how it works, return, once again, to Fig. 12.6(c). Assume that
we need to split bucket A, putting some of the keys into a new bucket E.
Before the split, any address beginning with a 0leads to A. In other words,
the shared address of the keys in bucket A is 0.

When we split bucket A we add another address bit to the path leading
to the keys; addresses leading to bucket A now share an initial 00 while
those leading to E share an 01. So, the range of addresses for the new buck-
et is all directory addresses beginning with 01. Since the directory address-
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int Bucket::NewRange (int & newStart, int & newEnd)
{// make a rahge for the new split bucket
int sharedAddr = MakeAddress(Keys([0]), Depth);
int bitsToFill = Dir.Depth - (Depth + 1);
newStart = (sharedAddr << 1) | 1;
newkEnd = newStart;
for (int j = 0; j < bitsToFill; J++)

{
newStart = newStart << 1;
newEnd = (newkEnd << 1) | 1;
}
return 1;

)

Figure 12.17 Method NewRange of class Bucket finds the start and end
directory addresses for the new bucket by using information from the old

bucket.

es-use 3 bits, the new bucket is attached to the directory cells starting with
010 and ending with 011.

Suppose that the directory used a 5-bit address instead of a 3-bit
address. Then the range for the new bucket would start with 01000 and
end with 01111. This range-covers all 5-bit addresses that share 01 as the
first 2 bits. The logic for finding the range of directory addresses for the
new bucket, then, starts by finding shared. address bits for the new bucket.
It then fills the address out with 0s until we have the number of bits used
in the directory. This is the start of the range. Filling the address out with
Is produces the end of the range.

The directory operations required to support Split are easy to
implement. They are given in Fig. 12.18. The first, Directory:

:DoubleSize, simply calculates the new directory size, allocates the
required memory, and writes the information from each old directory cell
into two successive cells in the new directory. It finishes by freeing the old
space associated with member Buf ferAddrs, renaming the new space
as the Buf ferAddrs, and increasing the Depth to reflect the fact that
the directory is now using an additional address bit.

Method InsertBucket, used to attach a bucket address across a
range of directory cells, is simply a loop that works through the cells to
make the change.

heé¢eps://hemanthrajhemu.github.io



542 Chapter 12 Extendible Hashing

int Directory::DoubleSize ()
// double the size of the directory
{

int newSize = 2 * NumCells;

int * newBucketAddr = new int[newSize];

for (int 1 = 0; 1 < NumCells; i++)

{// double the coverage of each bucket
newBucketAddr([2*i] = BucketAddr[i];
newBucketAddr [2*i+1] = BucketAddr([i];

}

delete BucketAddr;// delete old space for cells

BucketAddr = newBucketAddr;

Depth ++;

NumCells = newSize;

return 1;

}

int Directory::InsertBucket (int bucketAddr, int first, int last)
O

for (int 1 = first; i <= last; i++)
BucketAddr[i] = bucketAddr;
return 1; )

}

Figure 12.18 Methods DoubleSize and Directory InsertBucket of class Directory. .

12.3.4 Implementation Summary

Now that we have assembled all of the pieces necessary to add records to
an extendible hashing system, let’s see how the pieces work together.

The Insert method manages record addition. If the key already
exists, Insert returns immediately. If the key does not exist, Insert
calls Bucket : : Insert, for the bucket into which the key is to be added.
If Bucket::Insert finds that there is still room in the bucket, it
adds the key and the operation is complete. If the bucket is full,
Bucket ::Insert calls Split to handle the task of splitting the bucket.

The Split method starts by determining whether the directory is
large enough to accommodate the new bucket. If the directory needs to be
larger, Split calls method Directory: :DoubleSize todouble the
directory size. Split then allocates a new bucket, attaches it to the appro-
priate directory cells, and divides the keys between the two buckets.
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When Bucket : : Insert regains control after Split has allocated a
new bucket, it calls Directory: :Insert totry to place the key into the
new, revised directory structure. The Directory: : Insert function, of
course, calls Bucket : : Insert again, recursively. This cycle continues
until there is a bucket that can accommodate the new key. A problem can
occur if there are many keys that have exactly the same hash address. The
process of double, split, and insert will never make room for the new key.

12.4 Deletion

12.4.1° Overview of the Deletion Process

If extendible hashing is to be a truly dynamic system, like B-trees or AVL
trees, it must be able to shrink files gracefuﬂy as well as grow them. When
we delete a key, we need a way to see if we can decrease the size of the file
system by combining buckets and, if possible, decreasing the size of the
directory. i

As with any dynamic system, the important question during deletion
concerns the definition of the triggering condition: When do we combine
buckets? This question, in turn, leads us to ask, Which buckets can be
combined? For B-trees the answer involves determining whether nodes are

.siblings. In extendible hashing we use a similar concept: buckets that are
buddy buckets. '

Look again at the trie in Fig. 12.6(b). Which buckets could be com-
bined? Trying to combine anything with bucket A would mean collapsing
everything else in the trie first. Similarly, there is no single bucket that
could be combined with bucket C. But buckets B and D are in the same
configuration as buckets that have just split. They are ready to be
combined: they are buddy-buckets. We will take a closer look at finding
buddy buckets when we consider implementation of the deletion proce-
dure; for now let’s assume that we combine buckets B and D.

After combining buckets, we examine the directory to see-if we can
make changes there. Looking at the directory form of the trie in Fig.
12.6(c), we see that once we combine buckets B and D, directory cells 100
and 101 both point to the same bucket. In fact, each of the buckets has at
least a pair of directory cells pointing to it. In other words, none of the
buckets requires the depth of address information that is currently avail-
able in the-directory. That means that we can shrink the directory and
reduce the address space to half its size.

heé¢eps://hemanthrajhemu.github.io



544 Chapter 12 Extendible Hashing

Reducing the size of the address space restores the directory and buck-
et structure to the arrangement shown in Fig. 12.4, before the additions
and splits that produced the structure in Fig, 12.6(c). Reduction consists of
collapsing each adjacent pair of directory cells into a single cell. This is
easy, because both cells in each pair point to the same bucket. Note that
this is nothing more than a reversal of the directory splitting procedure
that we use when we need to add new directory cells.

12.4.2 A Procedure for Finding Buddy Buckets

Given this overview of how deletion works, we begin by focusing on
buddy buckets. Given a.bucket, how do we find its buddy? Figure 12.19
contains the code for method Bucket : : FindBuddy. The method
works by checking to see whether it is possible for there to be a buddy
bucket. Clearly, if the directory depth is 0, meaning that there is only a
single bucket, there cannot be a buddy.

The next test compares the number of bits used by the bucket with the
number of bits used in the directory address space. A pair of buddy buck-
ets is a set of buckets that are immediate descendants of the same node in

“the trie. They are, in fact, pairwise siblings resulting from a split. Going
back to Fig. 12.6(b), we see that asking whether the bucket uses all the
address bits in the directory is another way of asking whether the bucket is
at the lowest level of the trie. It is only when a bucket is at the outer edge
of the trie that it can have a single parent and a single buddy.

Once we determine that there is a buddy bucket, we need to find its
address. First we find the address used to find the bucket we have at hand;

int Bucket::FindBuddy ()
{// find the bucket that is paired with this |
if (Dir.Depth == 0) return -1; // no buddy, empty directory

// unless bucket depth == directory depth, .there is no single
// bucket to pair with
if (Depth < Dir.Depth) return -1;
int sharedAddress = MakeAddress (Keys[0], Depth);
// address of any key _
return sharedAddress ~ 1; // exclusive or with low bit
)

Figure 12.19 Method FindBuddy of class Bucket returns a buddy bucket or -1 if none is
found.
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this is the shared address of the keys in the bucket. Since we know that the
buddy bucket is the other bucket that was formed from a split, we know
that the buddy has the same address in all regards except for the last bit.
Once again, this relationship is illustrated by buckets B and D in Fig.
12.6(b). So, to get the buddy address, we flip the last bit with an exclusive
or. We return directory address of the buddy bucket.

12.4.3 Collapsing the Directory

The other important support function used to implement deletion is the
function that handles collapsing the directory. Downsizing the directory is
one of the principal potential benefits of deleting records. In our imple-
mentation we use one function to see whether downsizing is possible and,
if it is, to collapse the directory. '

Method Directory::Collapse, given in Fig. 12.20, begins by
making sure that we are not at the lower limit of directory size. By treating
the special case of a directory with a single cell here, at the start of the
function, we simplify subsequent processing: with the exception of this
case, all directory sizes are evenly divisible by 2.

The test to see if the directory can be collapsed consists of examining
each pair of directory cells to see if they point to different buckets. As soon

int Directory::Collapse ()
{// if collapse is possible, reduce size by half
if (Depth == 0) return 0; // only 1 bucket
// loock for buddies that are different, if found return
for {(int 1 = 0; 1 < NumCells; 1 += 2)
if (BucketZaddr{i) != BucketAaddr{i+1l])) return 0;
int newSize = NumCells / 2;
int * newAddrs = new int [newSize];
for (int j = 0; j < newSize; J++)
newAddrs{j] = BucketAddr[j*2];
delete BucketAddr;
BucketAddr = newAddrs;
Depth —;
NumCells = newSize;
return 1; ’
}

Figure 12,20 Method Collapse of class Directory reduces the size of the directory, if
possible.
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as we find such a pair, we know that we cannot collapse the directory and
the method returns. If we get all the way through the directory without
encountering such a pair, then we can collapse the directory.
The collapsing operation consists of allocating space for a new array
of bucket addresses that is half the size of the original and then copying
- the bucket references shared by each cell pair to a single cell in the new
directory.

12.4.4 Implementing the Deletion Operations

Now that we have an approach to the two critical support operations for
deletion, finding buddy buckets and collapsing the directory, we are ready
to construct the higher levels of the deletion operation.

The highest-level deletion operation, Directory: :Remove, is
very simple. We first try to find the key to be deleted. If we cannot find it,
we return failure; if we find it, we call Bucket : : Remove to remove the
key from the bucket. We return the value reported back from that method.
Figure 12.21 gives the implementation of these two methods.

Method Bucket : : Remove does its work in two steps. The first step,
removing the key from the bucket, is accomplished through the call to
Text Index: : Remove, the base class Remove method. The second

int Directory::Remove (char * key)

{// remove the key and return its RecAddr
int bucketAddr = Find(key);
LoadBucket {CurrentBucket, bucketAddr);
return CurrentBucket -> Remove (key);

}

int Bucket::Remove (char * key)

{// remove the key, return its RecAddr

" int result = TextIndex::Remove (key);
if {!result) return 0: // key not 'in bucket
TryCombine (); // attempt to combine with buddy
// make the changes permanent
Dir.StoreBucket (this) ;
return 1;

} '

Figure 12.21 Remove methods of classes Directory and Bucket.
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step, which takes place only if a key is removed, consists of calling
TryCombine to see if deleting the key has decreased the size of the buck-
et enough to allow us to combine it with its buddy.

Figure 12.22 shows the implementation of TryCombine and
Combine. Note that when we combine buckets, we reduce the address
depth associated with the bucket: combining buckets means that we use 1
less address bit to differentiate keys.

int Bucket::TryCombine" ()
{// called after insert to combine buddies, if possible
int result;
int buddyIndex = FindBuddy ();
if (buddyIndex == -1) return 0;// no combination possible
// load buddy bucket into memory
int buddyAddr- = Dir.BucketAddr [buddyIndex];
Bucket * buddyBucket = new Bucket (Dir, MaxKeys);
Dir . LoadBucket (buddyBucket, buddyAddr) ;
// if the sum of the sizes of the buckets is too big, return
if (NumKeys + buddyBucket->NumKeys > MaxKeys) return 0;
Combine (buddyBucket, buddyIndex);

result = Dir.Collapse (); // collapse the 2 buckets
if,(result) TryCombine(); //1f collapse, may be able to combine
return 1;

} .
int Bucket::Combine (Bucket * buddy, int buddyIndex)

{// combine this and buddy to make a single bucket
int result; '
// move keys from buddy to this
for (int i = 0; 1i.< buddy->NumKeys; i++)
{// insert the key of the buddy into this
result = Insert (buddy->Keys[i],buddy->RecAddrs(i]);
‘if (!result) return 0;// this should not happen

}

Depth — —;// reduce the depth of the bucket
Dir . RemoveBucket (buddyIndex, Depth);// delete buddy bucket
return 1;

}

‘Figure 12.22 Methods TryCombine and Combine of class Bucket. TryCombine tests to
see whether a bucket can be combined with its buddy. If the test succeeds, TryCombine
calls Combine to do the combination.
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After combining the buckets, we call Directory::Collapse ()
to see if the decrease in the number of buckets enables us to decrease the
size of the directory. If we do, in fact, collapse the directory, TryCombine
calls itself recursively. Collapsing the directory may have created a new
buddy for the bucket; it may be possible to do even more combination
and collapsing. Typically; this recursive combining and collapsing happens
only when the directory has a number of empty buckets that are await-
ing changes in the directory structure that finally produce a buddy to
combine with.

12.4.5 Summary of the Deletion Operation

Deletion begins with a call to Directory : : Remove that passes the key
that is to be deleted. If the key cannot be found, there is nothing to delete.
If the key is found, the bucket containing the key is passed to
Bucket : :Remove.

The Bucket : : Remove method deletes the key, then passes the
bucket on to Directory: : TryCombine to see if the smaller size of
the bucket will now permit combination with a buddy bucket.
TryCombine first checks to see if there is a buddy bucket. If not, we are
done. If there is a buddy, and if the sum of the keys in the bucket and its
buddy is less than or equal to the size of a single bucket, we combine the.
buckets. ,

The elimination of a bucket through combination might cause the
directory to collapse to half its size. We investigate this possibility by call-
ing Directory: :Collapse. If collapsing succeeds, we may have a
new buddy bucket, so TryCombine calls itself again, recursively.

File testdel.cpp in Appendix ] opens the directory created by
testhash. cpp and proceeds to delete each element of the directory.
Using a debugger to step through this program may help in understanding
the deletion process. '

12.5 Extendible Hashing Performance

Extendible hashing is an elegant solution to the problem of extending and
contracting the address space for a hash file as the file grows and shrinks.
How well does it work? As always, the answer to this question must consid-
er the trade-off between time and space.
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The time dimension is easy to handle: if the directory for extendible
hashing can be kept in memory, a single access is all that is ever required to
retrieve a record. If the directory is so large that it must be paged in and
out of memory, two accesses may be necessary. The important point is that
extendible hashing provides O(1) performance: since there is no overflow,
these access time values are truly independent of the size of the file.

Questions about space utilization for éxtendible hashing are more
complicated than questions about access time. We need to be concerned
about two uses of space: the space for the buckets and the space for the

directory.

12.5.1 Space Utilization for Buckets

In their original paper describing extendible hashing, Fagin, Nievergelt,
Pippenger, and Strong include analysis and simulation of extendible hash-
ing performance. Both the analysis and simulation show that the space
utilization is strongly periodic, fluctuating between values of 0.53 and
0.94. The analysis portion of their paper suggests that for a given number
of records r and a block size of b, the average number of blocks N is
approximated by the formula

-
bln?2

=

Space utilization, or packing density, is defined as the ratio of the actu-
al number of records to the total number of records that could be stored in
the allocated space:

Utilization =

Substituting the approximation for N gives us:
Utilization = 1n 2 = 0.69

So, we expect average utilization of 69 percent. In Chapter 9, where we
looked at space utilization for B-trees, we found that simple B-trees tend
to have a utilization of about 67 percent, but this can be increased to more
than 85 percent by redistributing keys during insertion rather than just
splitting when a page is full. So, B-trecs tend to use less space than simple
extendible hashing, typically at a cost of requiring a few extra seeks.

The average space utilization for extendible hashing is only part of the
story; the other part rélates to the periodic nature of the variations in
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space utilization. It turns out that if we have keys with randomly distrib-
uted addresses, the buckets in the extendible hashing table tend to fill up at
about the same time and therefore tend to split at the same time. This
explains the large fluctuations in space utilization. As the buckets fill up,
space utilization can reach past 90 percent. This is followed by a concen-
- trated series of splits that reduce the utilization to below 50 percent. As
these now nearly half-full buckets fill up again, the cycle repeats itself.

12.5.2 Space Utilization for the Directory

The directory used in extendible hashing grows by doubling its size. A
prudent designer setting out to implement an extendible hashing system
will want assurance that this doubling levels off for reasonable bucket
sizes, even when the number of keys is quite large. Just how large a direc-
tory should we expect to have, given an expected number of keys?

Flajolet (1983) addressed this question in a lengthy, carefully devel-
oped paper that produces a number of different ways to estimate the direc-
tory size. Table 12.1, which is taken from Flajolet’s paper, shows the
expected value for the directory size for different numbers of keys and
different bucket sizes.

Flajolet also provides the following formula for making rough esti-
mates of the directory size for values that are not in this table.- He notes
that this formula tends to overestimate directory size by a factor of 2 to 4.

Estimated directory size = i:—z- r(l+1/b)

Table 12.1 Expected directory size for a given bucket size b and total number of records r

b 5 10 20 50 100 200

r | ,

103 1.50 K 0.30K 0.10 K 0.00 K 0.00K 0.00, K
104 25.60 K 480K 1.70 K 0.50 K 020K 0.00K
105 42410K  68.20K 16.80 K 410K 2.00K 1.00K
106 6.90 M 1.02 M 0.26 M 62.50 K 16.80 K 1 8.10K
107 "t 112,11 M 12.64 M 2.25M 0.52 M. 0.26 M 0.13M

1 K=1031M =106,
From Flajolet, 1983,
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12.6 Alternative Approaches

12.6.1 Dynamic Hashing

In 1978, before Fagin, Nievergelt, Pippenger, and Strong produced their
paper on extendible hashing, Larson published a paper describing a scheme
called dynamic hashing. Functionally, dynamic hashing and extendible
hashing are very similar. Both use a directory to track the addresses of the
buckets, and both-extend the directorythrough the use of tries.

The key difference between the approaches is that dynamic hashing,
like conventional, static hashing, starts with a hash function that covers an
address space of a fixed size. As buckets within that fixed address space
overflow, they split, forming the leaves of a trie that grows down from the
original address node. Eventually, after enough additions and splitting, the
buckets are addressed through a forest of tries that have been seeded out of
the original static address space.

Let’s look at an example. Figure 12.23(a) shows an initial address space
of four and four buckets descending from the four addresses in the direc-
tory. In Fig. 12.23(b) we have split the bucket at address 4. We address the
two buckets resulting from the split as 40 and 41. We change the shape of
the directory node at address 4 from a square to a circle because it has
changed from an external node, referencing a bucket, to an internal node
that points to two child nodes.

In Fig. 12.23(c) we split the bucket addressed by node 2, creating the
new external nodes 20 and 21. We also split the bucket addressed by 41,
extending the trie downward to include 410 and 411. Because the directo-
ry node 41 is now an internal node rather than an external one, it changes
from a square to a circle. As we continue to add keys and split buckets,
these directory tries continue to grow.

Finding a key in a dynamic hashifhg scheme.can involve the use of two
hash functions rather than just one. First, there is the hash function that
covers the original address space. If you find that the directory node is an
external node and therefore points to a bucket, the search is complete.
However, if the directory node is an internal node, then you need addi-
tional address information to guide you through the 1s and 0s that form
the trie. Larson suggests using a second hash function on the key and using

. the result of this hashing as the seed for a random-number generator that
produces a sequence of 1s and Os for the key. This sequence describes the
path through the trie.
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Figure 12.23 The growth of index in dynamic hashing.

It is interesting to compare dynamic hashing and extendible hashing.
A brief, but illuminating, characterization of similarities and differences is
that while both schemes extend the hash function locally, as a binary
search trie, in order to handle overflow, dynamic hashing expresses the
extended directory as a linked structure while extendible hashing express-
-es it as a perfect tree, which is in turn expressible as an array.

Because of this fundamental similarity, it is not surprising that the
space utilization within the buckets is the same (69 percent) for both
approaches. Moreover, since the directories are essentially equivalent, just
expressed differently, it follows that the estimates of directory depth devel-
oped by Flajolet (1983) apply equally well to dynamic hashing and
extendible hashing. (In section 12.5.2 we talk about estimates for the
directory size for extendible hashing, but we know that in extendible hash-
ing directory depth = log, directory sizc.)

The primary difference between the two approaches is that dynamic
hashing allows for slower, more gradual growth of the directory, whereas
extendible hashing extends the directory by doubling it. However, because
the directory nodes in dynamic hashing must be capable of holding point-
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ers to children, the size of a node in dynamic hashing is larger than a direc-
tory cell in extendible hashing, probably by at least a factor of 2. So, the
directory for dynamic hashing will usually require more space in memory.
Moreover, if the directory becomes so large that it requires use of virtual
memory, extendible hashing offers the advantage of being able to access
the directory with no more than a single page fault. Since dynamic hash-
ing uses a linked structure for the directory, it may be necessary to incur
more than one page fault to move through the directory.

12.6.2 Linear Hashing

The key feature of both extendible hashing and dynamic hashing is that
they usea directory to access the buckets containing the key records. This
directory makes it possible to expand and modify the hashed address space
without expanding the number of buckets: after expanding the directory,
more than one directory node can point to the same bucket. However, the
directory adds an additional layer of indirection which, if the directory
must be stored on disk, can result in an additional seek.

Linear hashing, introduced by Litwin in 1980, does away with the
directory. An example, developed in Fig. 12.24, shows how linear hashing
works, This example is adapted from a description of linear hashing by
Enbody and Du (1988).

Linear hashing, like extendible hashing, uses more bits of hashed value
as the address space grows. The example begins (Fig. 12.24{a]) with an
address space of four, which means that we are using an address function
that produces addresses with two bits of depth. In terms of the operations
that we developed earlier in this chapter, we are calling MakeAddress
with a key and a second argument of 2. For this example we will refer'to
this as the h, (k) address function. Note that the address space consists of
four buckets rather than four directory nodes that can point to buckets.

As we add records, bucket b overflows. The overflow forces a split.
However, as Fig. 12.24(b) shows, it is not bucket b that splits, but bucket a.
The reason for this is that we are extending the address space linearly, and
bucket a is the next bucket that must split to create the next linear exten-
sion, which we call bucket A. A 3-bit hash function, h;(k), is applied to
buckets a'and A to divide the records between them. Since bucket b was
not the bucket that we split, the overflowing record is placed into an over-
flow bucket w.

We add more records, and bucket d overflows. Bucket b is the next one
to split and extend the address space, so we use the h,(k) address function
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' Figure 12.24 The growth of address
space in linear hashing. Adapted
o0 01 10 11 from Enbody and Du (1988).
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to divide the records from bucket b and its overflow bucket w between b
and the new bucket B. The record overflowing bucket d is placed in an
overflow bucket x. The resulting arrangement is illustrated in Fig. 12.24(c).

Figure 12.24(d) shows what happens when, as we add more records,
bucket d overflows beyond the capacity of the overflow bucket w. Bucket ¢
is the next in the extension sequence, so we use the h;(k) address function

to divide the records between cand C.
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Finally, assume that bucket B overflows. The overflow record is placed
in the overflow bucket z. The overflow also triggers the extension to buck-
et D, dividing the contents of d, x, and y between buckets d and D. At this
point all of the buckets use the 'h3(k) address function, and we have
finished the expansion cycle. The pointer for the next bucket to be split
returns to bucket g to get ready for a new cycle that will use an h,(k)
address function to reach new buckets.

Because linear hashing uses two hash functions to reach the buckets
during an expansion cycle, an (k) function for the buckets at the current
address depth and an hy, (k) function for the expansion buckets, finding
a record requires knowing which function to use. If p is the pointer to the
address of the next bucket to be split and extended, then the procedure for
finding the address of the bucket containing a key k is as follows:

if (hgq(k) <= p)
address = hg(k);
else
address = hg , 1(k);

Litwin (1980) shows that the access time performance of linear hash-
ing is quite good. There is no directory to access or maintain, and since we
extend the address space through splitting every time there is overflow, the
overflow chains do not become very large. Given a bucket size of 50, the
average number of disk accesses per search approaches very close to one.
Space utilization, on the other hand, is lower than it is for extendible hash-
ing or dynamic hashing, averaging around only 60 percent.

12.6.3 - Approaches to Controlling Splitting

We know from Chapter 9 that we can increase the storage capacity of B-
trees by implementing measures that tend to postpone splitting, redistrib-
uting keys between pages rather than splitting pages. We can apply similar
logic to the hashing schemes introduced in this chapter, placing records in
chains.of overflow buckets to postpone splitting. _

Since linear hashing has the lowest storage utilization of the schemes
introduced here, and since it already includes logic to handle overflow
buckets, it is an attractive candidate for use of controlled splitting logic. In
its uncontrolled-splitting form, linear hashing splits a bucket and extends
the address space every time any bucket overflows. This choice of a trig-
gering event for splitting is arbitrary, particularly when we consider that
the bucket that splits is typically not the bucket that overflows. Litwin
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(1980) suggests using the overall load factor of the file as an alternative
triggering event. Suppose we let the buckets overflow until the space
utilization reaches some desired figure, such as 75 percent. Every time the
utilization exceeds that figure; we split a bucket and extend the address
space. Litwin simulated this kind of system and found that for load factors
of 75 percent and even 85 percent, the average number of accesses for
successful and unsuccessful searches still stays below 2.
We can also use overflow buckets to defer splitting and increase space
utilization for dynamic hashing and extendible hashing. For these meth-
ods, which use directories to the buckets, deferring splitting has the addi-
tional attraction of keeping the directory size down. For extendible
hashing it is particularly advantageous to chain to an overflow bucket and
therefore avoid a split when the split would cause the directory to double
in size. Consider the exanmiple that we used early in this chapter, where we
split the bucket B in Fig. 12.4(b), producing the expanded directory and
bucket structure shown in Fig. 12.6(c). If we had allowed bucket B to over-
flow instead, we could have retained the smaller directory. Depending on
how much space we allocated for the overflow buckets, we might also have
improved space utilization among the buckets. The cost of these improve-
ments, of course, is a potentially greater search length due to the overflow
chains. _
~ Studies of the effects of different overflow bucket sizes and chaining
mechanisms supported a small industry of academic research during the
early and mid-1980s. Larson (1978) suggested the use of deferred splitting

"in his original paper on dynamic hashing but found the results of some
preliminary simulations of the idea to be disappointing. Scholl (1981)
developed a refinement of this idea in which overflow buckets are shared.
Master’s thesis research by Chang (1985) tested Scholl’s suggestions empir-
ically and found that it was possible to achieve storage utilization of about
81 percent while maintaining search performance in the range of 1.1 seeks
per search. Veklerov (1985) suggested using buddy buckets for overflow
rather than allocating chains of new buckets. This is an attractive sugges-
tion, since splitting buckets without buddies can never cause a doubling of
the directory in extendible hashing. Veklerov obtained storage utilization
of about 76 percent with a bucket size of 8.
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SUMMARY

Conventional, static hashing does not adapt well to file structures that are
dynamic, that grow and shrink over time. Extendible hashing is one of
several hashing systems that allow the address space for hashing to grow
and shrink along with the file. Because the size of the address space can
grow as the file grows, it is possible for extendible hashing to provide
hashed access without the need for overflow handling, even as files grow
many times beyond their original expected size.

The key to extendible hashing is using more bits of the hashed value as
we need to cover more address space. The model for extending the use of
the hashed value is the trie: every time we use another bit of the hashed
value, we have added another level to the depth of a trie with a radix of 2.

In extendible hashing we fill out all the leaves of the trie until we have
a perfect tree, then we collapse that tree into a one-dimensional array. The
array forms a directory to the buckets, kept on disk, that hold the keys and
records. The directory is managed in memory, if possible.

If we add a record and there is no room for it in a bucket, we split the
bucket. We use 1 additional bit from the hash values for the keys in the
bucket to divide the keys between the old bucket and the new one. If the
address space represented in the directory can cover the use of this new bit,
no more changes are necessary. If, however, the address space is using
fewer bits than are needed by our splitting buckets, then we double the
address space to accommodate the use of the new bit.

Deletion reverses the addition process, recognizing that it is possible to
combine the records for two buckets only if they are buddy buckets, which
is to say that they are the pair of buckets that resulted from a split.

Access performance for extendible hashing is a single seek if the direc-
tory can be kept-in memory. If the directory must be paged off to disk,
worst-case performance 1s two seeks. Space utilization for the buckets is
approximately 69 percent. Tables and an approximation formula devel-
oped by Flajolet (1983) permit estimation of the probable directory size,
given a bucket size and total number of records.

There are a number of other approaches to the problem solved by
extendible hashing. Dynamic hashing uses a very similar approach but
expresses the directory as a linked structure rather than as an array. The
linked structure'is more cumbersome but grows more smoothly. Space
utilization and seek performance for dynamic hashing are the same as for
extendible hashing.
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Linear hashing does away with the directory entirely, extending the
address space by adding new buckets in a linear sequence. Although the
overflow of a bucket can be used to trigger extension of the address space
in linear hashing, typically the bucket that overflows is not the one that is
split and extended. Consequently, linear hashing implies maintaining over-
flow chains and a consequent degradation in seek performance. The degra-
dation is slight, since the chains typically do not grow to be very long before
they are pulled into a new bucket. Space utilization is about 60 percent.

Space utilization for extendible, dynamic, and linear hashing can be
improved by postponing the splitting of buckets. This is easy to implement
for linear hashing, since there are already overflow buckets. Using deferred
splitting, it is possible to increase space utilization for any of the hashing
schemes described here to 80 percent or better while still maintaining
search performance averaging less than two seeks. Overflow handling for
these approaches can use the sharing of overflow buckets.

KEY TERMS

Buddy bucket. Given a bucket with an address uvwxy, where u, v, w, x, and
y have values of either 0 or I, the buddy bucket, if it exists, has the
value uvwxz, such that

z=yXOR 1
Buddy buckets are important in deletion operations for extendible

hashing because, if enough keys are deleted, the contents of buddy
buckets can be combined into a single bucket.

Deferred splitting. It is possible to improve space utilization for dynamic
hashing, extendible hashing, and linear hashing by postponing, or
deferring, the splitting of buckets, placing records into overflow buck-
ets instead. This is a classic space/time trade-off in which we accept
diminished performance in return for more compact storage.

Directory. Conventional, static hashing schemes transform a key into a
bucket address. Both extendible hashing and dynamic hashing intro-
duce an additional layer of indirection, in which the key is hashed to a
directory address. The directory, in turn, contains information about
the location of the bucket. This additional indirection makes it possi-
ble to extend the address space by extending the directory rather than
having to work with an address space made up of buckets.
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Dynamic hashing. Used in a generic sense, dynamic hashing can refer
to any hashing system that provides for expansion and contraction
of the address space for dynamic files where the number of records
changes over time. In this chapter we use the term in a more specif-
ic sense to refer to a system initially described by Larson (1978).
The system uses a directory to provide access to the buckets that
contain the records. Cells in the directory can be used as root nodes
of trie structures that accommodate greater numbers of buckets as
buckets split.

Extendible hashing. Like dynamic hashing, extendible hashing is some-
times used to refer to any hashing scheme that allows the address
space to grow and shrink so it can be used in dynamic file systems.
Used more precisely, as it is used in this chaptér, extendible hashing
refers to an approach to hashed retrieval for dynamic files that was
first proposed by Fagin, Nievergelt, Pippenger, and Strong (1979).
Their proposal is for a system that uses a directory to represent
the address space. Access to buckets containing the records is
through the directory. The directory is handled as an array; the
size of the array can be doubled or halved as the number of buck-
ets changes. ’

Linear hashing. An approach to hashing for dynamic files that was first
proposed by Litwin (1980). Unlike extendible hashing and dynamic
hashing, linear hashing does not use a directory. Instead, the address
space is extended one bucket at a time as buckets overflow. Because the
extension of the address space does not necessarily correspond to the
bucket that is overflowing, linear hashing necessarily involves the use
of overflow buckets, even as the address space expands.

Splitting. The hashing schemes described in this chapter make room for
new records by splitting buckets to form new buckets, then extending
the address space to cover these buckets. Conventional, static hashing
schemes rely strictly on overflow buckets without extending the
address space.

Trie. A search tree structure in which each successive character of the key
is used to determine the direction of the search at each successive
level of the tree. The branching factor (the radix of the trie) at any
level is potentially equal to the number of values that the character
can take.
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 FURTHER READINGS

For information about hashing for dynamic files that goes beyond what we
present here, you must turn to journal articles. The best summary of the
different approaches is Enbody and Du’s Computing Surveys article titled
“Dynamic Hashing Schemes,” which appeared in 1988.

The original paper on extendible hashing is “Extendible Hashing—
A Fast Access Method for Dynamic Files” by Fagin, Nievergelt, Pippen-
ger, and Strong (1979). Larson (1978) introduces dynamic hashing in an
article titled “Dynamic Hashing.” Litwin’s initial paper on linear hashing
is titled “Linear Hashing: A New Tool for File and Table Addressing”
(1980). All three of these introductory articles are quite readable;
Larson’s paper and Fagin, Nleveroelt Pippenger, and Strong are especial-
ly recommended.

Michel Scholl’s 1981 paper titled “New File Oxoamzatlons Based on
Dynamic Hashing” provides another readable introduction to dynamic
hashing. It also investigates implementations that defer splitting by allow-
ing buckets to overflow.

Papers analyzing the performance of dynamic or extendible hashing

" often derive results that apply to either of the two methods. Flajolet (1983)
presents a careful analysis of directory depth and size. Mendelson (1982}
arrives at similar results and goes on to discuss the costs of retrieval and
deletion as different design parameters are changed. Veklerov (1985)
analyzes the performance of dynamic hashing when splitting is deferred by
allowing records to overflow into a buddy bucket. His results can be
applied to extendible hashing as well.

After introducing dynamic hashing, Larson wrote a number of
papers building on the ideas associated with linear hashing. His 1980
paper titled “Linear Hashing with Partial Expansions” introduces an
approach to linear hashing that can avoid the uneven distribution of the
lengths of overflow chains across the cells in the address space. He
followed up with a performance analysis in a 1982 paper titled “Perfor-
mance Analysis of Linear Hashing with Partial Expansions.” A subse-
quent, 1985 paper titled “Linear Hashing with Overflow—Handling by
Linear Probing” introduces a method of handling overﬂow that does not
involve chaining.
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EXERCISES

1. Briefly describe the differences between extendible hashing, dynamic
hashing, and linear hashing. What are the strengths and weaknesses of
each approach?

2. The tries that are the basis for the extendible hashing procedure
described in this chapter have a radix of 2. How does performance
change if we use a larger radix?

3. In the MakeAddress function, what would happen if we did not
reverse the order of the bits but just extracted the required number of
low-order bits in the same left-to-right order that they occur in the
address? Think about the way the directory location would change as
we extend the implicit trie structure to use yet another bit.

4. If the language that you are using to implement the MakeAddress
function does not support bit shifting and masking operations, how
could you achieve the same ends, even if less elegantly and clearly?

5. Inthe method Bucket ::Split, we redistribute keys between the
original bucket and a new one. How do you decide whether a key

"belongs in the new bucket or the original bucket? |

6. Suppose the redistribution of keys in Bucket : :Split does not
result in moving any keys into the new bucket. Under what conditions
could such an event happen? How do the methods of classes Bucket
and Directory handle this?

7. The Bucket: : TryCombine function is potentially recursive. In
section 12.4.4 we described a situation in which there are empty buck-
ets that can be combined with other buckets through a series of recur-
sive calls to TryCombine. Describe two situations that could
produce empty buckets in the hash structure.

8. Deletion occasionally results in collapsing the directory. Describe
the conditions that must be met before the directory can collapse.
What methods in classes Bucket and Directory detect these
conditions?

9. Deletion depends on finding buddy buckets. Why does the address
depth for a bucket have to be the same as the address depth for the
directory in order for a bucket to i.uve a buddy?
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.10. In the extendible hashing procedure described in this chapter, the
directory can occasionally point to empty buckets. Describe two situ-
ations that can produce empty buckets. How could we modify the
methods to avoid empty buckets?

11. If buckets are large, a bucket containing only a few records is not
' much less wasteful than an empty bucket. How could we minimize
nearly empty buckets?

12. Linear hashing makes use of overflow records. Assuming an uncon-
trolled splitting implementation in which we split and extend the
address space as soon as we have an overflow, what is the effect of
using different bucket sizes for the overflow buckets? For example,
consider overflow buckets that are as large as the original buckets.
Now consider overflow buckets that can hold only one record. How
does this choice affect performance in terms of space utilization and
access time?

13. In section 12.6.3 we described an approach to linear hashing that
controls splitting. For a load factor of 85 percent, the average number
of accesses for a successful search is 1.20 (Litwin, 1980). Unsuccessful
searches require an average of 1.78 accesses. Why is the average search
length greater for unsuccessful searches?

14. Because linear hashing splits one bucket at a time, in order, until it
has reached the end of the sequence, the overflow chains for the last
buckets in the sequence can become much longer than those for the
earlier buckets. Read about Larson’s approach to solving this problem
through the use of “partial expansions,” originally described in Larson
(1980) and subsequently summarized in Enbody and Du (1988).
Write a pseudocode description of linear hashing with partial expan-
sions, paying particular attention to how addressing is handled.

15. Insection 12.6.3 we discussed different mechanisms for deferring the-
splitting of buckets in extendible hashing in order to increase storage
utilization. What is the effect of using smaller overflow buckets rather
than larger ones? How doés using smaller overflow buckets compare
with sharing overflow buckets?
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PROGRAMMING EXERCISES

16. Write a version of the MakeAddress function that prints out the
input key, the hash value, and the extracted, reversed address. Build a
driver that allows you to enter keys interactively for this function and
see the results. Study the operation of the function on different keys.

18. Implement method Directory: :Delete. Write a driver pro-
gram to verify that your implementation is correct. Experiment with
the program to see how deletion works. Try deleting all the keys. Try
to create situations in which the directory will recursively collapse
over more than one level.

19. Design and implement a class HashedFile patterned after
class TextIndexedFile of Chapter 7 and Appendix G. A
HashedFile object is a data file and an extendible hash ditectory.
The class should have methods Create, Open,Close, Read (read
record that matches key), Append, and Update.

PROGRAMMING PROJECT

This is the last part of the programming project. We create a hashed index
of the student record files and the course registration files from the
programming project of Chapter 4. This project depends on the successful
completion of exercise 19.

20. Use class HashedFile to create a hashed index of a student record
file with student identifier as key. Note that the student identifier field
is not unique in a student registration file. Write a driver program to
create a hashed file from an existing student record file.

21. Useclass HashedFile to create a hashed index of a course registra-
tion record file with student identifier as key. Write a driver program
to create a hashed file from an existing course registration record file.

22. Write a program that opens a hashed student file and a hashed course
registration file and retrieves information on demand. Prompt a user
for a student identifier and print all objects that match it.
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