

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Software
Testing
 A Craftsman’s Approach

Fourth Edition

https://hemanthrajhemu.github.io

vii

Contents

Preface to the Fourth Edition...xix
Preface to the Third Edition ...xxi
Preface to the Second Edition ... xxiii
Preface to the First Edition ... xxv
Author ...xxvii
Abstract ..xxix

part I a MatHEMatICaL CONtEXt

 1 A Perspective on Testing ...3
1.1 Basic Definitions ... 3
1.2 Test Cases .. 4
1.3 Insights from a Venn Diagram .. 5
1.4 Identifying Test Cases ... 6

1.4.1 Specification-Based Testing .. 7
1.4.2 Code-Based Testing .. 8
1.4.3 Specification-Based versus Code-Based Debate .. 8

1.5 Fault Taxonomies .. 9
1.6 Levels of Testing .. 12
References ...13

 2 Examples ..15
2.1 Generalized Pseudocode ...15
2.2 The Triangle Problem ...17

2.2.1 Problem Statement...17
2.2.2 Discussion ...18
2.2.3 Traditional Implementation ...18
2.2.4 Structured Implementations ..21

2.3 The NextDate Function ... 23
2.3.1 Problem Statement.. 23
2.3.2 Discussion .. 23
2.3.3 Implementations ... 24

https://hemanthrajhemu.github.io

viii  ◾  Contents

2.4 The Commission Problem ... 26
2.4.1 Problem Statement.. 26
2.4.2 Discussion .. 27
2.4.3 Implementation .. 27

2.5 The SATM System ... 28
2.5.1 Problem Statement.. 29
2.5.2 Discussion .. 30

2.6 The Currency Converter .. 30
2.7 Saturn Windshield Wiper Controller ..31
2.8 Garage Door Opener ..31
References ...33

 3 Discrete Math for Testers ...35
3.1 Set Theory ..35

3.1.1 Set Membership .. 36
3.1.2 Set Definition ... 36
3.1.3 The Empty Set .. 37
3.1.4 Venn Diagrams ... 37
3.1.5 Set Operations .. 38
3.1.6 Set Relations ... 40
3.1.7 Set Partitions .. 40
3.1.8 Set Identities ..41

3.2 Functions ... 42
3.2.1 Domain and Range .. 42
3.2.2 Function Types ... 43
3.2.3 Function Composition.. 44

3.3 Relations ...45
3.3.1 Relations among Sets ...45
3.3.2 Relations on a Single Set ... 46

3.4 Propositional Logic ...47
3.4.1 Logical Operators ... 48
3.4.2 Logical Expressions... 49
3.4.3 Logical Equivalence .. 49

3.5 Probability Theory ... 50
Reference ..52

 4 Graph Theory for Testers ..53
4.1 Graphs ..53

4.1.1 Degree of a Node .. 54
4.1.2 Incidence Matrices ...55
4.1.3 Adjacency Matrices ... 56
4.1.4 Paths ... 56
4.1.5 Connectedness ...57
4.1.6 Condensation Graphs ... 58
4.1.7 Cyclomatic Number ... 58

4.2 Directed Graphs ...59

https://hemanthrajhemu.github.io

3
© 2010 Taylor & Francis Group, LLC

Chapter 1

a perspective on testing

Why do we test? The two main reasons are to make a judgment about quality or acceptability and
to discover problems. We test because we know that we are fallible—this is especially true in the
domain of software and software-controlled systems. The goal of this chapter is to create a frame-
work within which we can examine software testing.

1.1 Basic Definitions
Much of testing literature is mired in confusing (and sometimes inconsistent) terminology, proba-
bly because testing technology has evolved over decades and via scores of writers. The International
Software Testing Qualification Board (ISTQB) has an extensive glossary of testing terms (see the
website http://www.istqb.org/downloads/glossary.html). The terminology here (and throughout
this book) is compatible with the ISTQB definitions, and they, in turn, are compatible with the
standards developed by the Institute of Electronics and Electrical Engineers (IEEE) Computer
Society (IEEE, 1983). To get started, here is a useful progression of terms.

Error—People make errors. A good synonym is mistake. When people make mistakes while
coding, we call these mistakes bugs. Errors tend to propagate; a requirements error may be magni-
fied during design and amplified still more during coding.

Fault—A fault is the result of an error. It is more precise to say that a fault is the representa-
tion of an error, where representation is the mode of expression, such as narrative text, Unified
Modeling Language diagrams, hierarchy charts, and source code. Defect (see the ISTQB Glossary)
is a good synonym for fault, as is bug. Faults can be elusive. An error of omission results in a fault
in which something is missing that should be present in the representation. This suggests a useful
refinement; we might speak of faults of commission and faults of omission. A fault of commission
occurs when we enter something into a representation that is incorrect. Faults of omission occur
when we fail to enter correct information. Of these two types, faults of omission are more difficult
to detect and resolve.

Failure—A failure occurs when the code corresponding to a fault executes. Two subtleties
arise here: one is that failures only occur in an executable representation, which is usually taken
to be source code, or more precisely, loaded object code; the second subtlety is that this definition

https://hemanthrajhemu.github.io

4  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

relates failures only to faults of commission. How can we deal with failures that correspond to
faults of omission? We can push this still further: what about faults that never happen to execute,
or perhaps do not execute for a long time? Reviews (see Chapter 22) prevent many failures by find-
ing faults; in fact, well-done reviews can find faults of omission.

Incident—When a failure occurs, it may or may not be readily apparent to the user (or cus-
tomer or tester). An incident is the symptom associated with a failure that alerts the user to the
occurrence of a failure.

Test—Testing is obviously concerned with errors, faults, failures, and incidents. A test is the
act of exercising software with test cases. A test has two distinct goals: to find failures or to dem-
onstrate correct execution.

Test case—A test case has an identity and is associated with a program behavior. It also has a
set of inputs and expected outputs.

Figure 1.1 portrays a life cycle model for testing. Notice that, in the development phases,
three opportunities arise for errors to be made, resulting in faults that may propagate through the
remainder of the development process. The fault resolution step is another opportunity for errors
(and new faults). When a fix causes formerly correct software to misbehave, the fix is deficient. We
will revisit this when we discuss regression testing.

From this sequence of terms, we see that test cases occupy a central position in testing. The
process of testing can be subdivided into separate steps: test planning, test case development, run-
ning test cases, and evaluating test results. The focus of this book is how to identify useful sets of
test cases.

1.2 test Cases
The essence of software testing is to determine a set of test cases for the item to be tested. A test
case is (or should be) a recognized work product. A complete test case will contain a test case iden-
tifier, a brief statement of purpose (e.g., a business rule), a description of preconditions, the actual
test case inputs, the expected outputs, a description of expected postconditions, and an execution
history. The execution history is primarily for test management use—it may contain the date when
the test was run, the person who ran it, the version on which it was run, and the pass/fail result.

Spec

Fault

Fault

Fault Incident

Design

Coding Classify
fault

Isolate
fault

Fault
resolution

Testing

Figure 1.1 a testing life cycle.

https://hemanthrajhemu.github.io

A Perspective on Testing  ◾  5

© 2010 Taylor & Francis Group, LLC

The output portion of a test case is frequently overlooked, which is unfortunate because this is
often the hard part. Suppose, for example, you were testing software that determines an optimal
route for an aircraft, given certain Federal Aviation Administration air corridor constraints and
the weather data for a flight day. How would you know what the optimal route really is? Various
responses can address this problem. The academic response is to postulate the existence of an
oracle who “knows all the answers.” One industrial response to this problem is known as reference
testing, where the system is tested in the presence of expert users. These experts make judgments
as to whether outputs of an executed set of test case inputs are acceptable.

Test case execution entails establishing the necessary preconditions, providing the test case
inputs, observing the outputs, comparing these with the expected outputs, and then ensuring
that the expected postconditions exist to determine whether the test passed. From all of this, it
becomes clear that test cases are valuable—at least as valuable as source code. Test cases need to
be developed, reviewed, used, managed, and saved.

1.3 Insights from a Venn Diagram
Testing is fundamentally concerned with behavior, and behavior is orthogonal to the code-based
view common to software (and system) developers. A quick distinction is that the code-based
view focuses on what it is and the behavioral view considers what it does. One of the continuing
sources of difficulty for testers is that the base documents are usually written by and for developers;
the emphasis is therefore on code-based, instead of behavioral, information. In this section, we
develop a simple Venn diagram that clarifies several nagging questions about testing.

Consider a universe of program behaviors. (Notice that we are forcing attention on the essence
of testing.) Given a program and its specification, consider the set S of specified behaviors and
the set P of programmed behaviors. Figure 1.2 shows the relationship between the specified and
programmed behaviors. Of all the possible program behaviors, the specified ones are in the circle
labeled S and all those behaviors actually programmed are in P. With this diagram, we can see
more clearly the problems that confront a tester. What if certain specified behaviors have not been
programmed? In our earlier terminology, these are faults of omission. Similarly, what if certain
programmed (implemented) behaviors have not been specified? These correspond to faults of com-
mission and to errors that occurred after the specification was complete. The intersection of S and
P (the football-shaped region) is the “correct” portion, that is, behaviors that are both specified
and implemented. A very good view of testing is that it is the determination of the extent of pro-
gram behavior that is both specified and implemented. (As an aside, note that “correctness” only
has meaning with respect to a specification and an implementation. It is a relative term, not an
absolute.)

The new circle in Figure 1.3 is for test cases. Notice the slight discrepancy with our universe
of discourse and the set of program behaviors. Because a test case causes a program behavior, the
mathematicians might forgive us. Now, consider the relationships among sets S, P, and T. There
may be specified behaviors that are not tested (regions 2 and 5), specified behaviors that are tested
(regions 1 and 4), and test cases that correspond to unspecified behaviors (regions 3 and 7).

Similarly, there may be programmed behaviors that are not tested (regions 2 and 6), pro-
grammed behaviors that are tested (regions 1 and 3), and test cases that correspond to behaviors
that were not implemented (regions 4 and 7).

Each of these regions is important. If specified behaviors exist for which no test cases are avail-
able, the testing is necessarily incomplete. If certain test cases correspond to unspecified behaviors,

https://hemanthrajhemu.github.io

6  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

some possibilities arise: either such a test case is unwarranted, the specification is deficient, or the
tester wishes to determine that specified non-behavior does not occur. (In my experience, good
testers often postulate test cases of this latter type. This is a fine reason to have good testers partici-
pate in specification and design reviews.)

We are already at a point where we can see some possibilities for testing as a craft: what can a
tester do to make the region where these sets all intersect (region 1) as large as possible? Another
approach is to ask how the test cases in set T are identified. The short answer is that test cases
are identified by a testing method. This framework gives us a way to compare the effectiveness of
diverse testing methods, as we shall see in Chapter 10.

1.4 Identifying test Cases
Two fundamental approaches are used to identify test cases; traditionally, these have been called
functional and structural testing. Specification-based and code-based are more descriptive names,
and they will be used here. Both approaches have several distinct test case identification methods;
they are generally just called testing methods. They are methodical in the sense that two testers
following the same “method” will devise very similar (equivalent?) test cases.

Program behaviors

S P

Specification
(expected)

Program
(implemented)

Figure 1.2 Specified and implemented program behaviors.

Program behaviors

Specification
(expected)

Program
(implemented)

Test cases
(verified)

S P

T

5

4 3

7 8

2 6
1

Figure 1.3 Specified, implemented, and tested behaviors.

https://hemanthrajhemu.github.io

A Perspective on Testing  ◾  7

© 2010 Taylor & Francis Group, LLC

1.4.1 Specification-Based Testing
The reason that specification-based testing was originally called “functional testing” is that any
program can be considered to be a function that maps values from its input domain to values in
its output range. (Function, domain, and range are defined in Chapter 3.) This notion is com-
monly used in engineering, when systems are considered to be black boxes. This led to another
synonymous term—black box testing, in which the content (implementation) of the black box is
not known, and the function of the black box is understood completely in terms of its inputs and
outputs (see Figure 1.4). In Zen and the Art of Motorcycle Maintenance, Robert Pirsig refers to this
as “romantic” comprehension (Pirsig, 1973). Many times, we operate very effectively with black
box knowledge; in fact, this is central to object orientation. As an example, most people success-
fully operate automobiles with only black box knowledge.

With the specification-based approach to test case identification, the only information used is
the specification of the software. Therefore, the test cases have two distinct advantages: (1) they
are independent of how the software is implemented, so if the implementation changes, the test
cases are still useful; and (2) test case development can occur in parallel with the implementation,
thereby reducing the overall project development interval. On the negative side, specification-
based test cases frequently suffer from two problems: significant redundancies may exist among
test cases, compounded by the possibility of gaps of untested software.

Figure 1.5 shows the results of test cases identified by two specification-based methods. Method
A identifies a larger set of test cases than does method B. Notice that, for both methods, the set
of test cases is completely contained within the set of specified behavior. Because specification-
based methods are based on the specified behavior, it is hard to imagine these methods identifying
behaviors that are not specified. In Chapter 8, we will see direct comparisons of test cases gener-
ated by various specification-based methods for the examples defined in Chapter 2.

In Chapters 5 through 7, we will examine the mainline approaches to specification-based
testing, including boundary value analysis, robustness testing, worst-case analysis, special value
testing, input (domain) equivalence classes, output (range) equivalence classes, and decision table-
based testing. The common thread running through these techniques is that all are based on

Inputs Outputs

Figure 1.4 Engineer’s black box.

Specification Program

Test
method

A

Specification Program

Test
method

B

Figure 1.5 Comparing specification-based test case identification methods.

https://hemanthrajhemu.github.io

8  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

definitional information of the item tested. Some of the mathematical background presented in
Chapter 3 applies primarily to specification-based approaches.

1.4.2 Code-Based Testing
Code-based testing is the other fundamental approach to test case identification. To contrast
it with black box testing, it is sometimes called white box (or even clear box) testing. The clear
box metaphor is probably more appropriate because the essential difference is that the imple-
mentation (of the black box) is known and used to identify test cases. The ability to “see inside”
the black box allows the tester to identify test cases on the basis of how the function is actually
implemented.

Code-based testing has been the subject of some fairly strong theories. To really understand
code-based testing, familiarity with the concepts of linear graph theory (Chapter 4) is essential.
With these concepts, the tester can rigorously describe exactly what is tested. Because of its strong
theoretical basis, code-based testing lends itself to the definition and use of test coverage metrics.
Test coverage metrics provide a way to explicitly state the extent to which a software item has been
tested, and this in turn makes testing management more meaningful.

Figure 1.6 shows the results of test cases identified by two code-based methods. As before,
method A identifies a larger set of test cases than does method B. Is a larger set of test cases nec-
essarily better? This is an excellent question, and code-based testing provides important ways to
develop an answer. Notice that, for both methods, the set of test cases is completely contained
within the set of programmed behavior. Because code-based methods are based on the program,
it is hard to imagine these methods identifying behaviors that are not programmed. It is easy to
imagine, however, that a set of code-based test cases is relatively small with respect to the full set
of programmed behaviors. In Chapter 10, we will see direct comparisons of test cases generated by
various code-based methods.

1.4.3 Specification-Based versus Code-Based Debate
Given the two fundamentally different approaches to test case identification, it is natural to ques-
tion which is better. If you read much of the literature, you will find strong adherents to either
choice.

The Venn diagrams presented earlier yield a strong resolution to this debate. Recall that the
goal of both approaches is to identify test cases (Figure 1.7). Specification-based testing uses
only the specification to identify test cases, while code-based testing uses the program source
code (implementation) as the basis of test case identification. Later chapters will establish that

Specification Program

Test
method

A

Specification Program

Test
method

B

Figure 1.6 Comparing code-based test case identification methods.

https://hemanthrajhemu.github.io

A Perspective on Testing  ◾  9

© 2010 Taylor & Francis Group, LLC

neither approach by itself is sufficient. Consider program behaviors: if all specified behaviors have
not been implemented, code-based test cases will never be able to recognize this. Conversely, if
the program implements behaviors that have not been specified, this will never be revealed by
specification-based test cases. (A Trojan horse is a good example of such unspecified behavior.)
The quick answer is that both approaches are needed; the testing craftsperson’s answer is that a
judicious combination will provide the confidence of specification-based testing and the mea-
surement of code-based testing. Earlier, we asserted that specification-based testing often suffers
from twin problems of redundancies and gaps. When specification-based test cases are executed
in combination with code-based test coverage metrics, both of these problems can be recognized
and resolved.

The Venn diagram view of testing provides one final insight. What is the relationship between
set T of test cases and sets S and P of specified and implemented behaviors? Clearly, the test cases
in set T are determined by the test case identification method used. A very good question to ask is
how appropriate (or effective) is this method? To close a loop from an earlier discussion, recall the
causal trail from error to fault, failure, and incident. If we know what kind of errors we are prone
to make, and if we know what kinds of faults are likely to reside in the software to be tested, we
can use this to employ more appropriate test case identification methods. This is the point at which
testing really becomes a craft.

1.5 Fault taxonomies
Our definitions of error and fault hinge on the distinction between process and product: process
refers to how we do something, and product is the end result of a process. The point at which
testing and Software Quality Assurance (SQA) meet is that SQA typically tries to improve the
product by improving the process. In that sense, testing is clearly more product oriented. SQA is
more concerned with reducing errors endemic in the development process, whereas testing is more
concerned with discovering faults in a product. Both disciplines benefit from a clearer definition
of types of faults. Faults can be classified in several ways: the development phase in which the cor-
responding error occurred, the consequences of corresponding failures, difficulty to resolve, risk
of no resolution, and so on. My favorite is based on anomaly (fault) occurrence: one time only,
intermittent, recurring, or repeatable.

Program behaviors

S P

Spec-based
functional
black box

(establishes confidence)

Code-based
structural

white/clear box
(seeks faults)

Figure 1.7 Sources of test cases.

https://hemanthrajhemu.github.io

10  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

For a comprehensive treatment of types of faults, see the IEEE Standard Classification
for Software Anomalies (IEEE, 1993). (A software anomaly is defined in that document as
“a departure from the expected,” which is pretty close to our definition.) The IEEE standard
defines a detailed anomaly resolution process built around four phases (another life cycle): rec-
ognition, investigation, action, and disposition. Some of the more useful anomalies are given
in Tables 1.1 through 1.5; most of these are from the IEEE standard but I have added some of
my favorites.

Since the primary purpose of a software review is to find faults, review checklists (see Chapter
22) are another good source of fault classifications. Karl Wiegers has an excellent set of checklists
on his website: http://www.processimpact.com/pr_goodies.shtml.

table 1.1 Input/Output Faults

Type Instances

Input Correct input not accepted

Incorrect input accepted

Description wrong or missing

Parameters wrong or missing

Output Wrong format

Wrong result

Correct result at wrong time (too early, too late)

Incomplete or missing result

Spurious result

Spelling/grammar

Cosmetic

table 1.2 Logic Faults

Missing case(s)

Duplicate case(s)

Extreme condition neglected

Misinterpretation

Missing condition

Extraneous condition(s)

Test of wrong variable

Incorrect loop iteration

Wrong operator (e.g., < instead of ≤)

https://hemanthrajhemu.github.io

A Perspective on Testing  ◾  11

© 2010 Taylor & Francis Group, LLC

table 1.3 Computation Faults

Incorrect algorithm

Missing computation

Incorrect operand

Incorrect operation

Parenthesis error

Insufficient precision (round-off, truncation)

Wrong built-in function

table 1.4 Interface Faults

Incorrect interrupt handling

I/O timing

Call to wrong procedure

Call to nonexistent procedure

Parameter mismatch (type, number)

Incompatible types

Superfluous inclusion

table 1.5 Data Faults

Incorrect initialization

Incorrect storage/access

Wrong flag/index value

Incorrect packing/unpacking

Wrong variable used

Wrong data reference

Scaling or units error

Incorrect data dimension

Incorrect subscript

Incorrect type

Incorrect data scope

Sensor data out of limits

Off by one

Inconsistent data

https://hemanthrajhemu.github.io

12  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

1.6 Levels of testing
Thus far, we have said nothing about one of the key concepts of testing—levels of abstraction.
Levels of testing echo the levels of abstraction found in the waterfall model of the software devel-
opment life cycle. Although this model has its drawbacks, it is useful for testing as a means of
identifying distinct levels of testing and for clarifying the objectives that pertain to each level.
A diagrammatic variation of the waterfall model, known as the V-Model in ISTQB parlance,
is given in Figure 1.8; this variation emphasizes the correspondence between testing and design
levels. Notice that, especially in terms of specification-based testing, the three levels of definition
(specification, preliminary design, and detailed design) correspond directly to three levels of test-
ing—system, integration, and unit testing.

A practical relationship exists between levels of testing versus specification-based and code-
based testing. Most practitioners agree that code-based testing is most appropriate at the unit
level, whereas specification-based testing is most appropriate at the system level. This is generally
true; however, it is also a likely consequence of the base information produced during the require-
ments specification, preliminary design, and detailed design phases. The constructs defined for
code-based testing make the most sense at the unit level, and similar constructs are only now
becoming available for the integration and system levels of testing. We develop such structures in
Chapters 11 through 17 to support code-based testing at the integration and system levels for both
traditional and object-oriented software.

Requirements
specification

Preliminary
design

Detailed
design

Unit
testing

Integration
testing

System
testing

Coding

Figure 1.8 Levels of abstraction and testing in waterfall model.

https://hemanthrajhemu.github.io

A Perspective on Testing  ◾  13

© 2010 Taylor & Francis Group, LLC

EXERCISES
 1. Make a Venn diagram that reflects a part of the following statement: “… we have left undone

that which we ought to have done, and we have done that which we ought not to have
done …”

 2. Make a Venn diagram that reflects the essence of Reinhold Niebuhr’s “Serenity Prayer”:
 God, grant me the serenity to accept the things I cannot change,
 Courage to change the things I can,
 And wisdom to know the difference.

 3. Describe each of the eight regions in Figure 1.3. Can you recall examples of these in software
you have written?

 4. One of the tales of software lore describes a disgruntled employee who writes a payroll pro-
gram that contains logic that checks for the employee’s identification number before produc-
ing paychecks. If the employee is ever terminated, the program creates havoc. Discuss this
situation in terms of the error, fault, and failure pattern, and decide which form of testing
would be appropriate.

references
IEEE Computer Society, IEEE Standard Glossary of Software Engineering Terminology, 1983, ANSI/IEEE Std

729-1983.
IEEE Computer Society, IEEE Standard Classification for Software Anomalies, 1993, IEEE Std 1044-1993.
Pirsig, R. M., Zen and the Art of Motorcycle Maintenance, Bantam Books, New York, 1973.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

15
© 2010 Taylor & Francis Group, LLC

Chapter 2

Examples

Three examples will be used throughout in Chapters 5 through 9 to illustrate the various unit
testing methods: the triangle problem (a venerable example in testing circles); a logically complex
function, NextDate; and an example that typifies MIS applications, known here as the commis-
sion problem. Taken together, these examples raise most of the issues that testing craftspersons
will encounter at the unit level. The discussion of higher levels of testing in Chapters 11 through
17 uses four other examples: a simplified version of an automated teller machine (ATM), known
here as the simple ATM system (SATM); the currency converter, an event-driven application typi-
cal of graphical user interface (GUI) applications; and the windshield wiper control device from
the Saturn™ automobile. The last example, a garage door controller, illustrates some of the issues
of “systems of systems.”

For the purposes of code-based testing, pseudocode implementations of the three unit-level
examples are given in this chapter. System-level descriptions of the SATM system, the currency
converter, the Saturn windshield wiper system, and the garage door controller are given in
Chapters 11 through 17. These applications are modeled with finite-state machines, variations
of event-driven petri nets, selected StateCharts, and with the Universal Modeling Language
(UML).

2.1 Generalized pseudocode
Pseudocode provides a language-neutral way to express program source code. This version
is loosely based on Visual Basic and has constructs at two levels: unit and program compo-
nents. Units can be interpreted either as traditional components (procedures and functions)
or as object-oriented components (classes and objects). This definition is somewhat informal;
terms such as expression, variable list, and field description are used with no formal defini-
tion. Items in angle brackets indicate language elements that can be used at the identified
positions. Part of the value of any pseudocode is the suppression of unwanted detail; here, we
illustrate this by allowing natural language phrases in place of more formal, complex condi-
tions (see Table 2.1).

https://hemanthrajhemu.github.io

16  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

table 2.1 Generalized pseudocode

Language Element Generalized Pseudocode Construct

Comment ‘ <text>

Data structure declaration Type <type name>

<list of field descriptions>

End <type name>

Data declaration Dim <variable> As <type>

Assignment statement <variable> = <expression>

Input Input (<variable list>)

Output Output (<variable list>)

Condition <expression> <relational operator> <expression>

Compound condition <Condition> <logical connective>

<Condition>

Sequence statements in sequential order

Simple selection If <condition> Then

 <then clause>

EndIf

Selection If <condition>

 Then <then clause>

 Else <else clause>

EndIf

Multiple selection Case <variable> Of

Case 1: <predicate>

 <Case clause>

…

Case n: <predicate>

 <Case clause>

EndCase

Counter-controlled repetition For <counter> = <start> To <end>

 <loop body>

EndFor

Pretest repetition While <condition>

 <loop body>

EndWhile

(continued)

https://hemanthrajhemu.github.io

Examples  ◾  17

© 2010 Taylor & Francis Group, LLC

2.2 the triangle problem
The triangle problem is the most widely used example in software testing literature. Some of the
more notable entries in three decades of testing literature are Gruenberger (1973), Brown and
Lipov (1975), Myers (1979), Pressman (1982) and subsequent editions, Clarke and Richardson
(1983, 1984), Chellappa (1987), and Hetzel (1988). There are others, but this list makes the
point.

2.2.1 Problem Statement
Simple version: The triangle program accepts three integers, a, b, and c, as input. These are
taken to be sides of a triangle. The output of the program is the type of triangle determined
by the three sides: Equilateral, Isosceles, Scalene, or NotATriangle. Sometimes, this problem
is extended to include right triangles as a fifth type; we will use this extension in some of the
exercises.

Improved version: The triangle program accepts three integers, a, b, and c, as input. These
are taken to be sides of a triangle. The integers a, b, and c must satisfy the following conditions:

table 2.1 Generalized pseudocode (Continued)

Language Element Generalized Pseudocode Construct

Posttest repetition Do

 <loop body>

Until <condition>

Procedure definition (similarly
for functions and o–o methods)

<procedure name> (Input: <list of variables>;

 Output: <list of variables>)

 <body>

End <procedure name>

Interunit communication Call <procedure name> (<list of variables>;

<list of variables>)

Class/Object definition <name> (<attribute list>; <method list>, <body>)

End <name>

Interunit communication msg <destination object name>.<method name>

(<list of variables>)

Object creation Instantiate <class name>.<object name> (list of attribute
values)

Object destruction Delete <class name>.<object name>

Program Program <program name>

 <unit list>

End<program name>

https://hemanthrajhemu.github.io

18  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

 c1. 1 ≤ a ≤ 200 c4. a < b + c
 c2. 1 ≤ b ≤ 200 c5. b < a + c
 c3. 1 ≤ c ≤ 200 c6. c < a + b

The output of the program is the type of triangle determined by the three sides: Equilateral,
Isosceles, Scalene, or NotATriangle. If an input value fails any of conditions c1, c2, or c3, the pro-
gram notes this with an output message, for example, “Value of b is not in the range of permitted
values.” If values of a, b, and c satisfy conditions c4, c5, and c6, one of four mutually exclusive
outputs is given:

 1. If all three sides are equal, the program output is Equilateral.
 2. If exactly one pair of sides is equal, the program output is Isosceles.
 3. If no pair of sides is equal, the program output is Scalene.
 4. If any of conditions c4, c5, and c6 is not met, the program output is NotATriangle.

2.2.2 Discussion
Perhaps one of the reasons for the longevity of this example is that it contains clear but complex
logic. It also typifies some of the incomplete definitions that impair communication among cus-
tomers, developers, and testers. The first specification presumes the developers know some details
about triangles, particularly the triangle inequality: the sum of any pair of sides must be strictly
greater than the third side. The upper limit of 200 is both arbitrary and convenient; it will be used
when we develop boundary value test cases in Chapter 5.

2.2.3 Traditional Implementation
The traditional implementation of this grandfather of all examples has a rather FORTRAN-like
style. The flowchart for this implementation appears in Figure 2.1. Figure 2.2 is a flowchart for the
improved version. The flowchart box numbers correspond to comment numbers in the (FORTRAN-
like) pseudocode program given next. (These numbers correspond exactly to those in Pressman
[1982].) This implementation shows its age; a better implementation is given in Section 2.2.4.

The variable “match” is used to record equality among pairs of the sides. A classic intricacy
of the FORTRAN style is connected with the variable “match”: notice that all three tests for the
triangle inequality do not occur. If two sides are equal, say a and c, it is only necessary to compare
a + c with b. (Because b must be greater than zero, a + b must be greater than c because c equals
a.) This observation clearly reduces the number of comparisons that must be made. The efficiency
of this version is obtained at the expense of clarity (and ease of testing). We will find this version
useful later when we discuss infeasible program execution paths. That is the best reason for per-
petuating this version. Notice that six ways are used to reach the NotATriangle box (12.1–12.6),
and three ways are used to reach the Isosceles box (15.1–15.3).

https://hemanthrajhemu.github.io

Examples  ◾  19

© 2010 Taylor & Francis Group, LLC

Input a, b, c

Match = 0

7. Match = 0?

2. Match = Match + 1

4. Match = Match + 2

6. Match = Match + 3

13. Match = 1?

16. Match = 2?

18. Match = 3?

20. Equilateral 15. Isosceles 11. Scalene12. Not a triangle

17. a + c ≤ b? 14. a + b ≤ c?

8. a + b ≤ c?

9. a + c ≤ b?

10. b + c ≤ a?19. b + c ≤ a?

1. a = b?

3. a = c?

5. b = c?

N

N

N

N

N

N

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

Y

Y

Y
Y

Y

Y

Y

Figure 2.1 Flowchart for traditional triangle program implementation.

https://hemanthrajhemu.github.io

20  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

The pseudocode for this is given next.

Program triangle1 ‘Fortran-like version
‘
Dim a, b, c, match As INTEGER
‘
Output(“Enter 3 integers which are sides of a triangle”)
Input(a, b, c)

Input a, b, c

Output a, b, c

c1 = 1≤ a ≤ 200

c2 = 1≤ b ≤ 200

c3 = 1≤ c ≤ 200

c1 AND c2 AND c3?

Start

c1?

c2?

c3?

a invalid

b invalid

c invalid

F
F

F

F

T

T

T

T

Triangle
inequalities

all OK?

a = b AND b = c?

a ≠ b AND a ≠ c AND
b ≠ c?

Isosceles End

Scalene

Equilateral

Not a triangle

Y

N

N

Y

Y

N

Figure 2.2 Flowchart for improved triangle program implementation.

https://hemanthrajhemu.github.io

Examples  ◾  21

© 2010 Taylor & Francis Group, LLC

Output(“Side A is”,a)
Output(“Side B is”,b)
Output(“Side C is”,c)
match = 0
If a = b ‘(1)
 Then match = match + 1 ‘(2)
EndIf
If a = c ‘(3)
 Then match = match + 2 ‘(4)
EndIf
If b = c ‘(5)
 Then match = match + 3 ‘(6)
EndIf
If match = 0 ‘(7)
 Then If (a + b)≤ c ‘(8)
 Then Output(“NotATriangle”) ‘(12.1)
 Else If (b + c) ≤ a ‘(9)
 Then Output(“NotATriangle”) ‘(12.2)
 Else If (a + c) ≤ b ‘(10)
 Then Output(“NotATriangle”) ‘(12.3)
 Else Output (“Scalene”) ‘(11)
 EndIf
 EndIf
 EndIf
 Else If match = 1 ‘(13)
 Then If (a + c) ≤ b ‘(14)
 Then Output(“NotATriangle”) ‘(12.4)
 Else Output (“Isosceles”) ‘(15.1)
 EndIf
 Else If match=2 ‘(16)
 Then If (a + c) ≤ b
 Then Output(“NotATriangle”) (12.5)
 Else Output (“Isosceles”) ‘(15.2)
 EndIf
 Else If match = 3 ‘(18)
 Then If (b + c) ≤ a ‘(19)
 Then Output(“NotATriangle”) ‘(12.6)
 Else Output (“Isosceles”) ‘(15.3)
 EndIf
 Else Output (“Equilateral”) ‘(20)
 EndIf
 EndIf
 EndIf
EndIf
‘
End Triangle1

2.2.4 Structured Implementations
Program triangle2 ‘Structured programming version of simpler specification

Dim a,b,c As Integer
Dim IsATriangle As Boolean

https://hemanthrajhemu.github.io

22  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

‘Step 1: Get Input
Output(“Enter 3 integers which are sides of a triangle”)
Input(a,b,c)
Output(“Side A is”,a)
Output(“Side B is”,b)
Output(“Side C is”,c)
‘Step 2: Is A Triangle?’
If (a < b + c) AND (b < a + c) AND (c < a + b)
 Then IsATriangle = True
 Else IsATriangle = False
EndIf
‘
‘Step 3: Determine Triangle Type
If IsATriangle
 Then If (a = b) AND (b = c)
 Then Output (“Equilateral”)
 Else If (a ≠ b) AND (a ≠ c) AND (b ≠ c)
 Then Output (“Scalene”)
 Else Output (“Isosceles”)
 EndIf
 EndIf
 Else Output(“Not a Triangle”)
EndIf
End triangle2

Third version
Program triangle3’
Dim a, b, c As Integer
Dim c1, c2, c3, IsATriangle As Boolean
‘Step 1: Get Input
Do
 Output(“Enter 3 integers which are sides of a triangle”)
 Input(a, b, c)
 c1 = (1 ≤ a) AND (a ≤ 300)
 c2 = (1 ≤ b) AND (b ≤ 300)
 c3 = (1 ≤ c) AND (c ≤ 300)
 If NOT(c1)
 Then Output(“Value of a is not in the range of permitted values”)
 EndIf

If NOT(c2)
 Then Output(“Value of b is not in the range of permitted values”)

EndIf
 If NOT(c3)
 ThenOutput(“Value of c is not in the range of permitted values”)
 EndIf
Until c1 AND c2 AND c3
Output(“Side A is”,a)
Output(“Side B is”,b)
Output(“Side C is”,c)
‘Step 2: Is A Triangle?
If (a < b + c) AND (b < a + c) AND (c < a + b)
 Then IsATriangle = True
 Else IsATriangle = False

https://hemanthrajhemu.github.io

Examples  ◾  23

© 2010 Taylor & Francis Group, LLC

EndIf
‘Step 3: Determine Triangle Type
If IsATriangle
 Then If (a = b) AND (b = c)
 Then Output (“Equilateral”)
 Else If (a ≠ b) AND (a ≠ c) AND (b ≠ c)
 Then Output (“Scalene”)
 Else Output (“Isosceles”)
 EndIf
 EndIf
 Else Output(“Not a Triangle”)
EndIf
End triangle3

2.3 the NextDate Function
The complexity in the triangle program is due to the relationships between inputs and correct
outputs. We will use the NextDate function to illustrate a different kind of complexity—logical
relationships among the input variables.

2.3.1 Problem Statement
NextDate is a function of three variables: month, date, and year. It returns the date of the day after
the input date. The month, date, and year variables have integer values subject to these conditions
(the year range ending in 2012 is arbitrary, and is from the first edition):

 c1. 1 ≤ month ≤ 12
 c2. 1 ≤ day ≤ 31
 c3. 1812 ≤ year ≤ 2012

As we did with the triangle program, we can make our problem statement more specific. This
entails defining responses for invalid values of the input values for the day, month, and year. We
can also define responses for invalid combinations of inputs, such as June 31 of any year. If any
of conditions c1, c2, or c3 fails, NextDate produces an output indicating the corresponding vari-
able has an out-of-range value—for example, “Value of month not in the range 1...12.” Because
numerous invalid day–month–year combinations exist, NextDate collapses these into one mes-
sage: “Invalid Input Date.”

2.3.2 Discussion
Two sources of complexity exist in the NextDate function: the complexity of the input domain
discussed previously, and the rule that determines when a year is a leap year. A year is 365.2422
days long; therefore, leap years are used for the “extra day” problem. If we declared a leap year
every fourth year, a slight error would occur. The Gregorian calendar (after Pope Gregory) resolves
this by adjusting leap years on century years. Thus, a year is a leap year if it is divisible by 4, unless
it is a century year. Century years are leap years only if they are multiples of 400 (Inglis, 1961);
thus, 1992, 1996, and 2000 are leap years, while the year 1900 is not a leap year. The NextDate

https://hemanthrajhemu.github.io

24  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

function also illustrates a sidelight of software testing. Many times, we find examples of Zipf ’s law,
which states that 80% of the activity occurs in 20% of the space. Notice how much of the source
code is devoted to leap year considerations. In the second implementation, notice how much code
is devoted to input value validation.

2.3.3 Implementations

Program NextDate1 ‘Simple version
Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer
Output (“Enter today’s date in the form MM DD YYYY”)
Input (month, day, year)
Case month Of
Case 1: month Is 1,3,5,7,8, Or 10: ‘31 day months (except Dec.)
 If day < 31
 Then tomorrowDay = day + 1
 Else
 tomorrowDay = 1
 tomorrowMonth = month + 1
 EndIf
Case 2: month Is 4,6,9, Or 11 ‘30 day months
 If day < 30
 Then tomorrowDay = day + 1
 Else
 tomorrowDay = 1
 tomorrowMonth = month + 1
 EndIf
Case 3: month Is 12: ‘December
 If day < 31
 Then tomorrowDay = day + 1
 Else
 tomorrowDay = 1
 tomorrowMonth = 1
 If year = 2012
 Then Output (“2012 is over”)
 Else tomorrow.year = year + 1
 EndIf
Case 4: month is 2: ‘February
 If day < 28
 Then tomorrowDay = day + 1
 Else
 If day = 28
 Then If ((year is a leap year)
 Then tomorrowDay = 29 ‘leap year
 Else ‘not a leap year
 tomorrowDay = 1
 tomorrowMonth = 3
 EndIf
 Else If day = 29
 Then If ((year is a leap year)
 Then tomorrowDay = 1

https://hemanthrajhemu.github.io

Examples  ◾  25

© 2010 Taylor & Francis Group, LLC

 tomorrowMonth = 3
 Else ‘not a leap year
 Output(“Cannot have Feb.”, day)
 EndIf
 EndIf
 EndIf
 EndIf
EndCase
Output (“Tomorrow’s date is”, tomorrowMonth, tomorrowDay, tomorrowYear)
End NextDate

Program NextDate2 Improved version
‘
Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer
Dim c1, c2, c3 As Boolean
‘
Do
 Output (“Enter today’s date in the form MM DD YYYY”)
 Input (month, day, year)
 c1 = (1 ≤ day) AND (day ≤ 31)
 c2 = (1 ≤ month) AND (month ≤ 12)
 c3 = (1812 ≤ year) AND (year ≤ 2012)
 If NOT(c1)
 Then Output(“Value of day not in the range 1..31”)
 EndIf
 If NOT(c2)
 Then Output(“Value of month not in the range 1..12”)
 EndIf
 If NOT(c3)
 Then Output(“Value of year not in the range 1812..2012”)
 EndIf
Until c1 AND c2 AND c2

Case month Of
Case 1: month Is 1,3,5,7,8, Or 10: ‘31 day months (except Dec.)
 If day < 31
 Then tomorrowDay = day + 1
 Else
 tomorrowDay = 1
 tomorrowMonth = month + 1
 EndIf
Case 2: month Is 4,6,9, Or 11 ‘30 day months
 If day < 30
 Then tomorrowDay = day + 1
 Else
 If day = 30
 Then tomorrowDay = 1
 tomorrowMonth = month + 1
 Else Output(“Invalid Input Date”)
 EndIf
 EndIf
Case 3: month Is 12: ‘December

https://hemanthrajhemu.github.io

26  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

 If day < 31
 Then tomorrowDay = day + 1
 Else
 tomorrowDay = 1
 tomorrowMonth = 1
 If year = 2012
 Then Output (“Invalid Input Date”)
 Else tomorrow.year = year + 1
 EndIf
 EndIf
Case 4: month is 2: ‘February
 If day < 28
 Then tomorrowDay = day + 1
 Else
 If day = 28
 Then
 If (year is a leap year)
 Then tomorrowDay = 29 ‘leap day
 Else ‘not a leap year
 tomorrowDay = 1
 tomorrowMonth = 3
 EndIf
 Else
 If day = 29
 Then
 If (year is a leap year)
 Then tomorrowDay = 1
 tomorrowMonth = 3
 Else
 If day > 29
 Then Output(“Invalid Input Date”)
 EndIf
 EndIf
 EndIf
 EndIf
 EndIf
EndCase
Output (“Tomorrow’s date is”, tomorrowMonth, tomorrowDay, tomorrowYear)
‘
End NextDate2

2.4 the Commission problem
Our third example is more typical of commercial computing. It contains a mix of computation
and decision making, so it leads to interesting testing questions. Our main use of this example will
be in our discussion of data flow and slice-based testing.

2.4.1 Problem Statement
A rifle salesperson in the former Arizona Territory sold rifle locks, stocks, and barrels made by a
gunsmith in Missouri. Locks cost $45, stocks cost $30, and barrels cost $25. The salesperson had to

https://hemanthrajhemu.github.io

Examples  ◾  27

© 2010 Taylor & Francis Group, LLC

sell at least one lock, one stock, and one barrel (but not necessarily one complete rifle) per month,
and production limits were such that the most the salesperson could sell in a month was 70 locks,
80 stocks, and 90 barrels. After each town visit, the salesperson sent a telegram to the Missouri
gunsmith with the number of locks, stocks, and barrels sold in that town. At the end of a month,
the salesperson sent a very short telegram showing –1 lock sold. The gunsmith then knew the sales
for the month were complete and computed the salesperson’s commission as follows: 10% on sales
up to (and including) $1000, 15% on the next $800, and 20% on any sales in excess of $1800.

2.4.2 Discussion
This example is somewhat contrived to make the arithmetic quickly visible to the reader. It might be
more realistic to consider some other additive function of several variables, such as various calculations
found in filling out a US 1040 income tax form. (We will stay with rifles.) This problem separates into
three distinct pieces: the input data portion, in which we could deal with input data validation (as we
did for the triangle and NextDate programs), the sales calculation, and the commission calculation
portion. This time, we will omit the input data validation portion. We will replicate the telegram
convention with a sentinel-controlled while loop that is typical of MIS data gathering applications.

2.4.3 Implementation

Program Commission (INPUT,OUTPUT)
‘
Dim locks, stocks, barrels As Integer
Dim lockPrice, stockPrice, barrelPrice As Real
Dim totalLocks,totalStocks,totalBarrels As Integer
Dim lockSales, stockSales, barrelSales As Real
Dim sales,commission : REAL
‘
lockPrice = 45.0
stockPrice = 30.0
barrelPrice = 25.0
totalLocks = 0
totalStocks = 0
totalBarrels = 0
‘
Input(locks)
While NOT(locks = -1) ‘Input device uses -1 to indicate end of data
 Input(stocks, barrels)
 totalLocks = totalLocks + locks
 totalStocks = totalStocks + stocks
 totalBarrels = totalBarrels + barrels
 Input(locks)
EndWhile
‘
Output(“Locks sold:”, totalLocks)
Output(“Stocks sold:”, totalStocks)
Output(“Barrels sold:”, totalBarrels)
‘
lockSales = lockPrice * totalLocks
stockSales = stockPrice * totalStocks

https://hemanthrajhemu.github.io

28  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

barrelSales = barrelPrice * totalBarrels
sales = lockSales + stockSales + barrelSales
Output(“Total sales:”, sales)
‘
If (sales > 1800.0)
 Then
 commission = 0.10 * 1000.0
 commission = commission + 0.15 * 800.0
 commission = commission + 0.20 * (sales–1800.0)
 Else If (sales > 1000.0)
 Then
 commission = 0.10 * 1000.0
 commission = commission + 0.15*(sales–1000.0)
 Else commission = 0.10 * sales
 EndIf
EndIf
Output(“Commission is $”,commission)
End Commission

2.5 the SatM System
To better discuss the issues of integration and system testing, we need an example with larger
scope (Figure 2.3).

The ATM described here is minimal, yet it contains an interesting variety of functionality and
interactions that typify the client side of client–server systems.

Cash dispenser

Printed receipt 1 2 3

4 5 6

7 8 9

0

Deposit slot

Card slot

Enter

Clear

Cancel

Welcome to

Rock Solid Federal Credit Union

Please insert your ATM card

Figure 2.3 SatM terminal.

https://hemanthrajhemu.github.io

Examples  ◾  29

© 2010 Taylor & Francis Group, LLC

2.5.1 Problem Statement
The SATM system communicates with bank customers via the 15 screens shown in Figure 2.4.
Using a terminal with features as shown in Figure 2.3, SATM customers can select any of three
transaction types: deposits, withdrawals, and balance inquiries. For simplicity, these transactions
can only be done on a checking account.

When a bank customer arrives at an SATM station, screen 1 is displayed. The bank customer
accesses the SATM system with a plastic card encoded with a personal account number (PAN),
which is a key to an internal customer account file, containing, among other things, the customer’s
name and account information. If the customer’s PAN matches the information in the customer
account file, the system presents screen 2 to the customer. If the customer’s PAN is not found,
screen 4 is displayed, and the card is kept.

At screen 2, the customer is prompted to enter his or her personal identification number (PIN).
If the PIN is correct (i.e., matches the information in the customer account file), the system dis-
plays screen 5; otherwise, screen 3 is displayed. The customer has three chances to get the PIN
correct; after three failures, screen 4 is displayed, and the card is kept.

On entry to screen 5, the customer selects the desired transaction from the options shown on screen.
If balance is requested, screen 14 is then displayed. If a deposit is requested, the status of the deposit
envelope slot is determined from a field in the terminal control file. If no problem is known, the system
displays screen 7 to get the transaction amount. If a problem occurs with the deposit envelope slot, the

Screen 6

Balance is
$dddd.dd

Screen 1

Welcome
please insert your

ATM card

Screen 2

Please enter your PIN

Screen 3

Your PIN is incorrect.
Please try again.

Screen 4

Invalid ATM card. It will
be retained.

Screen 5
Select transaction:

balance >
deposit >

withdrawal >

Screen 7

Enter amount.
Withdrawals must
be multiples of $10

Screen 8

Insufficient Funds!
Please enter a new

amount

Screen 9

Machine can only
dispense $10 notes

Screen 10

Temporarily unable to
process withdrawals.
Another transaction?

Screen 11

Your balance is being
updated. Please take
cash from dispenser.

Screen 12

Temporarily unable to
process deposits.

Another transaction?

Screen 13

Please insert deposit
into deposit slot.

Screen 14

Your new balance is
being printed. Another

transaction?

Screen 15

Please take your
receipt and ATM card.

�ank you.

Figure 2.4 SatM screens.

https://hemanthrajhemu.github.io

30  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

system displays screen 12. Once the deposit amount has been entered, the system displays screen 13,
accepts the deposit envelope, and processes the deposit. The system then displays screen 14.

If a withdrawal is requested, the system checks the status (jammed or free) of the withdrawal
chute in the terminal control file. If jammed, screen 10 is displayed; otherwise, screen 7 is dis-
played so the customer can enter the withdrawal amount. Once the withdrawal amount is entered,
the system checks the terminal status file to see if it has enough currency to dispense. If it does not,
screen 9 is displayed; otherwise, the withdrawal is processed. The system checks the customer bal-
ance (as described in the balance request transaction); if the funds in the account are insufficient,
screen 8 is displayed. If the account balance is sufficient, screen 11 is displayed and the money is
dispensed. The balance is printed on the transaction receipt as it is for a balance request transac-
tion. After the cash has been removed, the system displays screen 14.

When the “No” button is pressed in screens 10, 12, or 14, the system presents screen 15 and
returns the customer’s ATM card. Once the card is removed from the card slot, screen 1 is dis-
played. When the “Yes” button is pressed in screens 10, 12, or 14, the system presents screen 5 so
the customer can select additional transactions.

2.5.2 Discussion
A surprising amount of information is “buried” in the system description just given. For instance,
if you read it closely, you can infer that the terminal only contains $10 bills (see screen 7). This tex-
tual definition is probably more precise than what is usually encountered in practice. The example
is deliberately simple (hence the name).

A plethora of questions could be resolved by a list of assumptions. For example, is there a bor-
rowing limit? What keeps customers from taking out more than their actual balance if they go
to several ATM terminals? A lot of start-up questions are used: how much cash is initially in the
machine? How are new customers added to the system? These and other real-world refinements
are eliminated to maintain simplicity.

2.6 the Currency Converter
The currency conversion program is another event-driven program that emphasizes code associ-
ated with a GUI. A sample GUI is shown in Figure 2.5.

Currency converter
US dollar amount

Equivalent in ...

Brazil

Canada

Japan

European community

Compute

Clear

Quit

Figure 2.5 Currency converter graphical user interface.

https://hemanthrajhemu.github.io

Examples  ◾  31

© 2010 Taylor & Francis Group, LLC

The application converts US dollars to any of four currencies: Brazilian reals, Canadian dol-
lars, European Union euros, and Japanese yen. Currency selection is governed by the radio buttons
(option buttons), which are mutually exclusive. When a country is selected, the system responds
by completing the label; for example, “Equivalent in …” becomes “Equivalent in Canadian dol-
lars” if the Canada button is clicked. Also, a small Canadian flag appears next to the output posi-
tion for the equivalent currency amount. Either before or after currency selection, the user inputs
an amount in US dollars. Once both tasks are accomplished, the user can click on the Compute
button, the Clear button, or the Quit button. Clicking on the Compute button results in the con-
version of the US dollar amount to the equivalent amount in the selected currency. Clicking on
the Clear button resets the currency selection, the US dollar amount, and the equivalent currency
amount and the associated label. Clicking on the Quit button ends the application. This example
nicely illustrates a description with UML and an object-oriented implementation, which we will
use in Chapter 15.

2.7 Saturn Windshield Wiper Controller
The windshield wiper on some Saturn automobiles is controlled by a lever with a dial. The lever has
four positions: OFF, INT (for intermittent), LOW, and HIGH; and the dial has three positions,
numbered simply 1, 2, and 3. The dial positions indicate three intermittent speeds, and the dial
position is relevant only when the lever is at the INT position. The decision table below shows the
windshield wiper speeds (in wipes per minute) for the lever and dial positions.

c1. Lever OFF INT INT INT LOW HIGH

c2. Dial n/a 1 2 3 n/a n/a

a1. Wiper 0 4 6 12 30 60

2.8 Garage Door Opener
A system to open a garage door is composed of several components: a drive motor, a drive chain,
the garage door wheel tracks, a lamp, and an electronic controller. This much of the system is
powered by commercial 110 V electricity. Several devices communicate with the garage door
controller—a wireless keypad (usually in an automobile), a digit keypad on the outside of the
garage door, and a wall-mounted button. In addition, there are two safety features, a laser beam
near the floor and an obstacle sensor. These latter two devices operate only when the garage door
is closing. If the light beam is interrupted (possibly by a pet), the door immediately stops, and then
reverses direction until the door is fully open. If the door encounters an obstacle while it is closing
(say a child’s tricycle left in the path of the door), the door stops and reverses direction until it is
fully open. There is a third way to stop a door in motion, either when it is closing or opening. A
signal from any of the three devices (wireless keypad, digit keypad, or wall-mounted control but-
ton). The response to any of these signals is different—the door stops in place. A subsequent signal
from any of the devices starts the door in the same direction as when it was stopped. Finally, there
are sensors that detect when the door has moved to one of the extreme positions, either fully open

https://hemanthrajhemu.github.io

32  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

or fully closed. When the door is in motion, the lamp is lit, and remains lit for approximately
30 seconds after the door reaches one of the extreme positions.

The three signaling devices and the safety features are optional additions to the basic garage
door opener. This example will be used in Chapter 17 in the discussion of systems of systems. For
now, a SysML context diagram of the garage door opener is given in Figure 2.6.

EXERCISES
 1. Revisit the traditional triangle program flowchart in Figure 2.1. Can the variable match ever

have the value of 4? Of 5? Is it ever possible to “execute” the following sequence of numbered
boxes: 1, 2, 5, 6?

 2. Recall the discussion from Chapter 1 about the relationship between the specification and
the implementation of a program. If you study the implementation of NextDate carefully,
you will see a problem. Look at the CASE clause for 30-day months (4, 6, 9, 11). There is
no special action for day = 31. Discuss whether this implementation is correct. Repeat this
discussion for the treatment of values of day 29 in the CASE clause for February.

 3. In Chapter 1, we mentioned that part of a test case is the expected output. What would you
use as the expected output for a NextDate test case of June 31, 1812? Why?

 4. One common addition to the triangle problem is to check for right triangles. Three sides
constitute a right triangle if the Pythagorean relationship is satisfied: c2 = a2 + b2. This
change makes it convenient to require that the sides be presented in increasing order, that
is, a ≤ b ≤ c. Extend the Triangle3 program to include the right triangle feature. We will use
this extension in later exercises.

 5. What will the Triangle2 program do for the sides –3, –3, 5? Discuss this in terms of the
considerations we made in Chapter 1.

 6. The function YesterDate is the inverse of NextDate. Given a month, day, year, YesterDate
returns the date of the day before. Develop a program in your favorite language (or our gen-
eralized pseudocode) for YesterDate. We will also use this as a continuing exercise.

48-V DC
power

Digit
keypad

Portable
opener

Wall-mount
button

Light
beam

Wireless
receiver

Garage
door

controller

Extreme
limit

sensor

Drive
motor

Lamp

Obstacle
(resistance)

sensor

110V-AC
power

Figure 2.6 SysML diagram of garage door controller.

https://hemanthrajhemu.github.io

Examples  ◾  33

© 2010 Taylor & Francis Group, LLC

 7. Part of the art of GUI design is to prevent user input errors. Event-driven applications are
particularly vulnerable to input errors because events can occur in any order. As the given
definition stands, a user could enter a US dollar amount and then click on the compute
button without selecting a country. Similarly, a user could select a country and then click
on the compute button without inputting a dollar amount. GUI designers use the concept
of “forced navigation” to avoid such situations. In Visual Basic, this can be done using the
visibility properties of various controls. Discuss how you could do this.

 8. The CRC Press website (http://www.crcpress.com/product/isbn/9781466560680) contains
some software supplements for this book. There is a series of exercises that I use in my
graduate class in software testing; the first part of a continuing exercise is to use the naive.xls
(runs in most versions of Microsoft Excel) program to test the triangle, NextDate, and com-
mission problems. The spreadsheet lets you postulate test cases and then run them simply
by clicking on the “Run Test Cases” button. As a start to becoming a testing craftsperson,
use naive.xls to test our three examples in an intuitive (hence “naive”) way. There are faults
inserted into each program. If (when) you find failures, try to hypothesize the underlying
fault. Keep your results for comparison to ideas in Chapters 5, 6, and 9.

references
Brown, J.R. and Lipov, M., Testing for software reliability, Proceedings of the International Symposium on

Reliable Software, Los Angeles, April 1975, pp. 518–527.
Chellappa, M., Nontraversible paths in a program, IEEE Transactions on Software Engineering, Vol. SE-13,

No. 6, June 1987, pp. 751–756.
Clarke, L.A. and Richardson, D.J., The application of error sensitive strategies to debugging, ACM SIGSOFT

Software Engineering Notes, Vol. 8, No. 4, August 1983.
Clarke, L.A. and Richardson, D.J., A reply to Foster’s comment on “The Application of Error Sensitive

Strategies to Debugging,” ACM SIGSOFT Software Engineering Notes, Vol. 9, No. 1, January 1984.
Gruenberger, F., Program testing, the historical perspective, in Program Test Methods, William C. Hetzel, Ed.,

Prentice-Hall, New York, 1973, pp. 11–14.
Hetzel, Bill, The Complete Guide to Software Testing, 2nd ed., QED Information Sciences, Inc., Wellesley,

MA, 1988.
Inglis, Stuart J., Planets, Stars, and Galaxies, 4th Ed., John Wiley & Sons, New York, 1961.
Myers, G.J., The Art of Software Testing, Wiley Interscience, New York, 1979.
Pressman, R.S., Software Engineering: A Practitioner’s Approach, McGraw-Hill, New York, 1982.

https://hemanthrajhemu.github.io

