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Chapter 5

Boundary Value Testing

In Chapter 3, we saw that a function maps values from one set (its domain) to values in another set 
(its range) and that the domain and range can be cross products of other sets. Any program can be 
considered to be a function in the sense that program inputs form its domain and program outputs 
form its range. In this and the next two chapters, we examine how to use knowledge of the func-
tional nature of a program to identify test cases for the program. Input domain testing (also called 
“boundary value testing”) is the best-known specification-based testing technique. Historically, 
this form of testing has focused on the input domain; however, it is often a good supplement to 
apply many of these techniques to develop range-based test cases.

There are two independent considerations that apply to input domain testing. The first asks 
whether or not we are concerned with invalid values of variables. Normal boundary value testing 
is concerned only with valid values of the input variables. Robust boundary value testing consid-
ers invalid and valid variable values. The second consideration is whether we make the “single 
fault” assumption common to reliability theory. This assumes that faults are due to incorrect val-
ues of a single variable. If this is not warranted, meaning that we are concerned with interaction 
among two or more variables, we need to take the cross product of the individual variables. Taken 
together, the two considerations yield four variations of boundary value testing:

◾◾ Normal boundary value testing
◾◾ Robust boundary value testing
◾◾ Worst-case boundary value testing
◾◾ Robust worst-case boundary value testing

For the sake of comprehensible drawings, the discussion in this chapter refers to a function, F, 
of two variables x1 and x2. When the function F is implemented as a program, the input variables 
x1 and x2 will have some (possibly unstated) boundaries:

	 a ≤ x1 ≤ b

	 c ≤ x2 ≤ d
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Unfortunately, the intervals [a, b] and [c, d] are referred to as the ranges of x1 and x2, so right 
away we have an overloaded term. The intended meaning will always be clear from its context. 
Strongly typed languages (such as Ada® and Pascal) permit explicit definition of such variable 
ranges. In fact, part of the historical reason for strong typing was to prevent programmers from 
making the kinds of errors that result in faults that are easily revealed by boundary value testing. 
Other languages (such as COBOL, FORTRAN, and C) are not strongly typed, so boundary value 
testing is more appropriate for programs coded in these languages. The input space (domain) of 
our function F is shown in Figure 5.1. Any point within the shaded rectangle and including the 
boundaries is a legitimate input to the function F.

5.1 � Normal Boundary Value Testing
All four forms of boundary value testing focus on the boundary of the input space to identify 
test cases. The rationale behind boundary value testing is that errors tend to occur near the 
extreme values of an input variable. Loop conditions, for example, may test for < when they 
should test for ≤, and counters often are “off by one.” (Does counting begin at zero or at one?) 
The basic idea of boundary value analysis is to use input variable values at their minimum, just 
above the minimum, a nominal value, just below their maximum, and at their maximum. A 
commercially available testing tool (originally named T) generates such test cases for a prop-
erly specified program. This tool has been successfully integrated with two popular front-end 
CASE tools (Teamwork from Cadre Systems, and Software through Pictures from Aonix [part 
of Atego]; for more information, see http://www.aonix.com/pdf/2140-AON.pdf). The T tool 
refers to these values as min, min+, nom, max–, and max. The robust forms add two values, 
min– and max+.

The next part of boundary value analysis is based on a critical assumption; it is known as the 
“single fault” assumption in reliability theory. This says that failures are only rarely the result of 
the simultaneous occurrence of two (or more) faults. The All Pairs testing approach (described in 
Chapter 20) contradicts this, with the observation that, in software-controlled medical systems, 
almost all faults are the result of interaction between a pair of variables. Thus, the normal and 
robust variations cases are obtained by holding the values of all but one variable at their nominal 

x2

x1

d

c

a b

Figure 5.1  Input domain of a function of two variables.
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values, and letting that variable assume its full set of test values. The normal boundary value analy-
sis test cases for our function F of two variables (illustrated in Figure 5.2) are

	{<x1nom, x2min>, <x1nom, x2min+>, <x1nom, x2nom>, <x1nom, x2max–>, <x1nom, x2max>, <x1min, x2nom>, <x1min+, 
x2nom>, <x1max–, x2nom>, <x1max, x2nom>}

5.1.1 � Generalizing Boundary Value Analysis
The basic boundary value analysis technique can be generalized in two ways: by the number of 
variables and by the kinds of ranges. Generalizing the number of variables is easy: if we have a 
function of n variables, we hold all but one at the nominal values and let the remaining variable 
assume the min, min+, nom, max–, and max values, repeating this for each variable. Thus, for a 
function of n variables, boundary value analysis yields 4n + 1 unique test cases.

Generalizing ranges depends on the nature (or more precisely, the type) of the variables them-
selves. In the NextDate function, for example, we have variables for the month, the day, and the 
year. In a FORTRAN-like language, we would most likely encode these, so that January would 
correspond to 1, February to 2, and so on. In a language that supports user-defined types (like 
Pascal or Ada), we could define the variable month as an enumerated type {Jan., Feb., …, Dec.}. 
Either way, the values for min, min+, nom, max–, and max are clear from the context. When a 
variable has discrete, bounded values, as the variables in the commission problem have, the min, 
min+, nom, max–, and max are also easily determined. When no explicit bounds are present, as 
in the triangle problem, we usually have to create “artificial” bounds. The lower bound of side 
lengths is clearly 1 (a negative side length is silly); but what might we do for an upper bound? By 
default, the largest representable integer (called MAXINT in some languages) is one possibility; 
or we might impose an arbitrary upper limit such as 200 or 2000. For other data types, as long as 
a variable supports an ordering relation (see Chapter 3 for a definition), we can usually infer the 
min, min+, nominal, max–, and max values. Test values for alphabet characters, for example, 
would be {a, b, m, y, and z}.

Boundary value analysis does not make much sense for Boolean variables; the extreme values 
are TRUE and FALSE, but no clear choice is available for the remaining three. We will see in 

x2

x1

d

c

a b

Figure 5.2  Boundary value analysis test cases for a function of two variables.
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Chapter 7 that Boolean variables lend themselves to decision table-based testing. Logical variables 
also present a problem for boundary value analysis. In the ATM example, a customer’s PIN is a 
logical variable, as is the transaction type (deposit, withdrawal, or inquiry). We could go through 
the motions of boundary value analysis testing for such variables, but the exercise is not very sat-
isfying to the tester’s intuition.

5.1.2 � Limitations of Boundary Value Analysis
Boundary value analysis works well when the program to be tested is a function of several 
independent variables that represent bounded physical quantities. Mathematically, the vari-
ables need to be described by a true ordering relation, in which, for every pair <a, b> of values 
of a variable, it is possible to say that a ≤ b or b ≤ a. (See Chapter 3 for a detailed definition of 
ordering relations.) Sets of car colors, for example, or football teams, do not support an order-
ing relation; thus, no form of boundary value testing is appropriate for such variables. The key 
words here are independent and physical quantities. A quick look at the boundary value analysis 
test cases for NextDate (in Section 5.5) shows them to be inadequate. Very little stress occurs on 
February and on leap years. The real problem here is that interesting dependencies exist among 
the month, day, and year variables. Boundary value analysis presumes the variables to be truly 
independent. Even so, boundary value analysis happens to catch end-of-month and end-of-year 
faults. Boundary value analysis test cases are derived from the extrema of bounded, independent 
variables that refer to physical quantities, with no consideration of the nature of the function, 
nor of the semantic meaning of the variables. We see boundary value analysis test cases to be 
rudimentary because they are obtained with very little insight and imagination. As with so 
many things, you get what you pay for.

The physical quantity criterion is equally important. When a variable refers to a physical quan-
tity, such as temperature, pressure, air speed, angle of attack, load, and so forth, physical bound-
aries can be extremely important. (In an interesting example of this, Sky Harbor International 
Airport in Phoenix had to close on June 26, 1992, because the air temperature was 122°F. Aircraft 
pilots were unable to make certain instrument settings before takeoff: the instruments could only 
accept a maximum air temperature of 120°F.) In another case, a medical analysis system uses 
stepper motors to position a carousel of samples to be analyzed. It turns out that the mechanics 
of moving the carousel back to the starting cell often causes the robot arm to miss the first cell.

As an example of logical (vs. physical) variables, we might look at PINs or telephone numbers. 
It is hard to imagine what faults might be revealed by testing PIN values of 0000, 0001, 5000, 
9998, and 9999.

5.2 �R obust Boundary Value Testing
Robust boundary value testing is a simple extension of normal boundary value testing: in addition 
to the five boundary value analysis values of a variable, we see what happens when the extrema 
are exceeded with a value slightly greater than the maximum (max+) and a value slightly less than 
the minimum (min–). Robust boundary value test cases for our continuing example are shown in 
Figure 5.3.

Most of the discussion of boundary value analysis applies directly to robustness testing, espe-
cially the generalizations and limitations. The most interesting part of robustness testing is not 
with the inputs but with the expected outputs. What happens when a physical quantity exceeds its 

https://hemanthrajhemu.github.io



Boundary Value Testing  ◾  83

© 2010 Taylor & Francis Group, LLC

maximum? If it is the angle of attack of an airplane wing, the aircraft might stall. If it is the load 
capacity of a public elevator, we hope nothing special would happen. If it is a date, like May 32, we 
would expect an error message. The main value of robustness testing is that it forces attention on 
exception handling. With strongly typed languages, robustness testing may be very awkward. In 
Pascal, for example, if a variable is defined to be within a certain range, values outside that range 
result in run-time errors that abort normal execution. This raises an interesting question of imple-
mentation philosophy: is it better to perform explicit range checking and use exception handling 
to deal with “robust values,” or is it better to stay with strong typing? The exception handling 
choice mandates robustness testing.

5.3 � Worst-Case Boundary Value Testing
Both forms of boundary value testing, as we said earlier, make the single fault assumption of reli-
ability theory. Owing to their similarity, we treat both normal worst-case boundary testing and 
robust worst-case boundary testing in this subsection. Rejecting single-fault assumption means 
that we are interested in what happens when more than one variable has an extreme value. In elec-
tronic circuit analysis, this is called “worst-case analysis”; we use that idea here to generate worst-
case test cases. For each variable, we start with the five-element set that contains the min, min+, 
nom, max–, and max values. We then take the Cartesian product (see Chapter 3) of these sets to 
generate test cases. The result of the two-variable version of this is shown in Figure 5.4.

Worst-case boundary value testing is clearly more thorough in the sense that boundary value 
analysis test cases are a proper subset of worst-case test cases. It also represents much more effort: 
worst-case testing for a function of n variables generates 5n test cases, as opposed to 4n + 1 test 
cases for boundary value analysis.

Worst-case testing follows the generalization pattern we saw for boundary value analysis. It also 
has the same limitations, particularly those related to independence. Probably the best application 
for worst-case testing is where physical variables have numerous interactions, and where failure of 
the function is extremely costly. For really paranoid testing, we could go to robust worst-case testing. 
This involves the Cartesian product of the seven-element sets we used in robustness testing resulting 
in 7n test cases. Figure 5.5 shows the robust worst-case test cases for our two-variable function.

x2

x1

d

c

a b

Figure 5.3 R obustness test cases for a function of two variables.
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5.4 � Special Value Testing
Special value testing is probably the most widely practiced form of functional testing. It also is 
the most intuitive and the least uniform. Special value testing occurs when a tester uses domain 
knowledge, experience with similar programs, and information about “soft spots” to devise test 
cases. We might also call this ad hoc testing. No guidelines are used other than “best engineering 
judgment.” As a result, special value testing is very dependent on the abilities of the tester.

Despite all the apparent negatives, special value testing can be very useful. In the next section, 
you will find test cases generated by the methods we just discussed for three of our examples. If 
you look carefully at these, especially for the NextDate function, you find that none is very satis-
factory. Special value test cases for NextDate will include several test cases involving February 28, 
February 29, and leap years. Even though special value testing is highly subjective, it often results 
in a set of test cases that is more effective in revealing faults than the test sets generated by bound-
ary value methods—testimony to the craft of software testing.

x2

x1

d

c

a b

Figure 5.4  Worst-case test cases for a function of two variables.

x2

x1

d

c

a b

Figure 5.5 R obust worst-case test cases for a function of two variables.
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5.5 � Examples
Each of the three continuing examples is a function of three variables. Printing all the test cases 
from all the methods for each problem is very space consuming, so we just have selected examples 
for worst-case boundary value and robust worst-case boundary value testing.

5.5.1 � Test Cases for the Triangle Problem
In the problem statement, no conditions are specified on the triangle sides, other than being 
integers. Obviously, the lower bounds of the ranges are all 1. We arbitrarily take 200 as an upper 
bound. For each side, the test values are {1, 2, 100, 199, 200}. Robust boundary value test cases 
will add {0, 201}. Table 5.1 contains boundary value test cases using these ranges. Notice that test 
cases 3, 8, and 13 are identical; two should be deleted. Further, there is no test case for scalene 
triangles.

The cross-product of test values will have 125 test cases (some of which will be repeated)—too 
many to list here. The full set is available as a spreadsheet in the set of student exercises. Table 5.2 
only lists the first 25 worst-case boundary value test cases for the triangle problem. You can picture 
them as a plane slice through the cube (actually it is a rectangular parallelepiped) in which a = 1 
and the other two variables take on their full set of cross-product values.

Table 5.1  Normal Boundary Value Test Cases

Case a b c Expected Output

1 100 100 1 Isosceles

2 100 100 2 Isosceles

3 100 100 100 Equilateral

4 100 100 199 Isosceles

5 100 100 200 Not a triangle

6 100 1 100 Isosceles

7 100 2 100 Isosceles

8 100 100 100 Equilateral

9 100 199 100 Isosceles

10 100 200 100 Not a triangle

11 1 100 100 Isosceles

12 2 100 100 Isosceles

13 100 100 100 Equilateral

14 199 100 100 Isosceles

15 200 100 100 Not a triangle
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5.5.2 � Test Cases for the NextDate Function
All 125 worst-case test cases for NextDate are listed in Table 5.3. Take some time to examine it 
for gaps of untested functionality and for redundant testing. For example, would anyone actually 
want to test January 1 in five different years? Is the end of February tested sufficiently?

Table 5.2  (Selected) Worst-Case Boundary Value Test Cases

Case a b c Expected Output

1 1 1 1 Equilateral

2 1 1 2 Not a triangle

3 1 1 100 Not a triangle

4 1 1 199 Not a triangle

5 1 1 200 Not a triangle

6 1 2 1 Not a triangle

7 1 2 2 Isosceles

8 1 2 100 Not a triangle

9 1 2 199 Not a triangle

10 1 2 200 Not a triangle

11 1 100 1 Not a triangle

12 1 100 2 Not a triangle

13 1 100 100 Isosceles

14 1 100 199 Not a triangle

15 1 100 200 Not a triangle

16 1 199 1 Not a triangle

17 1 199 2 Not a triangle

18 1 199 100 Not a triangle

19 1 199 199 Isosceles

20 1 199 200 Not a triangle

21 1 200 1 Not a triangle

22 1 200 2 Not a triangle

23 1 200 100 Not a triangle

24 1 200 199 Not a triangle

25 1 200 200 Isosceles
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Table 5.3  Worst-Case Test Cases

Case Month Day Year Expected Output

1 1 1 1812 1, 2, 1812

2 1 1 1813 1, 2, 1813

3 1 1 1912 1, 2, 1912

4 1 1 2011 1, 2, 2011

5 1 1 2012 1, 2, 2012

6 1 2 1812 1, 3, 1812

7 1 2 1813 1, 3, 1813

8 1 2 1912 1, 3, 1912

9 1 2 2011 1, 3, 2011

10 1 2 2012 1, 3, 2012

11 1 15 1812 1, 16, 1812

12 1 15 1813 1, 16, 1813

13 1 15 1912 1, 16, 1912

14 1 15 2011 1, 16, 2011

15 1 15 2012 1, 16, 2012

16 1 30 1812 1, 31, 1812

17 1 30 1813 1, 31, 1813

18 1 30 1912 1, 31, 1912

19 1 30 2011 1, 31, 2011

20 1 30 2012 1, 31, 2012

21 1 31 1812 2, 1, 1812

22 1 31 1813 2, 1, 1813

23 1 31 1912 2, 1, 1912

24 1 31 2011 2, 1, 2011

25 1 31 2012 2, 1, 2012

26 2 1 1812 2, 2, 1812

27 2 1 1813 2, 2, 1813

28 2 1 1912 2, 2, 1912

(continued)
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Table 5.3  Worst-Case Test Cases (Continued)

Case Month Day Year Expected Output

29 2 1 2011 2, 2, 2011

30 2 1 2012 2, 2, 2012

31 2 2 1812 2, 3, 1812

32 2 2 1813 2, 3, 1813

33 2 2 1912 2, 3, 1912

34 2 2 2011 2, 3, 2011

35 2 2 2012 2, 3, 2012

36 2 15 1812 2, 16, 1812

37 2 15 1813 2, 16, 1813

38 2 15 1912 2, 16, 1912

39 2 15 2011 2, 16, 2011

40 2 15 2012 2, 16, 2012

41 2 30 1812 Invalid date

42 2 30 1813 Invalid date

43 2 30 1912 Invalid date

44 2 30 2011 Invalid date

45 2 30 2012 Invalid date

46 2 31 1812 Invalid date

47 2 31 1813 Invalid date

48 2 31 1912 Invalid date

49 2 31 2011 Invalid date

50 2 31 2012 Invalid date

51 6 1 1812 6, 2, 1812

52 6 1 1813 6, 2, 1813

53 6 1 1912 6, 2, 1912

54 6 1 2011 6, 2, 2011

55 6 1 2012 6, 2, 2012

56 6 2 1812 6, 3, 1812

57 6 2 1813 6, 3, 1813

(continued)
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Table 5.3  Worst-Case Test Cases (Continued)

Case Month Day Year Expected Output

58 6 2 1912 6, 3, 1912

59 6 2 2011 6, 3, 2011

60 6 2 2012 6, 3, 2012

61 6 15 1812 6, 16, 1812

62 6 15 1813 6, 16, 1813

63 6 15 1912 6, 16, 1912

64 6 15 2011 6, 16, 2011

65 6 15 2012 6, 16, 2012

66 6 30 1812 7, 1, 1812

67 6 30 1813 7, 1, 1813

68 6 30 1912 7, 1, 1912

69 6 30 2011 7, 1, 2011

70 6 30 2012 7, 1, 2012

71 6 31 1812 Invalid date

72 6 31 1813 Invalid date

73 6 31 1912 Invalid date

74 6 31 2011 Invalid date

75 6 31 2012 Invalid date

76 11 1 1812 11, 2, 1812

77 11 1 1813 11, 2, 1813

78 11 1 1912 11, 2, 1912

79 11 1 2011 11, 2, 2011

80 11 1 2012 11, 2, 2012

81 11 2 1812 11, 3, 1812

82 11 2 1813 11, 3, 1813

83 11 2 1912 11, 3, 1912

84 11 2 2011 11, 3, 2011

85 11 2 2012 11, 3, 2012

86 11 15 1812 11, 16, 1812

(continued)
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Table 5.3  Worst-Case Test Cases (Continued)

Case Month Day Year Expected Output

87 11 15 1813 11, 16, 1813

88 11 15 1912 11, 16, 1912

89 11 15 2011 11, 16, 2011

90 11 15 2012 11, 16, 2012

91 11 30 1812 12, 1, 1812

92 11 30 1813 12, 1, 1813

93 11 30 1912 12, 1, 1912

94 11 30 2011 12, 1, 2011

95 11 30 2012 12, 1, 2012

96 11 31 1812 Invalid date

97 11 31 1813 Invalid date

98 11 31 1912 Invalid date

99 11 31 2011 Invalid date

100 11 31 2012 Invalid date

101 12 1 1812 12, 2, 1812

102 12 1 1813 12, 2, 1813

103 12 1 1912 12, 2, 1912

104 12 1 2011 12, 2, 2011

105 12 1 2012 12, 2, 2012

106 12 2 1812 12, 3, 1812

107 12 2 1813 12, 3, 1813

108 12 2 1912 12, 3, 1912

109 12 2 2011 12, 3, 2011

110 12 2 2012 12, 3, 2012

111 12 15 1812 12, 16, 1812

112 12 15 1813 12, 16, 1813

113 12 15 1912 12, 16, 1912

114 12 15 2011 12, 16, 2011

115 12 15 2012 12, 16, 2012

(continued)
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5.5.3 � Test Cases for the Commission Problem
Instead of going through 125 boring test cases again, we will look at some more interesting test 
cases for the commission problem. This time, we will look at boundary values derived from the 
output range, especially near the threshold points of $1000 and $1800 where the commission 
percentage changes. The output space of the commission is shown in Figure 5.6. The intercepts of 
these threshold planes with the axes are shown.

Table 5.3  Worst-Case Test Cases (Continued)

Case Month Day Year Expected Output

116 12 30 1812 12, 31, 1812

117 12 30 1813 12, 31, 1813

118 12 30 1912 12, 31, 1912

119 12 30 2011 12, 31, 2011

120 12 30 2012 12, 31, 2012

121 12 31 1812 1, 1, 1813

122 12 31 1813 1, 1, 1814

123 12 31 1912 1, 1, 1913

124 12 31 2011 1, 1, 2012

125 12 31 2012 1, 1, 2013

Barrels

90

72

40

33.3

60

80

Stocks

22.2 40 70
Locks

Figure 5.6  Input space of the commission problem.
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The volume between the origin and the lower plane corresponds to sales below the $1000 
threshold. The volume between the two planes is the 15% commission range. Part of the reason 
for using the output range to determine test cases is that cases from the input range are almost all 
in the 20% zone. We want to find input variable combinations that stress the sales/commission 
boundary values: $100, $1000, $1800, and $7800. The minimum and maximum were easy, and 

Table 5.4  Output Boundary Value Analysis Test Cases

Case Locks Stocks Barrels Sales Comm Comment

1 1 1 1 100 10 Output minimum

2 1 1 2 125 12.5 Output minimum +

3 1 2 1 130 13 Output minimum +

4 2 1 1 145 14.5 Output minimum +

5 5 5 5 500 50 Midpoint

6 10 10 9 975 97.5 Border point –

7 10 9 10 970 97 Border point –

8 9 10 10 955 95.5 Border point –

9 10 10 10 1000 100 Border point

10 10 10 11 1025 103.75 Border point +

11 10 11 10 1030 104.5 Border point +

12 11 10 10 1045 106.75 Border point +

13 14 14 14 1400 160 Midpoint

14 18 18 17 1775 216.25 Border point –

15 18 17 18 1770 215.5 Border point –

16 17 18 18 1755 213.25 Border point –

17 18 18 18 1800 220 Border point

18 18 18 19 1825 225 Border point +

19 18 19 18 1830 226 Border point +

20 19 18 18 1845 229 Border point +

21 48 48 48 4800 820 Midpoint

22 70 80 89 7775 1415 Output maximum –

23 70 79 90 7770 1414 Output maximum –

24 69 80 90 7755 1411 Output maximum –

25 70 80 90 7800 1420 Output maximum
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the numbers happen to work out so that the border points are easy to generate. Here is where it 
gets interesting: test case 9 is the $1000 border point. If we tweak the input variables, we get values 
just below and just above the border (cases 6–8 and 10–12). If we wanted to, we could pick values 
near the borders such as (22, 1, 1). As we continue in this way, we have a sense that we are “exercis-
ing” interesting parts of the code. We might claim that this is really a form of special value testing 
because we used our mathematical insight to generate test cases.

Table 5.4 contains test cases derived from boundary values on the output side of the commis-
sion function. Table 5.5 contains special value test cases. 

5.6 �R andom Testing
At least two decades of discussion of random testing are included in the literature. Most of this 
interest is among academics, and in a statistical sense, it is interesting. Our three sample problems 
lend themselves nicely to random testing. The basic idea is that, rather than always choose the min, 
min+, nom, max–, and max values of a bounded variable, use a random number generator to pick 
test case values. This avoids any form of bias in testing. It also raises a serious question: how many 
random test cases are sufficient? Later, when we discuss structural test coverage metrics, we will 
have an elegant answer. For now, Tables 5.6 through 5.8 show the results of randomly generated 
test cases. They are derived from a Visual Basic application that picks values for a bounded variable 
a ≤ x ≤ b as follows:

Table 5.5  Output Special Value Test Cases

Case Locks Stocks Barrels Sales Comm Comment

1 10 11 9 1005 100.75 Border point +

2 18 17 19 1795 219.25 Border point –

3 18 19 17 1805 221 Border point +

Table 5.6 R andom Test Cases for Triangle Program

Test Cases Nontriangles Scalene Isosceles Equilateral

1289 663 593 32 1

15,436 7696 7372 367 1

17,091 8556 8164 367 1

2603 1284 1252 66 1

6475 3197 3122 155 1

5978 2998 2850 129 1

9008 4447 4353 207 1

Percentage 49.83% 47.87% 2.29% 0.01%

https://hemanthrajhemu.github.io



94  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

	 x = Int((b – a + 1) * Rnd + a)

where the function Int returns the integer part of a floating point number, and the function Rnd 
generates random numbers in the interval [0, 1]. The program keeps generating random test cases 
until at least one of each output occurs. In each table, the program went through seven “cycles” 
that ended with the “hard-to-generate” test case. In Tables 5.6 and 5.7, the last line shows what 
percentage of the random test cases was generated for each column. In the table for NextDate, the 
percentages are very close to the computed probability given in the last line of Table 5.8.

5.7 � Guidelines for Boundary Value Testing
With the exception of special value testing, the test methods based on the input domain of a function 
(program) are the most rudimentary of all specification-based testing methods. They share the com-
mon assumption that the input variables are truly independent; and when this assumption is not war-
ranted, the methods generate unsatisfactory test cases (such as June 31, 1912, for NextDate). Each of 
these methods can be applied to the output range of a program, as we did for the commission problem.

Another useful form of output-based test cases is for systems that generate error messages. The 
tester should devise test cases to check that error messages are generated when they are appropriate, 
and are not falsely generated. Boundary value analysis can also be used for internal variables, such 
as loop control variables, indices, and pointers. Strictly speaking, these are not input variables; 
however, errors in the use of these variables are quite common. Robustness testing is a good choice 
for testing internal variables.

There is a discussion in Chapter 10 about “the testing pendulum”—it refers to the problem of 
syntactic versus semantic approaches to developing test cases. Here is a short example given both 
ways. Consider a function F of three variables, a, b, and c. The boundaries are 0 ≤ a < 10,000, 0 ≤ 
b < 10,000, and 0 ≤ c < 18.8. The function F is F = (a – b)/c; Table 5.9 shows the normal boundary 
value test cases. Absent semantic knowledge, the first four test cases in Table 5.9 are what a boundary 
value testing tool would generate (a tool would not generate the expected output values). Even just 
the syntactic version is problematic—it does not avoid the division by zero possibility in test case 11.

Table 5.7 R andom Test Cases for Commission 
Program

Test Cases 10% 15% 20%

91 1 6 84

27 1 1 25

72 1 1 70

176 1 6 169

48 1 1 46

152 1 6 145

125 1 4 120

Percentage 1.01% 3.62% 95.37%
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When we add the semantic information that F calculates the miles per gallon of an automo-
bile, where a and b are end and start trip odometer values, and c is the gas tank capacity, we see 
more severe problems:

	 1.	We must always have a ≥ b. This will avoid the negative values of F (test cases 1, 2, 9, and 10).
	 2.	Test cases 3, 8, and 12–15 all refer to trips of length 0, so they could be collapsed into one 

test case, probably test case 8.
	 3.	Division by zero is an obvious problem, thereby eliminating test case 11. Applying the 

semantic knowledge will result in the better set of case cases in Table 5.10.
	 4.	Table 5.10 is still problematic—we never see the effect of boundary values on the tank capacity.

Table 5.8 R andom Test Cases for NextDate Program

Test Cases

Days 1–30 of 
31-Day 
Months

Day 31 of 
31-Day 
Months

Days 1–29 of 
30-Day 
Months

Day 30 of 
30-Day 
Months

913 542 17 274 10

1101 621 9 358 8

4201 2448 64 1242 46

1097 600 21 350 9

5853 3342 100 1804 82

3959 2195 73 1252 42

1436 786 22 456 13

Percentage 56.76% 1.65% 30.91% 1.13%

Probability 56.45% 1.88% 31.18% 1.88%

Days 1–27 
of Feb.

Feb. 28 of a 
Leap Year

Feb. 28 of a 
Non-Leap 

Year
Feb. 29 of a 
Leap Year

Impossible 
Days

45 1 1 1 22

83 1 1 1 19

312 1 8 3 77

92 1 4 1 19

417 1 11 2 94

310 1 6 5 75

126 1 5 1 26

7.46% 0.04% 0.19% 0.08% 1.79%

7.26% 0.07% 0.20% 0.07% 1.01%
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EXERCISES
	 1.	Develop a formula for the number of robustness test cases for a function of n variables.
	 2.	Develop a formula for the number of robust worst-case test cases for a function of n variables.
	 3.	Make a Venn diagram showing the relationships among test cases from boundary value 

analysis, robustness testing, worst-case testing, and robust worst-case testing.
	 4.	What happens if we try to do output range robustness testing? Use the commission problem 

as an example.

Table 5.9  Normal Boundary Value Test Cases for F = (a – b)/c

Test Case a b c F

1 0 5000 9.4 –531.9

2 1 5000 9.4 –531.8

3 5000 5000 9.4 0.0

4 9998 5000 9.4 531.7

5 9999 5000 9.4 531.8

6 5000 0 9.4 531.9

7 5000 1 9.4 531.8

8 5000 5000 9.4 0.0

9 5000 9998 9.4 –531.7

10 5000 9999 9.4 –531.8

11 5000 5000 0 Undefined

12 5000 5000 1 0.0

13 5000 5000 9.4 0.0

14 5000 5000 18.7 0.0

15 5000 5000 18.8 0.0

Table 5.10  Semantic Boundary Value Test Cases for F = (a – b)/c

Test Case End Odometer Start Odometer Tank Capacity Miles per Gallon

4 9998 5000 9.4 531.7

5 9999 5000 9.4 531.8

6 5000 0 9.4 531.9

7 5000 1 9.4 531.8

8 5000 5000 9.4 0.0
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	 5.	If you did exercise 8 in Chapter 2, you are already familiar with the CRC Press website for 
downloads (http://www.crcpress.com/product/isbn/9781466560680). There you will find 
an Excel spreadsheet named specBasedTesting.xls. (It is an extended version of Naive.xls, 
and it contains the same inserted faults.) Different sheets contain worst-case boundary value 
test cases for the triangle, NextDate, and commission problems, respectively. Run these sets 
of test cases and compare the results with your naive testing from Chapter 2.

	 6.	Apply special value testing to the miles per gallon example in Tables 5.9 and 5.10. Provide 
reasons for your chosen test cases.
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Chapter 6

Equivalence Class Testing

The use of equivalence classes as the basis for functional testing has two motivations: we would 
like to have a sense of complete testing, and, at the same time, we would hope to avoid redun-
dancy. Neither of these hopes is realized by boundary value testing—looking at the tables of 
test cases, it is easy to see massive redundancy, and looking more closely, serious gaps exist. 
Equivalence class testing echoes the two deciding factors of boundary value testing, robust-
ness and the single/multiple fault assumption. This chapter presents the traditional view of 
equivalence class testing, followed by a coherent treatment of four distinct forms based on the 
two assumptions. The single versus multiple fault assumption yields the weak/strong distinc-
tion and the focus on invalid data yields a second distinction: normal versus robust. Taken 
together, these two assumptions result in Weak Normal, Strong Normal, Weak Robust, and 
Strong Robust Equivalence Class testing.

Two problems occur with robust forms. The first is that, very often, the specification does not 
define what the expected output for an invalid input should be. (We could argue that this is a 
deficiency of the specification, but that does not get us anywhere.) Thus, testers spend a lot of time 
defining expected outputs for these cases. The second problem is that strongly typed languages 
eliminate the need for the consideration of invalid inputs. Traditional equivalence testing is a 
product of the time when languages such as FORTRAN and COBOL were dominant; thus, this 
type of error was common. In fact, it was the high incidence of such errors that led to the imple-
mentation of strongly typed languages.

6.1 � Equivalence Classes
In Chapter 3, we noted that the important aspect of equivalence classes is that they form a parti-
tion of a set, where partition refers to a collection of mutually disjoint subsets, the union of which 
is the entire set. This has two important implications for testing—the fact that the entire set is 
represented provides a form of completeness, and the disjointedness ensures a form of nonredun-
dancy. Because the subsets are determined by an equivalence relation, the elements of a subset 
have something in common. The idea of equivalence class testing is to identify test cases by using 
one element from each equivalence class. If the equivalence classes are chosen wisely, this greatly 
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reduces the potential redundancy among test cases. In the triangle problem, for example, we 
would certainly have a test case for an equilateral triangle, and we might pick the triple (5, 5, 5) 
as inputs for a test case. If we did this, we would not expect to learn much from test cases such as 
(6, 6, 6) and (100, 100, 100). Our intuition tells us that these would be “treated the same” as the 
first test case; thus, they would be redundant. When we consider code-based testing in Chapters 
8 and 9, we shall see that “treated the same” maps onto “traversing the same execution path.” 
The four forms of equivalence class testing all address the problems of gaps and redundancies 
that are common to the four forms of boundary value testing. Since the assumptions align, the 
four forms of boundary value testing also align with the four forms of equivalence class testing. 
There will be one point of overlap—this occurs when equivalence classes are defined by bounded 
variables. In such cases, a hybrid of boundary value and equivalence class testing is appropriate. 
The International Software Testing Qualifications Board (ISTQB) syllabi refer to this as “edge 
testing.” We will see this in the discussion in Section 6.3.

6.2 �T raditional Equivalence Class Testing
Most of the standard testing texts (e.g., Myers, 1979; Mosley, 1993) discuss equivalence classes 
based on valid and invalid variable values. Traditional equivalence class testing is nearly identi-
cal to weak robust equivalence class testing (see Section 6.3.3). This traditional form focuses on 
invalid data values, and it is/was a consequence of the dominant style of programming in the 1960s 
and 1970s. Input data validation was an important issue at the time, and “Garbage In, Garbage 
Out” was the programmer’s watchword. In the early years, it was the program user’s responsibility 
to provide valid data. There was no guarantee about results based on invalid data. The term soon 
became known as GIGO. The usual response to GIGO was extensive input validation sections of 
a program. Authors and seminar leaders frequently commented that, in the classic afferent/central/
efferent architecture of structured programming, the afferent portion often represented 80% of 
the total source code. In this context, it is natural to emphasize input data validation. Clearly, 
the defense against GIGO was to have extensive testing to assure data validity. The gradual shift 
to modern programming languages, especially those that feature strong data typing, and then to 
graphical user interfaces (GUIs) obviated much of the need for input data validation. Indeed, good 
use of user interface devices such as drop-down lists and slider bars reduces the likelihood of bad 
input data.

Traditional equivalence class testing echoes the process of boundary value testing. Figure 6.1 
shows test cases for a function F of two variables x1 and x2, as we had in Chapter 5. The extension 
to more realistic cases of n variables proceeds as follows:

	 1.	Test F for valid values of all variables. 
	 2.	If step 1 is successful, then test F for invalid values of x1 with valid values of the remaining 

variables. Any failure will be due to a problem with an invalid value of x1.
	 3.	Repeat step 2 for the remaining variables.

One clear advantage of this process is that it focuses on finding faults due to invalid data. Since the 
GIGO concern was on invalid data, the kinds of combinations that we saw in the worst-case varia-
tions of boundary value testing were ignored. Figure 6.1 shows the five test cases for this process 
for our continuing function F of two variables.
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6.3 � Improved Equivalence Class Testing
The key (and the craft!) of equivalence class testing is the choice of the equivalence relation that 
determines the classes. Very often, we make this choice by second-guessing the likely implemen-
tation and thinking about the functional manipulations that must somehow be present in the 
implementation. We will illustrate this with our continuing examples. We need to enrich the 
function we used in boundary value testing. Again, for the sake of comprehensible drawings, 
the discussion relates to a function, F, of two variables x1 and x2. When F is implemented as a 
program, the input variables x1 and x2 will have the following boundaries, and intervals within 
the boundaries:

	 a ≤ x1 ≤ d, with intervals [a, b), [b, c), [c, d]
	 e ≤ x2 ≤ g, with intervals [e, f  ), [f, g]

where square brackets and parentheses denote, respectively, closed and open interval endpoints. 
The intervals presumably correspond to some distinction in the program being tested, for example, 
the commission ranges in the commission problem. These ranges are equivalence classes. Invalid 
values of x1 and x2 are x1 <a, x1> d, and x2 <e, x2> g. The equivalence classes of valid values are

	V1 = {x1: a ≤ x1 < b}, V2 = {x1: b ≤ x1 < c}, V3 = {x1: c ≤ x1 ≤ d}, V4 = {x2: e ≤ x2 < f }, V5 = {x2: f ≤ x2 ≤ g}

The equivalence classes of invalid values are

	 NV1 = {x1: x1 < a}, NV2 = {x1: d < x1}, NV3 = {x2: x2 < e}, NV4 = {x2: g < x2}

The equivalence classes V1, V2, V3, V4, V5, NV1, NV2, NV3, and NV4 are disjoint, and their 
union is the entire plane. In the succeeding discussions, we will just use the interval notation 
rather than the full formal set definition.

d

c

a b

x2

x1

Invalid values of x2 

Invalid values of x2 

Invalid values of x1 Invalid values of x1Valid values of x1

Valid values of x2 

Figure 6.1 T raditional equivalence class test cases.
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6.3.1 � Weak Normal Equivalence Class Testing
With the notation as given previously, weak normal equivalence class testing is accomplished by 
using one variable from each equivalence class (interval) in a test case. (Note the effect of the single 
fault assumption.) For the running example, we would end up with the three weak equivalence class 
test cases shown in Figure 6.2. This figure will be repeated for the remaining forms of equivalence 
class testing, but, for clarity, without the indication of valid and invalid ranges. These three test 
cases use one value from each equivalence class. The test case in the lower left rectangle corresponds 
to a value of x1 in the class [a, b), and to a value of x2 in the class [e, f  ). The test case in the upper 
center rectangle corresponds to a value of x1 in the class [b, c) and to a value of x2 in the class [f, g]. 
The third test case could be in either rectangle on the right side of the valid values. We identified 
these in a systematic way, thus the apparent pattern. In fact, we will always have the same number 
of weak equivalence class test cases as classes in the partition with the largest number of subsets.

What can we learn from a weak normal equivalence class test case that fails, that is, one for which 
the expected and actual outputs are inconsistent? There could be a problem with x1, or a problem 
with x2, or maybe an interaction between the two. This ambiguity is the reason for the “weak” des-
ignation. If the expectation of failure is low, as it is for regression testing, this can be an acceptable 
choice. When more fault isolation is required, the stronger forms, discussed next, are indicated.

6.3.2 � Strong Normal Equivalence Class Testing
Strong equivalence class testing is based on the multiple fault assumption, so we need test cases 
from each element of the Cartesian product of the equivalence classes, as shown in Figure 6.3. 
Notice the similarity between the pattern of these test cases and the construction of a truth table 
in propositional logic. The Cartesian product guarantees that we have a notion of “completeness” 
in two senses: we cover all the equivalence classes, and we have one of each possible combination of 
inputs. As we shall see from our continuing examples, the key to “good” equivalence class testing 
is the selection of the equivalence relation. Watch for the notion of inputs being “treated the same.” 
Most of the time, equivalence class testing defines classes of the input domain. There is no reason 
why we could not define equivalence relations on the output range of the program function being 
tested; in fact, this is the simplest approach for the triangle problem.

x2

x1

g

f

e

a b c d

Figure 6.2  Weak normal equivalence class test cases.

https://hemanthrajhemu.github.io



Equivalence Class Testing  ◾  103

© 2010 Taylor & Francis Group, LLC

6.3.3 � Weak Robust Equivalence Class Testing
The name for this form is admittedly counterintuitive and oxymoronic. How can something be 
both weak and robust? The robust part comes from consideration of invalid values, and the weak 
part refers to the single fault assumption. The process of weak robust equivalence class testing is a 
simple extension of that for weak normal equivalence class testing—pick test cases such that each 
equivalence class is represented. In Figure 6.4, the test cases for valid classes are as those in Figure 
6.2. The two additional test cases cover all four classes of invalid values. The process is similar to 
that for boundary value testing:

	 1.	For valid inputs, use one value from each valid class (as in what we have called weak normal 
equivalence class testing). (Note that each input in these test cases will be valid.)

	 2.	For invalid inputs, a test case will have one invalid value and the remaining values will all be 
valid. (Thus, a “single failure” should cause the test case to fail.)

x2

x1

g

f

e

a b c d

Figure 6.3  Strong normal equivalence class test cases.
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g

f

e

a b c d

Figure 6.4  Weak robust equivalence class test cases.
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The test cases resulting from this strategy are shown in Figure 6.4. There is a potential problem 
with these test cases. Consider the test cases in the upper left and lower right corners. Each of the 
test cases represents values from two invalid equivalence classes. Failure of either of these could 
be due to the interaction of two variables. Figure 6.5 presents a compromise between “pure” weak 
normal equivalence class testing and its robust extension.

6.3.4 � Strong Robust Equivalence Class Testing
At least the name for this form is neither counterintuitive nor oxymoronic, just redundant. As 
before, the robust part comes from consideration of invalid values, and the strong part refers to 
the multiple fault assumption. We obtain test cases from each element of the Cartesian product of 
all the equivalence classes, both valid and invalid, as shown in Figure 6.6.
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e

a b c d

Figure 6.5  Revised weak robust equivalence class test cases.

x2

x1

g

f

e

a b c d

Figure 6.6  Strong robust equivalence class test cases.
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6.4 � Equivalence Class Test Cases for the Triangle Problem
In the problem statement, we note that four possible outputs can occur: NotATriangle, Scalene, 
Isosceles, and Equilateral. We can use these to identify output (range) equivalence classes as 
follows.

R1 = {<a, b, c>: the triangle with sides a, b, and c is equilateral}
R2 = {<a, b, c>: the triangle with sides a, b, and c is isosceles}
R3 = {<a, b, c>: the triangle with sides a, b, and c is scalene}
R4 = {<a, b, c>: sides a, b, and c do not form a triangle}

Four weak normal equivalence class test cases, chosen arbitrarily from each class are as follows:

Test Case a b c Expected Output

WN1 5 5 5 Equilateral

WN2 2 2 3 Isosceles

WN3 3 4 5 Scalene

WN4 4 1 2 Not a triangle

Because no valid subintervals of variables a, b, and c exist, the strong normal equivalence class 
test cases are identical to the weak normal equivalence class test cases.

Considering the invalid values for a, b, and c yields the following additional weak robust 
equivalence class test cases. (The invalid values could be zero, any negative number, or any number 
greater than 200.)

Test Case a b c Expected Output

WR1 –1 5 5 Value of a is not in the range of permitted values

WR2 5 –1 5 Value of b is not in the range of permitted values

WR3 5 5 –1 Value of c is not in the range of permitted values

WR4 201 5 5 Value of a is not in the range of permitted values

WR5 5 201 5 Value of b is not in the range of permitted values

WR6 5 5 201 Value of c is not in the range of permitted values

https://hemanthrajhemu.github.io



106  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Here is one “corner” of the cube in three-space of the additional strong robust equivalence 
class test cases:

Test Case a b c Expected Output

SR1 –1 5 5 Value of a is not in the range of permitted values

SR2 5 –1 5 Value of b is not in the range of permitted values

SR3 5 5 –1 Value of c is not in the range of permitted values

SR4 –1 –1 5 Values of a, b are not in the range of permitted values

SR5 5 –1 –1 Values of b, c are not in the range of permitted values

SR6 –1 5 –1 Values of a, c are not in the range of permitted values

SR7 –1 –1 –1 Values of a, b, c are not in the range of permitted 
values

Notice how thoroughly the expected outputs describe the invalid input values.
Equivalence class testing is clearly sensitive to the equivalence relation used to define classes. 

Here is another instance of craftsmanship. If we base equivalence classes on the output domain, 
we obtain a richer set of test cases. What are some of the possibilities for the three integers, a, b, 
and c? They can all be equal, exactly one pair can be equal (this can happen in three ways), or none 
can be equal.

D1 = {<a, b, c>: a = b = c}
D2 = {<a, b, c>: a = b, a ≠ c}
D3 = {<a, b, c>: a = c, a ≠ b}
D4 = {<a, b, c>: b = c, a ≠ b}
D5 = {<a, b, c>: a ≠ b, a ≠ c, b ≠ c}

As a separate question, we can apply the triangle property to see if they even constitute a tri-
angle. (For example, the triplet <1, 4, 1> has exactly one pair of equal sides, but these sides do not 
form a triangle.)

D6 = {<a, b, c>: a ≥ b + c}
D7 = {<a, b, c>: b ≥ a + c}
D8 = {<a, b, c>: c ≥ a + b}

If we wanted to be still more thorough, we could separate the “greater than or equal to” into 
the two distinct cases; thus, the set D6 would become

D6′ = {<a, b, c>: a = b + c}
D6″ = {<a, b, c>: a > b + c}

and similarly for D7 and D8.
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6.5 � Equivalence Class Test Cases for the NextDate Function
The NextDate function illustrates very well the craft of choosing the underlying equivalence rela-
tion. Recall that NextDate is a function of three variables: month, day, and year, and these have 
intervals of valid values defined as follows:

M1 = {month: 1 ≤ month ≤ 12}
D1 = {day: 1 ≤ day ≤ 31}
Y1 = {year: 1812 ≤ year ≤ 2012}

The invalid equivalence classes are

M2 = {month: month < 1}
M3 = {month: month > 12}
D2 = {day: day < 1}
D3 = {day: day > 31}
Y2 = {year: year < 1812}
Y3 = {year: year > 2012}

Because the number of valid classes equals the number of independent variables, only one 
weak normal equivalence class test case occurs, and it is identical to the strong normal equivalence 
class test case:

Case ID Month Day Year Expected Output

WN1, SN1 6 15 1912 6/16/1912

Here is the full set of weak robust test cases:

Case ID Month Day Year Expected Output

WR1 6 15 1912 6/16/1912

WR2 –1 15 1912 Value of month not in the range 1 ... 12

WR3 13 15 1912 Value of month not in the range 1 ... 12

WR4 6 –1 1912 Value of day not in the range 1 ... 31

WR5 6 32 1912 Value of day not in the range 1 ... 31

WR6 6 15 1811 Value of year not in the range 1812 ... 2012

WR7 6 15 2013 Value of year not in the range 1812 ... 2012
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As with the triangle problem, here is one “corner” of the cube in three-space of the additional 
strong robust equivalence class test cases:

Case ID Month Day Year Expected Output

SR1 –1 15 1912 Value of month not in the range 1 ... 12

SR2 6 –1 1912 Value of day not in the range 1 ... 31

SR3 6 15 1811 Value of year not in the range 1812 ... 2012

SR4 –1 –1 1912 Value of month not in the range 1 ... 12

Value of day not in the range 1 ... 31

SR5 6 –1 1811 Value of day not in the range 1 ... 31

Value of year not in the range 1812 ... 2012

SR6 –1 15 1811 Value of month not in the range 1 ... 12

Value of year not in the range 1812 ... 2012

SR7 –1 –1 1811 Value of month not in the range 1 ... 12

Value of day not in the range 1 ... 31

Value of year not in the range 1812 ... 2012

If we more carefully choose the equivalence relation, the resulting equivalence classes will be 
more useful. Recall that earlier we said that the gist of the equivalence relation is that elements in 
a class are “treated the same way.” One way to see the deficiency of the traditional approach is that 
the “treatment” is at the valid/invalid level. We next reduce the granularity by focusing on more 
specific treatment.

What must be done to an input date? If it is not the last day of a month, the NextDate func-
tion will simply increment the day value. At the end of a month, the next day is 1 and the month 
is incremented. At the end of a year, both the day and the month are reset to 1, and the year is 
incremented. Finally, the problem of leap year makes determining the last day of a month interest-
ing. With all this in mind, we might postulate the following equivalence classes:

M1 = {month: month has 30 days}
M2 = {month: month has 31 days}
M3 = {month: month is February}
D1 = {day: 1 ≤ day ≤ 28}
D2 = {day: day = 29}
D3 = {day: day = 30}
D4 = {day: day = 31}
Y1 = {year: year = 2000}
Y2 = {year: year is a non-century leap year}
Y3 = {year: year is a common year}

By choosing separate classes for 30- and 31-day months, we simplify the question of the last 
day of the month. By taking February as a separate class, we can give more attention to leap year 
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questions. We also give special attention to day values: days in D1 are (nearly) always incremented, 
while days in D4 only have meaning for months in M2. Finally, we have three classes of years, the 
special case of the year 2000, leap years, and non-leap years. This is not a perfect set of equivalence 
classes, but its use will reveal many potential errors.

6.5.1 � Equivalence Class Test Cases
These classes yield the following weak normal equivalence class test cases. As before, the inputs are 
mechanically selected from the approximate middle of the corresponding class:

Case ID Month Day Year Expected Output

WN1 6 14 2000 6/15/2000

WN2 7 29 1996 7/30/1996

WN3 2 30 2002 Invalid input date

WN4 6 31 2000 Invalid input date

Mechanical selection of input values makes no consideration of our domain knowledge, thus 
the two impossible dates. This will always be a problem with “automatic” test case generation, 
because all of our domain knowledge is not captured in the choice of equivalence classes. The 
strong normal equivalence class test cases for the revised classes are as follows:

Case ID Month Day Year Expected Output

SN1 6 14 2000 6/15/2000

SN2 6 14 1996 6/15/1996

SN3 6 14 2002 6/15/2002

SN4 6 29 2000 6/30/2000

SN5 6 29 1996 6/30/1996

SN6 6 29 2002 6/30/2002

SN7 6 30 2000 Invalid input date

SN8 6 30 1996  Invalid input date

SN9 6 30 2002  Invalid input date

SN10 6 31 2000 Invalid input date

SN11 6 31 1996 Invalid input date

SN12 6 31 2002 Invalid input date

SN13 7 14 2000 7/15/2000

SN14 7 14 1996 7/15/1996
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Case ID Month Day Year Expected Output

SN15 7 14 2002 7/15/2002

SN16 7 29 2000 7/30/2000

SN17 7 29 1996 7/30/1996

SN18 7 29 2002 7/30/2002

SN19 7 30 2000 7/31/2000 

SN20 7 30 1996 7/31/1996 

SN21 7 30 2002 7/31/2002 

SN22 7 31 2000 8/1/2000 

SN23 7 31 1996 8/1/1996 

SN24 7 31 2002 8/1/2002 

SN25 2 14 2000 2/15/2000

SN26 2 14 1996 2/15/1996

SN27 2 14 2002 2/15/2002

SN28 2 29 2000 3/1/2000 

SN29 2 29 1996 3/1/1996

SN30 2 29 2002 Invalid input date

SN31 2 30 2000 Invalid input date

SN32 2 30 1996 Invalid input date

SN33 2 30 2002 Invalid input date

SN34 2 31 2000 Invalid input date

SN35 2 31 1996 Invalid input date

SN36 2 31 2002 Invalid input date

Moving from weak to strong normal testing raises some of the issues of redundancy that we 
saw with boundary value testing. The move from weak to strong, whether with normal or robust 
classes, always makes the presumption of independence, and this is reflected in the cross product 
of the equivalence classes. Three month classes times four day classes times three year classes 
results in 36 strong normal equivalence class test cases. Adding two invalid classes for each vari-
able will result in 150 strong robust equivalence class test cases (too many to show here!).

We could also streamline our set of test cases by taking a closer look at the year classes. If we 
merge Y1 and Y2, and call the result the set of leap years, our 36 test cases would drop down to 24. 
This change suppresses special attention to considerations in the year 2000, and it also adds some 
complexity to the determination of which years are leap years. Balance this against how much 
might be learned from the present test cases.
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6.6 � Equivalence Class Test Cases for the Commission Problem
The input domain of the commission problem is “naturally” partitioned by the limits on 
locks, stocks, and barrels. These equivalence classes are exactly those that would also be 
identified by traditional equivalence class testing. The first class is the valid input; the other 
two are invalid. The input domain equivalence classes lead to very unsatisfactory sets of test 
cases. Equivalence classes defined on the output range of the commission function will be an 
improvement.

The valid classes of the input variables are

L1	= {locks: 1 ≤ locks ≤ 70}
L2	= {locks = –1} (occurs if locks = –1 is used to control input iteration)
S1	= {stocks: 1 ≤ stocks ≤ 80}
B1	= {barrels: 1 ≤ barrels ≤ 90}

The corresponding invalid classes of the input variables are

L3	= {locks: locks = 0 OR locks < –1}
L4	= {locks: locks > 70}
S2	= {stocks: stocks < 1}
S3	= {stocks: stocks > 80}
B2	= {barrels: barrels < 1}
B3	= {barrels: barrels > 90}

One problem occurs, however. The variable “locks” is also used as a sentinel to indicate no 
more telegrams. When a value of –1 is given for locks, the while loop terminates, and the values of 
totalLocks, totalStocks, and totalBarrels are used to compute sales, and then commission.

Except for the names of the variables and the interval endpoint values, this is identical to our 
first version of the NextDate function. Therefore, we will have exactly one weak normal equivalence 
class test case—and again, it is identical to the strong normal equivalence class test case. Note that 
the case for locks = –1 just terminates the iteration. We will have eight weak robust test cases. 

Case ID Locks Stocks Barrels Expected Output

WR1 10 10 10 $100

WR2 –1 40 45 Program terminates

WR3 –2 40 45 Value of locks not in the range 1 ... 70

WR4 71 40 45 Value of locks not in the range 1 ... 70

WR5 35 –1 45 Value of stocks not in the range 1 ... 80

WR6 35 81 45 Value of stocks not in the range 1 ... 80

WR7 35 40 –1 Value of barrels not in the range 1 ... 90

WR8 35 40 91 Value of barrels not in the range 1 ... 90
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Here is one “corner” of the cube in 3-space of the additional strong robust equivalence class 
test cases:

Case ID Locks Stocks Barrels Expected Output

SR1 –2 40 45 Value of locks not in the range 1 ... 70

SR2 35 –1 45 Value of stocks not in the range 1 ... 80

SR3 35 40 –2 Value of barrels not in the range 1 ... 90

SR4 –2 –1 45 Value of locks not in the range 1 ... 70

Value of stocks not in the range 1 ... 80

SR5 –2 40 –1 Value of locks not in the range 1 ... 70

Value of barrels not in the range 1 ... 90

SR6 35 –1 –1 Value of stocks not in the range 1 ... 80

Value of barrels not in the range 1 ... 90

SR7 –2 –1 –1 Value of locks not in the range 1 ... 70

Value of stocks not in the range 1 ... 80

Value of barrels not in the range 1 ... 90

Notice that, of strong test cases—whether normal or robust—only one is a legitimate input. If we 
were really worried about error cases, this might be a good set of test cases. It can hardly give us a 
sense of confidence about the calculation portion of the problem, however. We can get some help 
by considering equivalence classes defined on the output range. Recall that sales is a function of 
the number of locks, stocks, and barrels sold:

	 Sales = 45 <mathMultiply> locks + 30 <mathMultiply> stocks + 25 <mathMultiply> barrels

We could define equivalence classes of three variables by commission ranges:

S1 = {<locks, stocks, barrels>: sales ≤ 1000}
S2 = {<locks, stocks, barrels>: 1000 < sales ≤ 1800}
S3 = {<locks, stocks, barrels>: sales > 1800}

Figure 5.6 helps us get a better feel for the input space. Elements of S1 are points with integer 
coordinates in the pyramid near the origin. Elements of S2 are points in the “triangular slice” 
between the pyramid and the rest of the input space. Finally, elements of S3 are all those points in 
the rectangular volume that are not in S1 or in S2. All the error cases found by the strong equiva-
lence classes of the input domain are outside of the rectangular space shown in Figure 5.6.
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As was the case with the triangle problem, the fact that our input is a triplet means that we no 
longer take test cases from a Cartesian product.

Test Case Locks Stocks Barrels Sales Commission

OR1 5 5 5 500 50

OR2 15 15 15 1500 175

OR3 25 25 25 2500 360

These test cases give us some sense that we are exercising important parts of the problem. Together 
with the weak robust test cases, we would have a pretty good test of the commission problem. We 
might want to add some boundary checking, just to make sure the transitions at sales of $1000 and 
$1800 are correct. This is not particularly easy because we can only choose values of locks, stocks, and 
barrels. It happens that the constants in this example are contrived so that there are “nice” triplets.

6.7 � Edge Testing
The ISTQB Advanced Level Syllabus (ISTQB, 2012) describes a hybrid of boundary value analysis 
and equivalence class testing and gives it the name “edge testing.” The need for this occurs when 
contiguous ranges of a particular variable constitute equivalence classes. Figure 6.2 shows three 
equivalence classes of valid values for x1 and two classes for x2. Presumably, these classes refer to 
variables that are “treated the same” in some application. This suggests that there may be faults 
near the boundaries of the classes, and edge testing will exercise these potential faults. For the 
example in Figure 6.2, a full set of edge testing test values are as follows:

Normal test values for x1: {a, a+, b–, b, b+, c–, c, c+, d–, d}
Robust test values for x1: {a–, a, a+, b–, b, b+, c–, c, c+, d–, d, d+}
Normal test values for x2: {e, e+, f–, f, f+, g–, g}
Robust test values for x2: {e–, e, e+, f–, f, f+, g–, g, g+}

One subtle difference is that edge test values do not include the nominal values that we had with 
boundary value testing. Once the sets of edge values are determined, edge testing can follow any 
of the four forms of equivalence class testing. The numbers of test cases obviously increase as with 
the variations of boundary value and equivalence class testing.

6.8 � Guidelines and Observations
Now that we have gone through three examples, we conclude with some observations about, and 
guidelines for, equivalence class testing.

	 1.	Obviously, the weak forms of equivalence class testing (normal or robust) are not as compre-
hensive as the corresponding strong forms.

	 2.	If the implementation language is strongly typed (and invalid values cause run-time errors), 
it makes no sense to use the robust forms.
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	 3.	If error conditions are a high priority, the robust forms are appropriate.
	 4.	Equivalence class testing is appropriate when input data is defined in terms of intervals and 

sets of discrete values. This is certainly the case when system malfunctions can occur for 
out-of-limit variable values.

	 5.	Equivalence class testing is strengthened by a hybrid approach with boundary value testing. 
(We can “reuse” the effort made in defining the equivalence classes.)

	 6.	Equivalence class testing is indicated when the program function is complex. In such 
cases, the complexity of the function can help identify useful equivalence classes, as in the 
NextDate function.

	 7.	Strong equivalence class testing makes a presumption that the variables are independent, 
and the corresponding multiplication of test cases raises issues of redundancy. If any depen-
dencies occur, they will often generate “error” test cases, as they did in the NextDate func-
tion. (The decision table technique in Chapter 7 resolves this problem.)

	 8.	Several tries may be needed before the “right” equivalence relation is discovered, as we saw in 
the NextDate example. In other cases, there is an “obvious” or “natural” equivalence relation. 
When in doubt, the best bet is to try to second-guess aspects of any reasonable implementation. 
This is sometimes known as the “competent programmer hypothesis.”

	 9.	The difference between the strong and weak forms of equivalence class testing is helpful in 
the distinction between progression and regression testing.

EXERCISES
	 1.	Starting with the 36 strong normal equivalence class test cases for the NextDate function, 

revise the day classes as discussed, and then find the other nine test cases.
	 2.	If you use a compiler for a strongly typed language, discuss how it would react to robust 

equivalence class test cases.
	 3.	Revise the set of weak normal equivalence classes for the extended triangle problem that 

considers right triangles.
	 4.	Compare and contrast the single/multiple fault assumption with boundary value and equiv-

alence class testing.
	 5.	The spring and fall changes between standard and daylight savings time create an interesting 

problem for telephone bills. In the spring, this switch occurs at 2:00 a.m. on a Sunday morning 
(late March, early April) when clocks are reset to 3:00 a.m. The symmetric change takes place 
usually on the last Sunday in October, when the clock changes from 2:59:59 back to 2:00:00.

		  Develop equivalence classes for a long-distance telephone service function that bills calls 
using the following rate structure:
	 Call duration ≤20 minutes charged at $0.05 per minute or fraction of a minute
	 Call duration >20 minutes charged at $1.00 plus $0.10 per minute or fraction of a 

minute in excess of 20 minutes.
		  Make these assumptions:

−− Chargeable time of a call begins when the called party answers, and ends when the 
calling party disconnects.

−− Call durations of seconds are rounded up to the next larger minute.
−− No call lasts more than 30 hours.

	 6.	If you did exercise 8 in Chapter 2, and exercise 5 in Chapter 5, you are already famil-
iar with the CRC Press website for downloads (http://www.crcpress.com/product/isbn/​
97818466560680). There you will find an Excel spreadsheet named specBasedTesting.xls. 
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(It is an extended version of Naive.xls, and it contains the same inserted faults.) Different 
sheets contain strong, normal equivalence class test cases for the triangle, NextDate, and 
commission problems, respectively. Run these sets of test cases and compare the results with 
your naive testing from Chapter 2 and your boundary value testing from Chapter 5.
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Chapter 7

Decision Table–Based Testing

Of all the functional testing methods, those based on decision tables are the most rigorous because 
of their strong logical basis. Two closely related methods are used: cause-and-effect graphing 
(Elmendorf, 1973; Myers, 1979) and the decision tableau method (Mosley, 1993). These are more 
cumbersome to use and are fully redundant with decision tables; both are covered in Mosley 
(1993). For the curious, or for the sake of completeness, Section 7.5 offers a short discussion of 
cause-and-effect graphing.

7.1 � Decision Tables
Decision tables have been used to represent and analyze complex logical relationships since the 
early 1960s. They are ideal for describing situations in which a number of combinations of actions 
are taken under varying sets of conditions. Some of the basic decision table terms are illustrated 
in Table 7.1.

A decision table has four portions: the part to the left of the bold vertical line is the stub por-
tion; to the right is the entry portion. The part above the bold horizontal line is the condition 
portion, and below is the action portion. Thus, we can refer to the condition stub, the condition 
entries, the action stub, and the action entries. A column in the entry portion is a rule. Rules 
indicate which actions, if any, are taken for the circumstances indicated in the condition portion 
of the rule. In the decision table in Table 7.1, when conditions c1, c2, and c3 are all true, actions 
a1 and a2 occur. When c1 and c2 are both true and c3 is false, then actions a1 and a3 occur. The 
entry for c3 in the rule where c1 is true and c2 is false is called a “don’t care” entry. The don’t care 
entry has two major interpretations: the condition is irrelevant, or the condition does not apply. 
Sometimes people will enter the “n/a” symbol for this latter interpretation.

When we have binary conditions (true/false, yes/no, 0/1), the condition portion of a decision 
table is a truth table (from propositional logic) that has been rotated 90°. This structure guarantees 
that we consider every possible combination of condition values. When we use decision tables 
for test case identification, this completeness property of a decision table guarantees a form of 
complete testing. Decision tables in which all the conditions are binary are called Limited Entry 
Decision Tables (LETDs). If conditions are allowed to have several values, the resulting tables 
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are called Extended Entry Decision Tables (EEDTs). We will see examples of both types for the 
NextDate problem. Decision tables are deliberately declarative (as opposed to imperative); no 
particular order is implied by the conditions, and selected actions do not occur in any particular 
order.

7.2 � Decision Table Techniques
To identify test cases with decision tables, we interpret conditions as inputs and actions as outputs. 
Sometimes conditions end up referring to equivalence classes of inputs, and actions refer to major 
functional processing portions of the item tested. The rules are then interpreted as test cases. 
Because the decision table can mechanically be forced to be complete, we have some assurance that 
we will have a comprehensive set of test cases. Several techniques that produce decision tables are 
more useful to testers. One helpful style is to add an action to show when a rule is logically impos-
sible. In the decision table in Table 7.2, we see examples of don’t care entries and impossible rule 
usage. If the integers a, b, and c do not constitute a triangle, we do not even care about possible 

Table 7.1 P ortions of a Decision Table

Stub Rule 1 Rule 2 Rules 3, 4 Rule 5 Rule 6 Rules 7, 8

c1 T T T F F F

c2 T T F T T F

c3 T F — T F —

a1 X X X

a2 X X

a3 X X

a4 X X

Table 7.2  Decision Table for Triangle Problem

c1: a, b, c form a triangle? F T T T T T T T T

c2: a = b? — T T T T F F F F

c3: a = c? — T T F F T T F F

c4: b = c? — T F T F T F T F

a1: Not a triangle X

a2: Scalene X

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X
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equalities, as indicated in the first rule. In rules 3, 4, and 6, if two pairs of integers are equal, by 
transitivity, the third pair must be equal; thus, the negative entry makes these rules impossible.

The decision table in Table 7.3 illustrates another consideration: the choice of conditions can 
greatly expand the size of a decision table. Here, we have expanded the old condition (c1: a, b, c 
form a triangle?) to a more detailed view of the three inequalities of the triangle property. If any 
one of these fails, the three integers do not constitute sides of a triangle.

We could expand this still further because there are two ways an inequality could fail: one side 
could equal the sum of the other two, or it could be strictly greater.

When conditions refer to equivalence classes, decision tables have a characteristic appearance. 
Conditions in the decision table in Table 7.4 are from the NextDate problem; they refer to the 
mutually exclusive possibilities for the month variable. Because a month is in exactly one equiva-
lence class, we cannot ever have a rule in which two entries are true. The don’t care entries (—) 
really mean “must be false.” Some decision table aficionados use the notation F ! to make this point.

Use of don’t care entries has a subtle effect on the way in which complete decision tables are 
recognized. For a limited entry decision table with n conditions, there must be 2n independent 

Table 7.3 R efined Decision Table for Triangle Problem

c1: a < b + c? F T T T T T T T T T T

c2: b < a + c? — F T T T T T T T T T

c3: c < a + b? — — F T T T T T T T T

c4: a = b? — — — T T T T F F F F

c5: a = c? — — — T T F F T T F F

c6: b = c? — — — T F T F T F T F

a1: Not a triangle X X X

a2: Scalene X

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

Table 7.4  Decision Table with Mutually Exclusive Conditions

Conditions R1 R2 R3

c1: Month in M1? T — —

c2: Month in M2? — T —

c3: Month in M3? — — T

a1

a2

a3
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rules. When don’t care entries really indicate that the condition is irrelevant, we can develop a rule 
count as follows: rules in which no don’t care entries occur count as one rule, and each don’t care 
entry in a rule doubles the count of that rule. The rule counts for the decision table in Table 7.3 are 
shown in Table 7.5. Notice that the sum of the rule counts is 64 (as it should be).

If we applied this simplistic algorithm to the decision table in Table 7.4, we get the rule counts 
shown in Table 7.6. We should only have eight rules, so we clearly have a problem. To see where 
the problem lies, we expand each of the three rules, replacing the “—” entries with the T and F 
possibilities, as shown in Table 7.7.

Notice that we have three rules in which all entries are T: rules 1.1, 2.1, and 3.1. We also have 
two rules with T, T, F entries: rules 1.2 and 2.2. Similarly, rules 1.3 and 3.2 are identical; so are 
rules 2.3 and 3.3. If we delete the repetitions, we end up with seven rules; the missing rule is the 
one in which all conditions are false. The result of this process is shown in Table 7.8. The impos-
sible rules are also shown.

Table 7.5  Decision Table for Table 7.3 with Rule Counts

c1: a < b + c? F T T T T T T T T T T

c2: b < a + c? — F T T T T T T T T T

c3: c < a + b? — — F T T T T T T T T

c4: a = b? — — — T T T T F F F F

c5: a = c? — — — T T F F T T F F

c6: b = c? — — — T F T F T F T F

Rule count 32 16 8 1 1 1 1 1 1 1 1

a1: Not a triangle X X X

a2: Scalene X

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

Table 7.6 R ule Counts for a Decision Table with 
Mutually Exclusive Conditions

Conditions R1 R2 R3

c1: Month in M1 T — —

c2: Month in M2 — T —

c3: Month in M3 — — T

Rule count 4 4 4

a1
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The ability to recognize (and develop) complete decision tables puts us in a powerful position 
with respect to redundancy and inconsistency. The decision table in Table 7.9 is redundant—three 
conditions and nine rules exist. (Rule 9 is identical to rule 4.) Notice that the action entries in rule 
9 are identical to those in rules 1–4. As long as the actions in a redundant rule are identical to the 
corresponding part of the decision table, we do not have much of a problem. If the action entries 
are different, as in Table 7.10, we have a bigger problem.

If the decision table in Table 7.10 were to process a transaction in which c1 is true and both c2 
and c3 are false, both rules 4 and 9 apply. We can make two observations:

	 1.	Rules 4 and 9 are inconsistent.
	 2.	The decision table is nondeterministic.

Table 7.7  Impossible Rules in Table 7.7

Conditions 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4

c1: Month in M1 T T T T T T F F T T F F

c2: Month in M2 T T F F T T T T T F T F

c3: Month in M3 T F T F T F T F T T T T

Rule count 1 1 1 1 1 1 1 1 1 1 1 1

a1: Impossible X X X — X X X — X X —

Table 7.8  Mutually Exclusive Conditions with Impossible Rules

1.1 1.2 1.3 1.4 2.3 2.4 3.4

c1: Month in M1 T T T T F F F F

c2: Month in M2 T T F F T T F F

c3: Month in M3 T F T F T F T F

Rule count 1 1 1 1 1 1 1 1

a1: Impossible X X X X X

Table 7.9 A  Redundant Decision Table

Conditions 1–4 5 6 7 8 9

c1 T F F F F T

c2 — T T F F F

c3 — T F T F F

a1 X X X — — X

a2 — X X X — —

a3 X — X X X X
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Rules 4 and 9 are inconsistent because the action sets are different. The whole table is nonde-
terministic because there is no way to decide whether to apply rule 4 or rule 9. The bottom line for 
testers is that care should be taken when don’t care entries are used in a decision table.

7.3 �T est Cases for the Triangle Problem
Using the decision table in Table 7.3, we obtain 11 functional test cases: three impossible cases, 
three ways to fail the triangle property, one way to get an equilateral triangle, one way to get a 
scalene triangle, and three ways to get an isosceles triangle (see Table 7.11). We still need to provide 

Table 7.10 A n Inconsistent Decision Table

Conditions 1–4 5 6 7 8 9

c1 T F F F F T

c2 — T T F F F

c3 — T F T F F

a1 X X X — — —

a2 — X X X — X

a3 X — X X X —

Table 7.11 T est Cases from Table 7.3

Case ID a b c Expected Output

DT1 4 1 2 Not a triangle

DT2 1 4 2 Not a triangle

DT3 1 2 4 Not a triangle

DT4 5 5 5 Equilateral

DT5 ? ? ? Impossible

DT6 ? ? ? Impossible

DT7 2 2 3 Isosceles

DT8 ? ? ? Impossible

DT9 2 3 2 Isosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene
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actual values for the variables in the conditions, but we cannot do this for the impossible rules. 
If we extended the decision table to show both ways to fail an inequality, we would pick up three 
more test cases (where one side is exactly the sum of the other two). Some judgment is required in 
this because of the exponential growth of rules. In this case, we would end up with many more 
don’t care entries and more impossible rules.

7.4 �T est Cases for the NextDate Function
The NextDate function was chosen because it illustrates the problem of dependencies in the input 
domain. This makes it a perfect example for decision table–based testing, because decision tables 
can highlight such dependencies. Recall that, in Chapter 6, we identified equivalence classes in 
the input domain of the NextDate function. One of the limitations we found in Chapter 6 was 
that indiscriminate selection of input values from the equivalence classes resulted in “strange” test 
cases, such as finding the next date to June 31, 1812. The problem stems from the presumption 
that the variables are independent. If they are, a Cartesian product of the classes makes sense. 
When logical dependencies exist among variables in the input domain, these dependencies are 
lost (suppressed is better) in a Cartesian product. The decision table format lets us emphasize such 
dependencies using the notion of the “impossible” action to denote impossible combinations of 
conditions (which are actually impossible rules). In this section, we will make three tries at a deci-
sion table formulation of the NextDate function.

7.4.1 � First Try
Identifying appropriate conditions and actions presents an opportunity for craftsmanship. Suppose 
we start with a set of equivalence classes close to the one we used in Chapter 6.

M1 = {month: month has 30 days}
M2 = {month: month has 31 days}
M3 = {month: month is February}
D1 = {day: 1 ≤ day ≤ 28}
D2 = {day: day = 29}
D3 = {day: day = 30}
D4 = {day: day = 31}
Y1 = {year: year is a leap year}
Y2 = {year: year is not a leap year}

If we wish to highlight impossible combinations, we could make a limited entry decision table 
with the following conditions and actions. (Note that the equivalence classes for the year variable 
collapse into one condition in Table 7.12.)

This decision table will have 256 rules, many of which will be impossible. If we wanted to show 
why these rules were impossible, we might revise our actions to the following:

a1: Day invalid for this month
a2: Cannot happen in a non-leap year
a3: Compute the next date
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7.4.2 � Second Try
If we focus on the leap year aspect of the NextDate function, we could use the set of equivalence 
classes as they were in Chapter 6. These classes have a Cartesian product that contains 36 triples, 
with several that are impossible.

To illustrate another decision table technique, this time we will develop an extended entry 
decision table, and we will take a closer look at the action stub. In making an extended entry deci-
sion table, we must ensure that the equivalence classes form a true partition of the input domain. 
(Recall from Chapter 3 that a partition is a set of disjoint subsets where the union is the entire 
set.) If there were any “overlaps” among the rule entries, we would have a redundant case in which 
more than one rule could be satisfied. Here, Y2 is the set of years between 1812 and 2012, evenly 
divisible by four excluding the year 2000.

M1 = {month: month has 30 days}
M2 = {month: month has 31 days}
M3 = {month: month is February}
D1 = {day: 1 ≤ day ≤ 28}
D2 = {day: day = 29}
D3 = {day: day = 30}
D4 = {day: day = 31}
Y1 = {year: year = 2000}
Y2 = {year: year is a non-century leap year}
Y3 = {year: year is a common year}

In a sense, we could argue that we have a “gray box” technique, because we take a closer look 
at the NextDate problem statement. To produce the next date of a given date, only five possible 
actions are needed: incrementing and resetting the day and month, and incrementing the year. 

Table 7.12  First Try Decision Table with 256 Rules

Conditions

c1: Month in M1? T

c2: Month in M2? T

c3: Month in M3? T

c4: Day in D1?

c5: Day in D2?

c6: Day in D3?

c7: Day in D4?

c8: Year in Y1?

a1: Impossible

a2: Next date
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(We will not let time go backward by resetting the year.) To follow the metaphor, we still cannot 
see inside the implementation box—the implementation could be a table look-up.

These conditions would result in a decision table with 36 rules that correspond to the Cartesian 
product of the equivalence classes. Combining rules with don’t care entries yields the decision 
table in Table 7.13, which has 16 rules. We still have the problem with logically impossible rules, 
but this formulation helps us identify the expected outputs of a test case. If you complete the 
action entries in this table, you will find some cumbersome problems with December (in rule 8) 
and other problems with Feb. 28 in rules 9, 11, and 12. We fix these next.

Table 7.13  Second Try Decision Table with 36 Rules

1 2 3 4 5 6 7 8

c1: Month in M1 M1 M1 M1 M2 M2 M2 M2

c2: Day in D1 D2 D3 D4 D1 D2 D3 D4

c3: Year in — — — — — — — —

Rule count 3 3 3 3 3 3 3 3

Actions

a1: Impossible X

a2: Increment day X X X X X

a3: Reset day X X

a4: Increment month X ?

a5: Reset month ?

a6: Increment year ?

9 10 11 12 13 14 15 16

c1: Month in M3 M3 M3 M3 M3 M3 M3 M3

c2: Day in D1 D1 D1 D2 D2 D2 D3 D4

c3: Year in Y1 Y2 Y3 Y1 Y2 Y3 — —

Rule count 1 1 1 1 1 1 3 3

Actions

a1: Impossible X X X

a2: Increment day X X ?

a3: Reset day ? X X

a4: Increment month X X X X

a5: Reset month

a6: Increment year
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7.4.3 � Third Try
We can clear up the end-of-year considerations with a third set of equivalence classes. This 
time, we are very specific about days and months, and we revert to the simpler leap year or 
non-leap year condition of the first try—so the year 2000 gets no special attention. (We could 
do a fourth try, showing year equivalence classes as in the second try, but by now you get the 
point.)

M1 = {month: month has 30 days}
M2 = {month: month has 31 days except December}
M3 = {month: month is December}
M4 = {month: month is February}
D1 = {day: 1 ≤ day ≤ 27}
D2 = {day: day = 28}
D3 = {day: day = 29}
D4 = {day: day = 30}
D5 = {day: day = 31}
Y1 = {year: year is a leap year}
Y2 = {year: year is a common year}

The Cartesian product of these contains 40 elements. The result of combining rules with don’t 
care entries is given in Table 7.14; it has 22 rules, compared with the 36 of the second try. Recall 
from Chapter 1 the question of whether a large set of test cases is necessarily better than a smaller 
set. Here, we have a 22-rule decision table that gives a clearer picture of the NextDate function 
than does the 36-rule decision table. The first five rules deal with 30-day months; notice that the 
leap year considerations are irrelevant. The next two sets of rules (6–15) deal with 31-day months, 
where rules 6–10 deal with months other than December and rules 11–15 deal with December. 
No impossible rules are listed in this portion of the decision table, although there is some redun-
dancy that an efficient tester might question. Eight of the 10 rules simply increment the day. 
Would we really require eight separate test cases for this subfunction? Probably not; but note the 
insights we can get from the decision table. Finally, the last seven rules focus on February in com-
mon and leap years.

The decision table in Table 7.14 is the basis for the source code for the NextDate function 
in Chapter 2. As an aside, this example shows how good testing can improve programming. All 
the decision table analysis could have been done during the detailed design of the NextDate 
function.

We can use the algebra of decision tables to further simplify these 22 test cases. If the 
action sets of two rules in a limited entry decision table are identical, there must be at least 
one condition that allows two rules to be combined with a don’t care entry. This is the deci-
sion table equivalent of the “treated the same” guideline that we used to identify equivalence 
classes. In a sense, we are identifying equivalence classes of rules. For example, rules 1, 2, and 
3 involve day classes D1, D2, and D3 for 30-day months. These can be combined similarly 
for day classes D1, D2, D3, and D4 in the 31-day month rules, and D4 and D5 for February. 
The result is in Table 7.15.

The corresponding test cases are shown in Table 7.16.
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7.5 �T est Cases for the Commission Problem
The commission problem is not well served by a decision table analysis. This is not surprising 
because very little decisional logic is used in the problem. Because the variables in the equivalence 
classes are truly independent, no impossible rules will occur in a decision table in which condi-
tions correspond to the equivalence classes. Thus, we will have the same test cases as we did for 
equivalence class testing.

Table 7.14  Decision Table for NextDate Function

1 2 3 4 5 6 7 8 9 10

c1: Month in M1 M1 M1 M1 M1 M2 M2 M2 M2 M2

c2: Day in D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

c3: Year in — — — — — — — — — —

Actions

a1: Impossible X

a2: Increment day X X X X X X X

a3: Reset day X X

a4: Increment month X X

a5: Reset month

a6: Increment year

11 12 13 14 15 16 17 18 19 20 21 22

c1: Month in M3 M3 M3 M3 M3 M4 M4 M4 M4 M4 M4 M4

c2: Day in D1 D2 D3 D4 D5 D1 D2 D2 D3 D3 D4 D5

c3: Year in — — — — — — Y1 Y2 Y1 Y2 — —

Actions

a1: Impossible X X X

a2: Increment day X X X X X X

a3: Reset day X X X

a4: Increment month X X

a5: Reset month X

a6: Increment year X
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7.6 � Cause-and-Effect Graphing
In the early years of computing, the software community borrowed many ideas from the hardware 
community. In some cases this worked well, but in others, the problems of software just did not fit 
well with established hardware techniques. Cause-and-effect graphing is a good example of this. 
The base hardware concept was the practice of describing circuits composed of discrete compo-
nents with AND, OR, and NOT gates. There was usually an input side of a circuit diagram, and 

Table 7.15 R educed Decision Table for NextDate Function

1–3 4 5 6–9 10

c1: Month in M1 M1 M1 M2 M2

c2: Day in D1, D2, 
D3

D4 D5 D1, D2, 
D3, D4

D5

c3: Year in — — — — —

Actions

a1: Impossible X

a2: Increment day X X

a3: Reset day X X

a4: Increment 
month

X X

a5: Reset month

a6: Increment year

11–14 15 16 17 18 19 20 21, 22

c1: Month in M3 M3 M4 M4 M4 M4 M4 M4

c2: Day in D1, D2, 
D3, D4

D5 D1 D2 D2 D3 D3 D4, 
D5

c3: Year in — — — Y1 Y2 Y1 Y2 —

Actions

a1: Impossible X X

a2: Increment day X X X

a3: Reset day X X X

a4: Increment 
month

X X

a5: Reset month X

a6: Increment year X
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the flow of inputs through the various components could be generally traced from left to right. 
With this, the effects of hardware faults such as stuck-at-one/zero could be traced to the output 
side. This greatly facilitated circuit testing.

Cause-and-effect graphs attempt to follow this pattern, by showing unit inputs on the left side 
of a drawing, and using AND, OR, and NOT “gates” to express the flow of data across stages of 
a unit. Figure 7.1 shows the basic cause-and-effect graph structures. The basic structures can be 
augmented by less used operations: Identity, Masks, Requires, and Only One.

The most that can be learned from a cause-and-effect graph is that, if there is a problem at 
an output, the path(s) back to the inputs that affected the output can be retraced. There is little 
support for actually identifying test cases. Figure 7.2 shows a cause-and-effect graph for the com-
mission problem.

Table 7.16  Decision Table Test Cases for NextDate

Case ID Month Day Year Expected Output

1–3 4 15 2001 4/16/2001

4 4 30 2001 5/1/2001

5 4 31 2001 Invalid input date

6–9 1 15 2001 1/16/2001

10 1 31 2001 2/1/2001

11–14 12 15 2001 12/16/2001

15 12 31 2001 1/1/2002

16 2 15 2001 2/16/2001

17 2 28 2004 2/29/2004

18 2 28 2001 3/1/2001

19 2 29 2004 3/1/2004

20 2 29 2001 Invalid input date

21, 22 2 30 2001 Invalid input date

Input 1

Input 2 Input 2

Input 3

Input 1

Input 2

Input 3

Input 1

Input 2

Input 3

AND NOT
Stage

Stage

Stage

Stage

Inclusive OR Exclusive OR

~

EOR

Figure 7.1  Cause-and-effect graphing operations.
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7.7 � Guidelines and Observations
As with the other testing techniques, decision table–based testing works well for some applications 
(such as NextDate) and is not worth the trouble for others (such as the commission problem). 
Not surprisingly, the situations in which it works well are those in which a lot of decision making 
takes place (such as the triangle problem), and those in which important logical relationships exist 
among input variables (the NextDate function).

	 1.	The decision table technique is indicated for applications characterized by any of the following:
	 a.	 Prominent if–then–else logic
	 b.	 Logical relationships among input variables
	 c.	 Calculations involving subsets of the input variables
	 d.	 Cause-and-effect relationships between inputs and outputs
	 e.	 High cyclomatic complexity (see Chapter 9)
	 2.	Decision tables do not scale up very well (a limited entry table with n conditions has 2n 

rules). There are several ways to deal with this—use extended entry decision tables, algebra-
ically simplify tables, “factor” large tables into smaller ones, and look for repeating patterns 
of condition entries. Try factoring the extended entry table for NextDate (Table 7.14).

	 3.	As with other techniques, iteration helps. The first set of conditions and actions you identify 
may be unsatisfactory. Use it as a stepping stone and gradually improve on it until you are 
satisfied with a decision table.

EXERCISES
	 1.	Develop a decision table and additional test cases for the right triangle addition to the tri-

angle problem (see Chapter 2 exercises). Note that there can be isosceles right triangles, but 
not with integer sides.

	 2.	Develop a decision table for the “second try” at the NextDate function. At the end of a 
31-day month, the day is always reset to 1. For all non-December months, the month is 
incremented; and for December, the month is reset to January, and the year is incremented.

	 3.	Develop a decision table for the YesterDate function (see Chapter 2 exercises).
	 4.	Expand the commission problem to consider “violations” of the sales limits. Develop the 

corresponding decision tables and test cases for a “company friendly” version and a “sales-
person friendly” version.

Sales

Locks

Stocks

Barrels

Lockprice

Stockprice

Barrelprice 15% threshold

20% threshold

Commission

Figure 7.2  Cause-and-effect graph for commission problem.
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	 5.	Discuss how well decision table testing deals with the multiple fault assumption.
	 6.	Develop decision table test cases for the time change problem (Chapter 6, problem 5).
	 7.	If you did exercise 8 in Chapter 2, exercise 5 in Chapter 5, and exercise 6 in Chapter 6, you are 

already familiar with the CRC Press website for downloads (http://www.crcpress.com/prod​uct/​
isbn/9781466560680). There you will find an Excel spreadsheet named specBasedTesting.xls. 
(It is an extended version of Naive.xls, and it contains the same inserted faults.) Different sheets 
contain decision table–based test cases for the triangle, NextDate, and commission problems, 
respectively. Run these sets of test cases and compare the results with your naive testing from 
Chapter 2, your boundary value testing from Chapter 5, and your equivalence class testing 
from Chapter 6.

	 8.	The retirement pension salary of a Michigan public school teacher is a percentage of the aver-
age of their last 3 years of teaching. Normally, the number of years of teaching service is the 
percentage multiplier. To encourage senior teachers to retire early, the Michigan legislature 
enacted the following incentive in May of 2010:

		  Teachers must apply for the incentive before June 11, 2010. Teachers who are currently 
eligible to retire (age ≥ 63 years) shall have a multiplier of 1.6% on their salary up to, and 
including, $90,000, and 1.5% on compensation in excess of $90,000. Teachers who meet 
the 80 total years of age plus years of teaching shall have a multiplier of 1.55% on their salary 
up to, and including, $90,000 and 1.5% on compensation in excess of $90,000.

		  Make a decision table to describe the retirement pension policy; be sure to consider the 
retirement eligibility criteria carefully. What are the compensation multipliers for a person 
who is currently 64 with 20 years of teaching whose salary is $95,000?
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