

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Software
Testing
 A Craftsman’s Approach

Fourth Edition

https://hemanthrajhemu.github.io

vii

Contents

Preface to the Fourth Edition...xix
Preface to the Third Edition..xxi
Preface to the Second Edition.. xxiii
Preface to the First Edition.. xxv
Author..xxvii
Abstract...xxix

part I A MATHEMATICAL CONTEXT

  1	 A Perspective on Testing..3
1.1	 Basic Definitions.. 3
1.2	 Test Cases... 4
1.3	 Insights from a Venn Diagram... 5
1.4	 Identifying Test Cases.. 6

1.4.1	 Specification-Based Testing... 7
1.4.2	 Code-Based Testing... 8
1.4.3	 Specification-Based versus Code-Based Debate... 8

1.5	 Fault Taxonomies... 9
1.6	 Levels of Testing... 12
References..13

  2	 Examples...15
2.1	 Generalized Pseudocode..15
2.2	 The Triangle Problem..17

2.2.1	 Problem Statement...17
2.2.2	 Discussion..18
2.2.3	 Traditional Implementation..18
2.2.4	 Structured Implementations...21

2.3	 The NextDate Function.. 23
2.3.1	 Problem Statement.. 23
2.3.2	 Discussion... 23
2.3.3	 Implementations.. 24

https://hemanthrajhemu.github.io

viii  ◾  Contents

2.4	 The Commission Problem.. 26
2.4.1	 Problem Statement.. 26
2.4.2	 Discussion... 27
2.4.3	 Implementation... 27

2.5	 The SATM System.. 28
2.5.1	 Problem Statement.. 29
2.5.2	 Discussion... 30

2.6	 The Currency Converter... 30
2.7	 Saturn Windshield Wiper Controller...31
2.8	 Garage Door Opener...31
References..33

  3	 Discrete Math for Testers..35
3.1	 Set Theory...35

3.1.1	 Set Membership... 36
3.1.2	 Set Definition.. 36
3.1.3	 The Empty Set... 37
3.1.4	 Venn Diagrams.. 37
3.1.5	 Set Operations... 38
3.1.6	 Set Relations.. 40
3.1.7	 Set Partitions... 40
3.1.8	 Set Identities...41

3.2	 Functions.. 42
3.2.1	 Domain and Range... 42
3.2.2	 Function Types.. 43
3.2.3	 Function Composition.. 44

3.3	 Relations..45
3.3.1	 Relations among Sets..45
3.3.2	 Relations on a Single Set.. 46

3.4	 Propositional Logic..47
3.4.1	 Logical Operators.. 48
3.4.2	 Logical Expressions... 49
3.4.3	 Logical Equivalence... 49

3.5	 Probability Theory.. 50
Reference...52

  4	 Graph Theory for Testers...53
4.1	 Graphs...53

4.1.1	 Degree of a Node... 54
4.1.2	 Incidence Matrices..55
4.1.3	 Adjacency Matrices.. 56
4.1.4	 Paths.. 56
4.1.5	 Connectedness..57
4.1.6	 Condensation Graphs.. 58
4.1.7	 Cyclomatic Number.. 58

4.2	 Directed Graphs..59

https://hemanthrajhemu.github.io

Contents  ◾  xi

  9	 Data Flow Testing...159
9.1	 Define/Use Testing..160

9.1.1	 Example..161
9.1.2	 Du-paths for Stocks..164
9.1.3	 Du-paths for Locks...164
9.1.4	 Du-paths for totalLocks...168
9.1.5	 Du-paths for Sales..169
9.1.6	 Du-paths for Commission..170
9.1.7	 Define/Use Test Coverage Metrics...170
9.1.8	 Define/Use Testing for Object-Oriented Code...172

9.2	 Slice-Based Testing..172
9.2.1	 Example..175
9.2.2	 Style and Technique...179
9.2.3	 Slice Splicing..181

9.3	 Program Slicing Tools..182
References..183

10	 Retrospective on Unit Testing...185
10.1	 The Test Method Pendulum..186
10.2	 Traversing the Pendulum...188
10.3	 Evaluating Test Methods...193
10.4	 Insurance Premium Case Study...195

10.4.1	 Specification-Based Testing..195
10.4.2	 Code-Based Testing..199

10.4.2.1	 Path-Based Testing...199
10.4.2.2	 Data Flow Testing... 200
10.4.2.3	 Slice Testing...201

10.5	 Guidelines.. 202
References... 203

Part III  BEYOND UNIT TESTING

11	 Life Cycle–Based Testing..207
11.1	 Traditional Waterfall Testing.. 207

11.1.1	 Waterfall Testing... 209
11.1.2	 Pros and Cons of the Waterfall Model... 209

11.2	 Testing in Iterative Life Cycles...210
11.2.1	 Waterfall Spin-Offs..210
11.2.2	 Specification-Based Life Cycle Models..212

11.3	 Agile Testing...214
11.3.1	 Extreme Programming...215
11.3.2	 Test-Driven Development...215
11.3.3	 Scrum...216

11.4	 Agile Model–Driven Development..218
11.4.1	 Agile Model–Driven Development...218
11.4.2	 Model–Driven Agile Development...218

References..219

https://hemanthrajhemu.github.io

xii  ◾  Contents

12	 Model-Based Testing...221
12.1	 Testing Based on Models...221
12.2	 Appropriate Models.. 222

12.2.1	 Peterson’s Lattice... 222
12.2.2	 Expressive Capabilities of Mainline Models... 224
12.2.3	 Modeling Issues... 224
12.2.4	 Making Appropriate Choices... 225

12.3	 Commercial Tool Support for Model-Based Testing... 226
References... 227

13	 Integration Testing..229
13.1	 Decomposition-Based Integration.. 229

13.1.1	 Top–Down Integration... 232
13.1.2	 Bottom–Up Integration... 234
13.1.3	 Sandwich Integration..235
13.1.4	 Pros and Cons..235

13.2	 Call Graph–Based Integration.. 236
13.2.1	 Pairwise Integration... 237
13.2.2	 Neighborhood Integration... 237
13.2.3	 Pros and Cons... 240

13.3	 Path-Based Integration..241
13.3.1	 New and Extended Concepts...241
13.3.2	 MM-Path Complexity... 243
13.3.3	 Pros and Cons... 244

13.4	 Example: integrationNextDate... 244
13.4.1	 Decomposition-Based Integration..245
13.4.2	 Call Graph–Based Integration..245
13.4.3	 MM-Path-Based Integration...250

13.5	 Conclusions and Recommendations..250
References..251

14	 System Testing...253
14.1	 Threads..253

14.1.1	 Thread Possibilities.. 254
14.1.2	 Thread Definitions...255

14.2	 Basis Concepts for Requirements Specification..256
14.2.1	 Data...256
14.2.2	 Actions...257
14.2.3	 Devices...257
14.2.4	 Events...258
14.2.5	 Threads...259
14.2.6	 Relationships among Basis Concepts..259

14.3	 Model-Based Threads..259
14.4	 Use Case–Based Threads.. 264

14.4.1	 Levels of Use Cases.. 264
14.4.2	 An Industrial Test Execution System..265
14.4.3	 System-Level Test Cases.. 268

https://hemanthrajhemu.github.io

15
© 2010 Taylor & Francis Group, LLC

Chapter 2

Examples

Three examples will be used throughout in Chapters 5 through 9 to illustrate the various unit
testing methods: the triangle problem (a venerable example in testing circles); a logically complex
function, NextDate; and an example that typifies MIS applications, known here as the commis-
sion problem. Taken together, these examples raise most of the issues that testing craftspersons
will encounter at the unit level. The discussion of higher levels of testing in Chapters 11 through
17 uses four other examples: a simplified version of an automated teller machine (ATM), known
here as the simple ATM system (SATM); the currency converter, an event-driven application typi-
cal of graphical user interface (GUI) applications; and the windshield wiper control device from
the Saturn™ automobile. The last example, a garage door controller, illustrates some of the issues
of “systems of systems.”

For the purposes of code-based testing, pseudocode implementations of the three unit-level
examples are given in this chapter. System-level descriptions of the SATM system, the currency
converter, the Saturn windshield wiper system, and the garage door controller are given in
Chapters 11 through 17. These applications are modeled with finite-state machines, variations
of event-driven petri nets, selected StateCharts, and with the Universal Modeling Language
(UML).

2.1  Generalized Pseudocode
Pseudocode provides a language-neutral way to express program source code. This version
is loosely based on Visual Basic and has constructs at two levels: unit and program compo-
nents. Units can be interpreted either as traditional components (procedures and functions)
or as object-oriented components (classes and objects). This definition is somewhat informal;
terms such as expression, variable list, and field description are used with no formal defini-
tion. Items in angle brackets indicate language elements that can be used at the identified
positions. Part of the value of any pseudocode is the suppression of unwanted detail; here, we
illustrate this by allowing natural language phrases in place of more formal, complex condi-
tions (see Table 2.1).

https://hemanthrajhemu.github.io

16  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

Table 2.1  Generalized Pseudocode

Language Element Generalized Pseudocode Construct

Comment ‘ <text>

Data structure declaration Type <type name>

<list of field descriptions>

End <type name>

Data declaration Dim <variable> As <type>

Assignment statement <variable> = <expression>

Input Input (<variable list>)

Output Output (<variable list>)

Condition <expression> <relational operator> <expression>

Compound condition <Condition> <logical connective>

<Condition>

Sequence statements in sequential order

Simple selection If <condition> Then

  <then clause>

EndIf

Selection If <condition>

  Then <then clause>

  Else <else clause>

EndIf

Multiple selection Case <variable> Of

Case 1: <predicate>

  <Case clause>

…

Case n: <predicate>

  <Case clause>

EndCase

Counter-controlled repetition For <counter> = <start> To <end>

  <loop body>

EndFor

Pretest repetition While <condition>

  <loop body>

EndWhile

(continued)

https://hemanthrajhemu.github.io

Examples  ◾  17

© 2010 Taylor & Francis Group, LLC

2.2 T he Triangle Problem
The triangle problem is the most widely used example in software testing literature. Some of the
more notable entries in three decades of testing literature are Gruenberger (1973), Brown and
Lipov (1975), Myers (1979), Pressman (1982) and subsequent editions, Clarke and Richardson
(1983, 1984), Chellappa (1987), and Hetzel (1988). There are others, but this list makes the
point.

2.2.1  Problem Statement
Simple version: The triangle program accepts three integers, a, b, and c, as input. These are
taken to be sides of a triangle. The output of the program is the type of triangle determined
by the three sides: Equilateral, Isosceles, Scalene, or NotATriangle. Sometimes, this problem
is extended to include right triangles as a fifth type; we will use this extension in some of the
exercises.

Improved version: The triangle program accepts three integers, a, b, and c, as input. These
are taken to be sides of a triangle. The integers a, b, and c must satisfy the following conditions:

Table 2.1  Generalized Pseudocode (Continued)

Language Element Generalized Pseudocode Construct

Posttest repetition Do

  <loop body>

Until <condition>

Procedure definition (similarly
for functions and o–o methods)

<procedure name> (Input: <list of variables>;

	 Output: <list of variables>)

  <body>

End <procedure name>

Interunit communication Call <procedure name> (<list of variables>;

<list of variables>)

Class/Object definition <name> (<attribute list>; <method list>, <body>)

End <name>

Interunit communication msg <destination object name>.<method name>

(<list of variables>)

Object creation Instantiate <class name>.<object name> (list of attribute
values)

Object destruction Delete <class name>.<object name>

Program Program <program name>

  <unit list>

End<program name>

https://hemanthrajhemu.github.io

18  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

	 c1.	1 ≤ a ≤ 200	 c4. a < b + c
	 c2.	1 ≤ b ≤ 200	 c5. b < a + c
	 c3.	1 ≤ c ≤ 200	 c6. c < a + b

The output of the program is the type of triangle determined by the three sides: Equilateral,
Isosceles, Scalene, or NotATriangle. If an input value fails any of conditions c1, c2, or c3, the pro-
gram notes this with an output message, for example, “Value of b is not in the range of permitted
values.” If values of a, b, and c satisfy conditions c4, c5, and c6, one of four mutually exclusive
outputs is given:

	 1.	If all three sides are equal, the program output is Equilateral.
	 2.	If exactly one pair of sides is equal, the program output is Isosceles.
	 3.	If no pair of sides is equal, the program output is Scalene.
	 4.	If any of conditions c4, c5, and c6 is not met, the program output is NotATriangle.

2.2.2  Discussion
Perhaps one of the reasons for the longevity of this example is that it contains clear but complex
logic. It also typifies some of the incomplete definitions that impair communication among cus-
tomers, developers, and testers. The first specification presumes the developers know some details
about triangles, particularly the triangle inequality: the sum of any pair of sides must be strictly
greater than the third side. The upper limit of 200 is both arbitrary and convenient; it will be used
when we develop boundary value test cases in Chapter 5.

2.2.3  Traditional Implementation
The traditional implementation of this grandfather of all examples has a rather FORTRAN-like
style. The flowchart for this implementation appears in Figure 2.1. Figure 2.2 is a flowchart for the
improved version. The flowchart box numbers correspond to comment numbers in the (FORTRAN-
like) pseudocode program given next. (These numbers correspond exactly to those in Pressman
[1982].) This implementation shows its age; a better implementation is given in Section 2.2.4.

The variable “match” is used to record equality among pairs of the sides. A classic intricacy
of the FORTRAN style is connected with the variable “match”: notice that all three tests for the
triangle inequality do not occur. If two sides are equal, say a and c, it is only necessary to compare
a + c with b. (Because b must be greater than zero, a + b must be greater than c because c equals
a.) This observation clearly reduces the number of comparisons that must be made. The efficiency
of this version is obtained at the expense of clarity (and ease of testing). We will find this version
useful later when we discuss infeasible program execution paths. That is the best reason for per-
petuating this version. Notice that six ways are used to reach the NotATriangle box (12.1–12.6),
and three ways are used to reach the Isosceles box (15.1–15.3).

https://hemanthrajhemu.github.io

Examples  ◾  19

© 2010 Taylor & Francis Group, LLC

Input a, b, c

Match = 0

7. Match = 0?

2. Match = Match + 1

4. Match = Match + 2

6. Match = Match + 3

13. Match = 1?

16. Match = 2?

18. Match = 3?

20. Equilateral 15. Isosceles 11. Scalene12. Not a triangle

17. a + c ≤ b? 14. a + b ≤ c?

8. a + b ≤ c?

9. a + c ≤ b?

10. b + c ≤ a?19. b + c ≤ a?

1. a = b?

3. a = c?

5. b = c?

N

N

N

N

N

N

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

Y

Y

Y
Y

Y

Y

Y

Figure 2.1  Flowchart for traditional triangle program implementation.

https://hemanthrajhemu.github.io

20  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

The pseudocode for this is given next.

Program triangle1 ‘Fortran-like version
‘
Dim a, b, c, match As INTEGER
‘
Output(“Enter 3 integers which are sides of a triangle”)
Input(a, b, c)

Input a, b, c

Output a, b, c

c1 = 1≤ a ≤ 200

c2 = 1≤ b ≤ 200

c3 = 1≤ c ≤ 200

c1 AND c2 AND c3?

Start

c1?

c2?

c3?

a invalid

b invalid

c invalid

F
F

F

F

T

T

T

T

Triangle
inequalities

all OK?

a = b AND b = c?

a ≠ b AND a ≠ c AND
b ≠ c?

Isosceles End

Scalene

Equilateral

Not a triangle

Y

N

N

Y

Y

N

Figure 2.2  Flowchart for improved triangle program implementation.

https://hemanthrajhemu.github.io

Examples  ◾  21

© 2010 Taylor & Francis Group, LLC

Output(“Side A is”,a)
Output(“Side B is”,b)
Output(“Side C is”,c)
match = 0
If a = b	 ‘(1)
	 Then match = match + 1	 ‘(2)
EndIf
If a = c	 ‘(3)
	 Then match = match + 2	 ‘(4)
EndIf
If b = c	 ‘(5)
	 Then match = match + 3	 ‘(6)
EndIf
If match = 0	 ‘(7)
	 Then If (a + b)≤ c	 ‘(8)
	 Then Output(“NotATriangle”)	 ‘(12.1)
	 Else If (b + c) ≤ a	 ‘(9)
	 Then Output(“NotATriangle”)	 ‘(12.2)
	 Else If (a + c) ≤ b	 ‘(10)
	 Then Output(“NotATriangle”)	 ‘(12.3)
	 Else Output (“Scalene”)	 ‘(11)
	 EndIf
	 EndIf
	 EndIf
	 Else If match = 1	 ‘(13)
	 Then If (a + c) ≤ b	 ‘(14)
	 Then Output(“NotATriangle”)	 ‘(12.4)
	 Else Output (“Isosceles”)	 ‘(15.1)
	 EndIf
	 Else If match=2	 ‘(16)
	 Then If (a + c) ≤ b
	 Then Output(“NotATriangle”)	 (12.5)
	 Else Output (“Isosceles”)	 ‘(15.2)
	 EndIf
	 Else If match = 3	 ‘(18)
	 Then If (b + c) ≤ a	 ‘(19)
	 Then Output(“NotATriangle”)	 ‘(12.6)
	 Else Output (“Isosceles”)	 ‘(15.3)
	 EndIf
	 Else Output (“Equilateral”)	 ‘(20)
	 EndIf
	 EndIf
	 EndIf
EndIf
‘
End Triangle1

2.2.4 � Structured Implementations
Program triangle2 ‘Structured programming version of simpler specification

Dim a,b,c As Integer
Dim IsATriangle As Boolean

https://hemanthrajhemu.github.io

22  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

‘Step 1: Get Input
Output(“Enter 3 integers which are sides of a triangle”)
Input(a,b,c)
Output(“Side A is”,a)
Output(“Side B is”,b)
Output(“Side C is”,c)
‘Step 2: Is A Triangle?’
If (a < b + c) AND (b < a + c) AND (c < a + b)
	 Then IsATriangle = True
	 Else IsATriangle = False
EndIf
‘
‘Step 3: Determine Triangle Type
If IsATriangle
	 Then If (a = b) AND (b = c)
	 Then Output (“Equilateral”)
	 Else If (a ≠ b) AND (a ≠ c) AND (b ≠ c)
	 Then Output (“Scalene”)
	 Else Output (“Isosceles”)
	 EndIf
	 EndIf
	 Else Output(“Not a Triangle”)
EndIf
End triangle2

Third version
Program triangle3’
Dim a, b, c As Integer
Dim c1, c2, c3, IsATriangle As Boolean
‘Step 1: Get Input
Do
	 Output(“Enter 3 integers which are sides of a triangle”)
	 Input(a, b, c)
	 c1 = (1 ≤ a) AND (a ≤ 300)
	 c2 = (1 ≤ b) AND (b ≤ 300)
	 c3 = (1 ≤ c) AND (c ≤ 300)
	 If NOT(c1)
	 Then Output(“Value of a is not in the range of permitted values”)
	 EndIf

If NOT(c2)
	 Then Output(“Value of b is not in the range of permitted values”)

EndIf
	 If NOT(c3)
	 ThenOutput(“Value of c is not in the range of permitted values”)
	 EndIf
Until c1 AND c2 AND c3
Output(“Side A is”,a)
Output(“Side B is”,b)
Output(“Side C is”,c)
‘Step 2: Is A Triangle?
If (a < b + c) AND (b < a + c) AND (c < a + b)
	 Then IsATriangle = True
	 Else IsATriangle = False

https://hemanthrajhemu.github.io

Examples  ◾  23

© 2010 Taylor & Francis Group, LLC

EndIf
‘Step 3: Determine Triangle Type
If IsATriangle
	 Then If (a = b) AND (b = c)
	 Then Output (“Equilateral”)
	 Else If (a ≠ b) AND (a ≠ c) AND (b ≠ c)
	 Then Output (“Scalene”)
	 Else Output (“Isosceles”)
	 EndIf
	 EndIf
	 Else Output(“Not a Triangle”)
EndIf
End triangle3

2.3 T he NextDate Function
The complexity in the triangle program is due to the relationships between inputs and correct
outputs. We will use the NextDate function to illustrate a different kind of complexity—logical
relationships among the input variables.

2.3.1	 Problem Statement
NextDate is a function of three variables: month, date, and year. It returns the date of the day after
the input date. The month, date, and year variables have integer values subject to these conditions
(the year range ending in 2012 is arbitrary, and is from the first edition):

	 c1.	1 ≤ month ≤ 12
	 c2.	1 ≤ day ≤ 31
	 c3.	1812 ≤ year ≤ 2012

As we did with the triangle program, we can make our problem statement more specific. This
entails defining responses for invalid values of the input values for the day, month, and year. We
can also define responses for invalid combinations of inputs, such as June 31 of any year. If any
of conditions c1, c2, or c3 fails, NextDate produces an output indicating the corresponding vari-
able has an out-of-range value—for example, “Value of month not in the range 1...12.” Because
numerous invalid day–month–year combinations exist, NextDate collapses these into one mes-
sage: “Invalid Input Date.”

2.3.2 � Discussion
Two sources of complexity exist in the NextDate function: the complexity of the input domain
discussed previously, and the rule that determines when a year is a leap year. A year is 365.2422
days long; therefore, leap years are used for the “extra day” problem. If we declared a leap year
every fourth year, a slight error would occur. The Gregorian calendar (after Pope Gregory) resolves
this by adjusting leap years on century years. Thus, a year is a leap year if it is divisible by 4, unless
it is a century year. Century years are leap years only if they are multiples of 400 (Inglis, 1961);
thus, 1992, 1996, and 2000 are leap years, while the year 1900 is not a leap year. The NextDate

https://hemanthrajhemu.github.io

24  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

function also illustrates a sidelight of software testing. Many times, we find examples of Zipf ’s law,
which states that 80% of the activity occurs in 20% of the space. Notice how much of the source
code is devoted to leap year considerations. In the second implementation, notice how much code
is devoted to input value validation.

2.3.3  Implementations

Program NextDate1 ‘Simple version
Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer
Output (“Enter today’s date in the form MM DD YYYY”)
Input (month, day, year)
Case month Of
Case 1: month Is 1,3,5,7,8, Or 10: ‘31 day months (except Dec.)
	If day < 31
	 Then tomorrowDay = day + 1
	 Else
	 tomorrowDay = 1
	 tomorrowMonth = month + 1
	EndIf
Case 2: month Is 4,6,9, Or 11 ‘30 day months
	If day < 30
	 Then tomorrowDay = day + 1
	 Else
	 tomorrowDay = 1
	 tomorrowMonth = month + 1
	EndIf
Case 3: month Is 12: ‘December
	If day < 31
	 Then tomorrowDay = day + 1
	 Else
	 tomorrowDay = 1
	 tomorrowMonth = 1
	 If year = 2012
	 Then Output (“2012 is over”)
	 Else tomorrow.year = year + 1
	EndIf
Case 4: month is 2: ‘February
	If day < 28
	 Then tomorrowDay = day + 1
	 Else
	 If day = 28
	 Then If ((year is a leap year)
	 Then tomorrowDay = 29 ‘leap year
	 Else ‘not a leap year
	 tomorrowDay = 1
	 tomorrowMonth = 3
	 EndIf
	 Else If day = 29
	 Then If ((year is a leap year)
	 Then tomorrowDay = 1

https://hemanthrajhemu.github.io

Examples  ◾  25

© 2010 Taylor & Francis Group, LLC

	 tomorrowMonth = 3
	 Else ‘not a leap year
	 Output(“Cannot have Feb.”, day)
	 EndIf
	 EndIf
	 EndIf
	EndIf
EndCase
Output (“Tomorrow’s date is”, tomorrowMonth, tomorrowDay, tomorrowYear)
End NextDate

Program NextDate2	 Improved version
‘
Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer
Dim c1, c2, c3 As Boolean
‘
Do
	Output (“Enter today’s date in the form MM DD YYYY”)
	Input (month, day, year)
	c1 = (1 ≤ day) AND (day ≤ 31)
	c2 = (1 ≤ month) AND (month ≤ 12)
	c3 = (1812 ≤ year) AND (year ≤ 2012)
	If NOT(c1)
	 Then Output(“Value of day not in the range 1..31”)
	EndIf
	If NOT(c2)
	 Then Output(“Value of month not in the range 1..12”)
	EndIf
	If NOT(c3)
	 Then Output(“Value of year not in the range 1812..2012”)
	EndIf
Until c1 AND c2 AND c2

Case month Of
Case 1: month Is 1,3,5,7,8, Or 10: ‘31 day months (except Dec.)
	If day < 31
	 Then tomorrowDay = day + 1
	 Else
	 tomorrowDay = 1
	 tomorrowMonth = month + 1
	EndIf
Case 2: month Is 4,6,9, Or 11 ‘30 day months
	If day < 30
	 Then tomorrowDay = day + 1
	 Else
	 If day = 30
	 Then tomorrowDay = 1
	 tomorrowMonth = month + 1
	 Else Output(“Invalid Input Date”)
	 EndIf
	EndIf
Case 3: month Is 12: ‘December

https://hemanthrajhemu.github.io

26  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

	If day < 31
	 Then tomorrowDay = day + 1
	 Else
	 tomorrowDay = 1
	 tomorrowMonth = 1
	 If year = 2012
	 Then Output (“Invalid Input Date”)
	 Else tomorrow.year = year + 1
	 EndIf
	EndIf
Case 4: month is 2: ‘February
	If day < 28
	 Then tomorrowDay = day + 1
	 Else
	 If day = 28
	 Then
	 If (year is a leap year)
	 Then tomorrowDay = 29 ‘leap day
	 Else ‘not a leap year
	 tomorrowDay = 1
	 tomorrowMonth = 3
	 EndIf
	 Else
	 If day = 29
	 Then
	 If (year is a leap year)
	 Then tomorrowDay = 1
	 tomorrowMonth = 3
	 Else
	 If day > 29
	 Then Output(“Invalid Input Date”)
	 EndIf
	 EndIf
	 EndIf
	 EndIf
	EndIf
EndCase
Output (“Tomorrow’s date is”, tomorrowMonth, tomorrowDay, tomorrowYear)
‘
End NextDate2

2.4 �T he Commission Problem
Our third example is more typical of commercial computing. It contains a mix of computation
and decision making, so it leads to interesting testing questions. Our main use of this example will
be in our discussion of data flow and slice-based testing.

2.4.1 � Problem Statement
A rifle salesperson in the former Arizona Territory sold rifle locks, stocks, and barrels made by a
gunsmith in Missouri. Locks cost $45, stocks cost $30, and barrels cost $25. The salesperson had to

https://hemanthrajhemu.github.io

Examples  ◾  27

© 2010 Taylor & Francis Group, LLC

sell at least one lock, one stock, and one barrel (but not necessarily one complete rifle) per month,
and production limits were such that the most the salesperson could sell in a month was 70 locks,
80 stocks, and 90 barrels. After each town visit, the salesperson sent a telegram to the Missouri
gunsmith with the number of locks, stocks, and barrels sold in that town. At the end of a month,
the salesperson sent a very short telegram showing –1 lock sold. The gunsmith then knew the sales
for the month were complete and computed the salesperson’s commission as follows: 10% on sales
up to (and including) $1000, 15% on the next $800, and 20% on any sales in excess of $1800.

2.4.2 � Discussion
This example is somewhat contrived to make the arithmetic quickly visible to the reader. It might be
more realistic to consider some other additive function of several variables, such as various calculations
found in filling out a US 1040 income tax form. (We will stay with rifles.) This problem separates into
three distinct pieces: the input data portion, in which we could deal with input data validation (as we
did for the triangle and NextDate programs), the sales calculation, and the commission calculation
portion. This time, we will omit the input data validation portion. We will replicate the telegram
convention with a sentinel-controlled while loop that is typical of MIS data gathering applications.

2.4.3	 Implementation

Program Commission (INPUT,OUTPUT)
‘
Dim locks, stocks, barrels As Integer
Dim lockPrice, stockPrice, barrelPrice As Real
Dim totalLocks,totalStocks,totalBarrels As Integer
Dim lockSales, stockSales, barrelSales As Real
Dim sales,commission : REAL
‘
lockPrice = 45.0
stockPrice = 30.0
barrelPrice = 25.0
totalLocks = 0
totalStocks = 0
totalBarrels = 0
‘
Input(locks)
While NOT(locks = -1)	 ‘Input device uses -1 to indicate end of data
	 Input(stocks, barrels)
	 totalLocks = totalLocks + locks
	 totalStocks = totalStocks + stocks
	 totalBarrels = totalBarrels + barrels
	 Input(locks)
EndWhile
‘
Output(“Locks sold:”, totalLocks)
Output(“Stocks sold:”, totalStocks)
Output(“Barrels sold:”, totalBarrels)
‘
lockSales = lockPrice * totalLocks
stockSales = stockPrice * totalStocks

https://hemanthrajhemu.github.io

28  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

barrelSales = barrelPrice * totalBarrels
sales = lockSales + stockSales + barrelSales
Output(“Total sales:”, sales)
‘
If (sales > 1800.0)
	 Then
	 commission = 0.10 * 1000.0
	 commission = commission + 0.15 * 800.0
	 commission = commission + 0.20 * (sales–1800.0)
	 Else If (sales > 1000.0)
	 Then
	 commission = 0.10 * 1000.0
	 commission = commission + 0.15*(sales–1000.0)
	 Else commission = 0.10 * sales
	 EndIf
EndIf
Output(“Commission is $”,commission)
End Commission

2.5 �T he SATM System
To better discuss the issues of integration and system testing, we need an example with larger
scope (Figure 2.3).

The ATM described here is minimal, yet it contains an interesting variety of functionality and
interactions that typify the client side of client–server systems.

Cash dispenser

Printed receipt 1 2 3

4 5 6

7 8 9

0

Deposit slot

Card slot

Enter

Clear

Cancel

Welcome to

Rock Solid Federal Credit Union

Please insert your ATM card

Figure 2.3  SATM terminal.

https://hemanthrajhemu.github.io

Examples  ◾  29

© 2010 Taylor & Francis Group, LLC

2.5.1 � Problem Statement
The SATM system communicates with bank customers via the 15 screens shown in Figure 2.4.
Using a terminal with features as shown in Figure 2.3, SATM customers can select any of three
transaction types: deposits, withdrawals, and balance inquiries. For simplicity, these transactions
can only be done on a checking account.

When a bank customer arrives at an SATM station, screen 1 is displayed. The bank customer
accesses the SATM system with a plastic card encoded with a personal account number (PAN),
which is a key to an internal customer account file, containing, among other things, the customer’s
name and account information. If the customer’s PAN matches the information in the customer
account file, the system presents screen 2 to the customer. If the customer’s PAN is not found,
screen 4 is displayed, and the card is kept.

At screen 2, the customer is prompted to enter his or her personal identification number (PIN).
If the PIN is correct (i.e., matches the information in the customer account file), the system dis-
plays screen 5; otherwise, screen 3 is displayed. The customer has three chances to get the PIN
correct; after three failures, screen 4 is displayed, and the card is kept.

On entry to screen 5, the customer selects the desired transaction from the options shown on screen.
If balance is requested, screen 14 is then displayed. If a deposit is requested, the status of the deposit
envelope slot is determined from a field in the terminal control file. If no problem is known, the system
displays screen 7 to get the transaction amount. If a problem occurs with the deposit envelope slot, the

Screen 6

Balance is
$dddd.dd

Screen 1

Welcome
please insert your

ATM card

Screen 2

Please enter your PIN

Screen 3

Your PIN is incorrect.
Please try again.

Screen 4

Invalid ATM card. It will
be retained.

Screen 5
Select transaction:

balance >
deposit >

withdrawal >

Screen 7

Enter amount.
Withdrawals must
be multiples of $10

Screen 8

Insufficient Funds!
Please enter a new

amount

Screen 9

Machine can only
dispense $10 notes

Screen 10

Temporarily unable to
process withdrawals.
Another transaction?

Screen 11

Your balance is being
updated. Please take
cash from dispenser.

Screen 12

Temporarily unable to
process deposits.

Another transaction?

Screen 13

Please insert deposit
into deposit slot.

Screen 14

Your new balance is
being printed. Another

transaction?

Screen 15

Please take your
receipt and ATM card.

�ank you.

Figure 2.4  SATM screens.

https://hemanthrajhemu.github.io

30  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

system displays screen 12. Once the deposit amount has been entered, the system displays screen 13,
accepts the deposit envelope, and processes the deposit. The system then displays screen 14.

If a withdrawal is requested, the system checks the status (jammed or free) of the withdrawal
chute in the terminal control file. If jammed, screen 10 is displayed; otherwise, screen 7 is dis-
played so the customer can enter the withdrawal amount. Once the withdrawal amount is entered,
the system checks the terminal status file to see if it has enough currency to dispense. If it does not,
screen 9 is displayed; otherwise, the withdrawal is processed. The system checks the customer bal-
ance (as described in the balance request transaction); if the funds in the account are insufficient,
screen 8 is displayed. If the account balance is sufficient, screen 11 is displayed and the money is
dispensed. The balance is printed on the transaction receipt as it is for a balance request transac-
tion. After the cash has been removed, the system displays screen 14.

When the “No” button is pressed in screens 10, 12, or 14, the system presents screen 15 and
returns the customer’s ATM card. Once the card is removed from the card slot, screen 1 is dis-
played. When the “Yes” button is pressed in screens 10, 12, or 14, the system presents screen 5 so
the customer can select additional transactions.

2.5.2  Discussion
A surprising amount of information is “buried” in the system description just given. For instance,
if you read it closely, you can infer that the terminal only contains $10 bills (see screen 7). This tex-
tual definition is probably more precise than what is usually encountered in practice. The example
is deliberately simple (hence the name).

A plethora of questions could be resolved by a list of assumptions. For example, is there a bor-
rowing limit? What keeps customers from taking out more than their actual balance if they go
to several ATM terminals? A lot of start-up questions are used: how much cash is initially in the
machine? How are new customers added to the system? These and other real-world refinements
are eliminated to maintain simplicity.

2.6 �T he Currency Converter
The currency conversion program is another event-driven program that emphasizes code associ-
ated with a GUI. A sample GUI is shown in Figure 2.5.

Currency converter
US dollar amount

Equivalent in ...

Brazil

Canada

Japan

European community

Compute

Clear

Quit

Figure 2.5  Currency converter graphical user interface.

https://hemanthrajhemu.github.io

Examples  ◾  31

© 2010 Taylor & Francis Group, LLC

The application converts US dollars to any of four currencies: Brazilian reals, Canadian dol-
lars, European Union euros, and Japanese yen. Currency selection is governed by the radio buttons
(option buttons), which are mutually exclusive. When a country is selected, the system responds
by completing the label; for example, “Equivalent in …” becomes “Equivalent in Canadian dol-
lars” if the Canada button is clicked. Also, a small Canadian flag appears next to the output posi-
tion for the equivalent currency amount. Either before or after currency selection, the user inputs
an amount in US dollars. Once both tasks are accomplished, the user can click on the Compute
button, the Clear button, or the Quit button. Clicking on the Compute button results in the con-
version of the US dollar amount to the equivalent amount in the selected currency. Clicking on
the Clear button resets the currency selection, the US dollar amount, and the equivalent currency
amount and the associated label. Clicking on the Quit button ends the application. This example
nicely illustrates a description with UML and an object-oriented implementation, which we will
use in Chapter 15.

2.7 � Saturn Windshield Wiper Controller
The windshield wiper on some Saturn automobiles is controlled by a lever with a dial. The lever has
four positions: OFF, INT (for intermittent), LOW, and HIGH; and the dial has three positions,
numbered simply 1, 2, and 3. The dial positions indicate three intermittent speeds, and the dial
position is relevant only when the lever is at the INT position. The decision table below shows the
windshield wiper speeds (in wipes per minute) for the lever and dial positions.

c1. Lever OFF INT INT INT LOW HIGH

c2. Dial n/a 1 2 3 n/a n/a

a1. Wiper 0 4 6 12 30 60

2.8 � Garage Door Opener
A system to open a garage door is composed of several components: a drive motor, a drive chain,
the garage door wheel tracks, a lamp, and an electronic controller. This much of the system is
powered by commercial 110 V electricity. Several devices communicate with the garage door
controller—a wireless keypad (usually in an automobile), a digit keypad on the outside of the
garage door, and a wall-mounted button. In addition, there are two safety features, a laser beam
near the floor and an obstacle sensor. These latter two devices operate only when the garage door
is closing. If the light beam is interrupted (possibly by a pet), the door immediately stops, and then
reverses direction until the door is fully open. If the door encounters an obstacle while it is closing
(say a child’s tricycle left in the path of the door), the door stops and reverses direction until it is
fully open. There is a third way to stop a door in motion, either when it is closing or opening. A
signal from any of the three devices (wireless keypad, digit keypad, or wall-mounted control but-
ton). The response to any of these signals is different—the door stops in place. A subsequent signal
from any of the devices starts the door in the same direction as when it was stopped. Finally, there
are sensors that detect when the door has moved to one of the extreme positions, either fully open

https://hemanthrajhemu.github.io

32  ◾  Software Testing

© 2010 Taylor & Francis Group, LLC

or fully closed. When the door is in motion, the lamp is lit, and remains lit for approximately
30 seconds after the door reaches one of the extreme positions.

The three signaling devices and the safety features are optional additions to the basic garage
door opener. This example will be used in Chapter 17 in the discussion of systems of systems. For
now, a SysML context diagram of the garage door opener is given in Figure 2.6.

EXERCISES
	 1.	Revisit the traditional triangle program flowchart in Figure 2.1. Can the variable match ever

have the value of 4? Of 5? Is it ever possible to “execute” the following sequence of numbered
boxes: 1, 2, 5, 6?

	 2.	Recall the discussion from Chapter 1 about the relationship between the specification and
the implementation of a program. If you study the implementation of NextDate carefully,
you will see a problem. Look at the CASE clause for 30-day months (4, 6, 9, 11). There is
no special action for day = 31. Discuss whether this implementation is correct. Repeat this
discussion for the treatment of values of day 29 in the CASE clause for February.

	 3.	In Chapter 1, we mentioned that part of a test case is the expected output. What would you
use as the expected output for a NextDate test case of June 31, 1812? Why?

	 4.	One common addition to the triangle problem is to check for right triangles. Three sides
constitute a right triangle if the Pythagorean relationship is satisfied: c2 = a2 + b2. This
change makes it convenient to require that the sides be presented in increasing order, that
is, a ≤ b ≤ c. Extend the Triangle3 program to include the right triangle feature. We will use
this extension in later exercises.

	 5.	What will the Triangle2 program do for the sides –3, –3, 5? Discuss this in terms of the
considerations we made in Chapter 1.

	 6.	The function YesterDate is the inverse of NextDate. Given a month, day, year, YesterDate
returns the date of the day before. Develop a program in your favorite language (or our gen-
eralized pseudocode) for YesterDate. We will also use this as a continuing exercise.

48-V DC
power

Digit
keypad

Portable
opener

Wall-mount
button

Light
beam

Wireless
receiver

Garage
door

controller

Extreme
limit

sensor

Drive
motor

Lamp

Obstacle
(resistance)

sensor

110V-AC
power

Figure 2.6  SysML diagram of garage door controller.

https://hemanthrajhemu.github.io

Examples  ◾  33

© 2010 Taylor & Francis Group, LLC

	 7.	Part of the art of GUI design is to prevent user input errors. Event-driven applications are
particularly vulnerable to input errors because events can occur in any order. As the given
definition stands, a user could enter a US dollar amount and then click on the compute
button without selecting a country. Similarly, a user could select a country and then click
on the compute button without inputting a dollar amount. GUI designers use the concept
of “forced navigation” to avoid such situations. In Visual Basic, this can be done using the
visibility properties of various controls. Discuss how you could do this.

	 8.	The CRC Press website (http://www.crcpress.com/product/isbn/9781466560680) contains
some software supplements for this book. There is a series of exercises that I use in my
graduate class in software testing; the first part of a continuing exercise is to use the naive.xls
(runs in most versions of Microsoft Excel) program to test the triangle, NextDate, and com-
mission problems. The spreadsheet lets you postulate test cases and then run them simply
by clicking on the “Run Test Cases” button. As a start to becoming a testing craftsperson,
use naive.xls to test our three examples in an intuitive (hence “naive”) way. There are faults
inserted into each program. If (when) you find failures, try to hypothesize the underlying
fault. Keep your results for comparison to ideas in Chapters 5, 6, and 9.

References
Brown, J.R. and Lipov, M., Testing for software reliability, Proceedings of the International Symposium on

Reliable Software, Los Angeles, April 1975, pp. 518–527.
Chellappa, M., Nontraversible paths in a program, IEEE Transactions on Software Engineering, Vol. SE-13,

No. 6, June 1987, pp. 751–756.
Clarke, L.A. and Richardson, D.J., The application of error sensitive strategies to debugging, ACM SIGSOFT

Software Engineering Notes, Vol. 8, No. 4, August 1983.
Clarke, L.A. and Richardson, D.J., A reply to Foster’s comment on “The Application of Error Sensitive

Strategies to Debugging,” ACM SIGSOFT Software Engineering Notes, Vol. 9, No. 1, January 1984.
Gruenberger, F., Program testing, the historical perspective, in Program Test Methods, William C. Hetzel, Ed.,

Prentice-Hall, New York, 1973, pp. 11–14.
Hetzel, Bill, The Complete Guide to Software Testing, 2nd ed., QED Information Sciences, Inc., Wellesley,

MA, 1988.
Inglis, Stuart J., Planets, Stars, and Galaxies, 4th Ed., John Wiley & Sons, New York, 1961.
Myers, G.J., The Art of Software Testing, Wiley Interscience, New York, 1979.
Pressman, R.S., Software Engineering: A Practitioner’s Approach, McGraw-Hill, New York, 1982.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

207

Chapter 11

Life Cycle–Based Testing

In this chapter, we begin with various models of the software development life cycle in terms of
the implications these life cycles have for testing. We took a general view in Chapter 1, where we
identified three levels (unit, integration, and system) in terms of symmetries in the waterfall model
of software development. This view has been relatively successful for decades, and these levels per-
sist; however, the advent of alternative life cycle models mandates a deeper look at these views of
testing. We begin with the traditional waterfall model, mostly because it is widely understood and
is a reference framework for the more recent models. Then we look at derivatives of the waterfall
model, and finally some mainline agile variations.

We also make a major shift in our thinking. We are more concerned with how to represent the
item tested because the representation may limit our ability to identify test cases. Take a look at
the papers presented at the leading conferences (professional or academic) on software testing—
you will find nearly as many presentations on specification models and techniques as on testing
techniques. Model-Based Testing (MBT) is the meeting place of software modeling and testing
at all levels.

11.1 �T raditional Waterfall Testing
The traditional model of software development is the waterfall model, which is illustrated in
Figure 11.1. It is sometimes drawn as a V as in Figure 11.2 to emphasize how the basic levels of
testing reflect the early waterfall phases. (In ISTQB circles, this is known as the “V-Model.”) In
this view, information produced in one of the development phases constitutes the basis for test
case identification at that level. Nothing controversial here: we certainly would hope that system
test cases are clearly correlated with the requirements specification, and that unit test cases are
derived from the detailed design of the unit. On the upper left side of the waterfall, the tight what/
how cycles are important. They underscore the fact that the predecessor phase defines what is to
be done in the successor phase. When complete, the successor phase states how it accomplishes
“what” was to be done. These are also ideal points at which to conduct software reviews (see
Chapter 22). Some humorists assert that these phases are the fault creation phases, and those on
the right are the fault detection phases.

https://hemanthrajhemu.github.io

208  ◾  Software Testing﻿

Two observations: a clear presumption of functional testing is used here, and an implied bottom–up
testing order is used. Here, “bottom–up” refers to levels of abstraction—unit first, then integra-
tion, and finally, system testing. In Chapter 13, bottom–up also refers to a choice of orders in
which units are integrated (and tested).

Of the three main levels of testing (unit, integration, and system), unit testing is best under-
stood. Chapters 5 through 10 are directed at the testing theory and techniques applicable to unit
testing. System testing is understood better than integration testing, but both need clarification.
The bottom–up approach sheds some insight: test the individual components, and then integrate
these into subsystems until the entire system is tested. System testing should be something that the

Requirements
specification What

How

What

How
What

How

Preliminary
design

Detailed
design

Unit
testing

Integration
testing

System
testing

Coding

Figure 11.1 T he waterfall life cycle.

Requirements
specification

System
testing

Preliminary
design

Integration
testing

Detailed
design

Unit
testing

Coding

Figure 11.2 T he waterfall life cycle as the V-Model.

https://hemanthrajhemu.github.io

Life Cycle–Based Testing  ◾  209

customer (or user) understands, and it often borders on customer acceptance testing. Generally,
system testing is functional instead of structural; this is mostly due to the lack of higher-level
structural notations.

11.1.1 � Waterfall Testing
The waterfall model is closely associated with top–down development and design by functional
decomposition. The end result of preliminary design is a functional decomposition of the entire
system into a tree-like structure of functional components. With such a decomposition, top–down
integration would begin with the main program, checking the calls to the next-level units, and
so on until the leaves of the decomposition tree are reached. At each point, lower-level units are
replaced by stubs—throwaway code that replicates what the lower-level units would do when
called. Bottom–up integration is the opposite sequence, starting with the leaf units and work-
ing up toward the main program. In bottom–up integration, units at higher levels are replaced
by drivers (another form of throwaway code) that emulate the procedure calls. The “big bang”
approach simply puts all the units together at once, with no stubs or drivers. Whichever approach
is taken, the goal of traditional integration testing is to integrate previously tested units with
respect to the functional decomposition tree. Although this describes integration testing as a pro-
cess, discussions of this type offer little information about the methods or techniques. We return
to this in Chapter 13.

11.1.2 � Pros and Cons of the Waterfall Model
In its history since the first publication in 1968, the waterfall model has been analyzed and cri-
tiqued repeatedly. The earliest compendium was by Agresti (1986), which stands as a good source.
Agresti observes that

◾◾ The framework fits well with hierarchical management structures.
◾◾ The phases have clearly defined end products (exit criteria), which in turn are convenient for

project management.
◾◾ The detailed design phase marks the starting point where individuals responsible for units

can work in parallel, thereby shortening the overall project development interval.

More importantly, Agresti highlights major limitations of the waterfall model. We shall see
that these limitations are answered by the derived life cycle models. He observes that

◾◾ There is a very long feedback cycle between requirements specification and system testing,
in which the customer is absent.

◾◾ The model emphasizes analysis to the near exclusion of synthesis, which first occurs at the
point of integration testing.

◾◾ Massive parallel development at the unit level may not be sustainable with staffing limitations.
◾◾ Most important, “perfect foresight” is required because any faults or omissions at the require-

ments level will penetrate through the remaining life cycle phases.

The “omission” part was particularly troubling to the early waterfall developers. As a result,
nearly all of the papers of requirements specification demanded consistency, completeness, and
clarity. Consistency is impossible to demonstrate for most requirements specification techniques

https://hemanthrajhemu.github.io

210  ◾  Software Testing﻿

(decision tables are an exception), and the need for clarity is obvious. The interesting part is com-
pleteness—all of the successor life cycles assume incompleteness, and depend on some form of
iteration to gradually arrive at “completeness.”

11.2 �T esting in Iterative Life Cycles
Since the early 1980s, practitioners have devised alternatives in response to shortcomings of the
traditional waterfall model just mentioned. Common to all of these alternatives is the shift away
from the functional decomposition to an emphasis on iteration and composition. Decomposition
is a perfect fit both to the top–down progression of the waterfall model and to the bottom–up
testing order, but it relies on one of the major weaknesses of waterfall development cited by Agresti
(1986)—the need for “perfect foresight.” Functional decomposition can only be well done when
the system is completely understood, and it promotes analysis to the near exclusion of synthesis.
The result is a very long separation between requirements specification and a completed system,
and during this interval, no opportunity is available for feedback from the customer. Composition, on
the other hand, is closer to the way people work: start with something known and understood,
then add to it gradually, and maybe remove undesired portions.

A very nice analogy can be applied to positive and negative sculpture. In negative sculpture,
work proceeds by removing unwanted material, as in the mathematician’s view of sculpting
Michelangelo’s David: start with a piece of marble, and simply chip away all non-David. Positive
sculpture is often done with a pliable medium, such as wax. The central shape is approximated,
and then wax is either added or removed until the desired shape is attained. The wax original is
then cast in plaster. Once the plaster hardens, the wax is melted out, and the plaster “negative” is
used as a mold for molten bronze. Think about the consequences of a mistake: with negative sculp-
ture, the whole work must be thrown away and restarted. (A museum in Florence, Italy, contains
half a dozen such false starts to the David.) With positive sculpture, the erroneous part is simply
removed and replaced. We will see this is the defining essence of the agile life cycle models. The
centrality of composition in the alternative models has a major implication for integration testing.

11.2.1 � Waterfall Spin-Offs
There are three mainline derivatives of the waterfall model: incremental development, evolution-
ary development, and the spiral model (Boehm, 1988). Each of these involves a series of incre-
ments or builds as shown in Figure 11.3. It is important to keep preliminary design as an integral
phase rather than to try to amortize such high-level design across a series of builds. (To do so usu-
ally results in unfortunate consequences of design choices made during the early builds that are
regrettable in later builds.) This single design step cannot be done in the evolutionary and spiral
models. This is also a major limitation of the bottom–up agile methods.

Within a build, the normal waterfall phases from detailed design through testing occur with
one important difference: system testing is split into two steps—regression and progression test-
ing. The main impact of the series of builds is that regression testing becomes necessary. The goal
of regression testing is to ensure that things that worked correctly in the previous build still work
with the newly added code. Regression testing can either precede or follow integration testing, or
possibly occur in both places. Progression testing assumes that regression testing was successful
and that the new functionality can be tested. (We like to think that the addition of new code rep-
resents progress, not a regression.) Regression testing is an absolute necessity in a series of builds

https://hemanthrajhemu.github.io

Life Cycle–Based Testing  ◾  211

because of the well-known ripple effect of changes to an existing system. (The industrial average is
that one change in five introduces a new fault.)

Evolutionary development is best summarized as client-based iteration. In this spin-off, a small
initial version of a product is given to users who then suggest additional features. This is particu-
larly helpful in applications for which time-to-market is a priority. The initial version might cap-
ture a segment of the target market, and then that segment is “locked in” to future evolutionary
versions. When these customers have a sense that they are “being heard,” they tend to be more
invested in the evolving product.

Barry Boehm’s spiral model has some of the flavor of the evolutionary model. The biggest
difference is that the increments are determined more on the basis of risk rather than on client
suggestions. The spiral is superimposed on an x–y coordinate plane, with the upper left quadrant
referring to determining objectives, the upper right to risk analysis, the lower right refers to devel-
opment (and test), and the lower left is for planning the next iteration. These four phases—deter-
mine objectives, analyze risk, develop and test, and next iteration planning—are repeated in an
evolutionary way. At each evolutionary step, the spiral enlarges.

There are two views of regression testing: one is to simply repeat the tests from the previous itera-
tion; the other is to devise a smaller set of test cases specifically focused on finding affected faults.
Repeating a full set of previous integration tests is fine in an automated testing environment, but is
undesirable in a more manual environment. The expectation of test case failure is (or should be) lower
for regression testing compared to that for progression testing. As a guideline, regression tests might
fail in only 5% of the repeated progression tests. This may increase to 20% for progression tests. If
regression tests are performed manually, there is an interesting term for special regression test cases:
Soap Opera Tests. The idea is to have long, complex regression tests, akin to the complicated plot
lines in television soap operas. A soap opera test case could fail in many ways, whereas a progression
test case should fail for only a very few reasons. If a soap opera test case fails, clearly more focused
testing is required to localize the fault. We will see this again in Chapter 20 on all-pairs testing.

Build
definition

Detailed
design

Coding

Unit
testing

Integration
testing

Regression
testing

Progression
testing

Requirements
specification

Preliminary
design

Build
sequence

How

How

How

How

What

What

What

What

Figure 11.3  Iterative development.

https://hemanthrajhemu.github.io

212  ◾  Software Testing﻿

The differences among the three spin-off models are due to how the builds are identified. In
incremental development, the motivation for separate builds is usually to flatten the staff profile. With
pure waterfall development, there can be a huge bulge of personnel for the phases from detailed design
through unit testing. Many organizations cannot support such rapid staff fluctuations, so the system is
divided into builds that can be supported by existing personnel. In evolutionary development, the pre-
sumption of a build sequence is still made, but only the first build is defined. On the basis of that, later
builds are identified, usually in response to priorities set by the customer/user, so the system evolves to
meet the changing needs of the user. This foreshadows the customer-driven tenet of the agile methods.
The spiral model is a combination of rapid prototyping and evolutionary development, in which a
build is defined first in terms of rapid prototyping and then is subjected to a go/no-go decision based
on technology-related risk factors. From this, we see that keeping preliminary design as an integral
step is difficult for the evolutionary and spiral models. To the extent that this cannot be maintained as
an integral activity, integration testing is negatively affected. System testing is not affected.

Because a build is a set of deliverable end-user functionality, one advantage common to all
these spin-off models is that they provide earlier synthesis. This also results in earlier customer
feedback, so two of the deficiencies of waterfall development are mitigated. The next section
describes two approaches to deal with the “perfect foresight” problem.

11.2.2 � Specification-Based Life Cycle Models
When systems are not fully understood (by either the customer or the developer), functional decom-
position is perilous at best. Barry Boehm jokes when he describes the customer who says “I don’t
know what I want, but I’ll recognize it when I see it.” The rapid prototyping life cycle (Figure 11.4)

Prototype cycle

Prototype
objectives

Build
prototype

Exercise
prototype

What

What

What

How

How

How

Preliminary
design

Detailed
design

Coding

Unit
testing

Integration
testing

Regression
testing

Progression
testing

Figure 11.4 R apid prototyping life cycle.

https://hemanthrajhemu.github.io

Life Cycle–Based Testing  ◾  213

deals with this by providing the “look and feel” of a system. Thus, in a sense, customers can recog-
nize what they “see.” In turn, this drastically reduces the specification-to-customer feedback loop
by producing very early synthesis. Rather than build a final system, a “quick and dirty” prototype
is built and then used to elicit customer feedback. Depending on the feedback, more prototyp-
ing cycles may occur. Once the developer and the customer agree that a prototype represents the
desired system, the developer goes ahead and builds to a correct specification. At this point, any of
the waterfall spin-offs might also be used. The agile life cycles are the extreme of this pattern.

Rapid prototyping has no new implications for integration testing; however, it has very inter-
esting implications for system testing. Where are the requirements? Is the last prototype the speci-
fication? How are system test cases traced back to the prototype? One good answer to questions
such as these is to use the prototyping cycles as information-gathering activities and then produce
a requirements specification in a more traditional manner. Another possibility is to capture what
the customer does with the prototypes, define these as scenarios that are important to the cus-
tomer, and then use these as system test cases. These could be precursors to the user stories of the
agile life cycles. The main contribution of rapid prototyping is that it brings the operational (or
behavioral) viewpoint to the requirements specification phase. Usually, requirements specification
techniques emphasize the structure of a system, not its behavior. This is unfortunate because most
customers do not care about the structure, and they do care about the behavior.

Executable specifications (Figure 11.5) are an extension of the rapid prototyping concept. With
this approach, the requirements are specified in an executable format (such as finite state machines,
StateCharts, or Petri nets). The customer then executes the specification to observe the intended
system behavior and provides feedback as in the rapid prototyping model. The executable models
are, or can be, quite complex. This is an understatement for the full-blown version of StateCharts.
Building an executable model requires expertise, and executing it requires an engine. Executable

What

What
How

How

How

Preliminary
design

Detailed
design

Coding

Unit
testing

Integration
testing

Regression
testing

Progression
testing

Executable specification cycle

Define/Revise
model

Execute
model

What

Figure 11.5  Executable specification.

https://hemanthrajhemu.github.io

214  ◾  Software Testing﻿

specification is best applied to event-driven systems, particularly when the events can arrive in dif-
ferent orders. David Harel, the creator of StateCharts, refers to such systems as “reactive” (Harel,
1988) because they react to external events. As with rapid prototyping, the purpose of an execut-
able specification is to let the customer experience scenarios of intended behavior. Another simi-
larity is that executable models might have to be revised on the basis of customer feedback. One
side benefit is that a good engine for an executable model will support the capture of “interesting”
system transactions, and it is often a nearly mechanical process to convert these into true system
test cases. If this is done carefully, system testing can be traced directly back to the requirements.

Once again, this life cycle has no implications for integration testing. One big difference is that
the requirements specification document is explicit, as opposed to a prototype. More important, it
is often a mechanical process to derive system test cases from an executable specification. We will
see this in Chapter 14. Although more work is required to develop an executable specification, this
is partially offset by the reduced effort to generate system test cases. Here is another important dis-
tinction: when system testing is based on an executable specification, we have an interesting form
of structural testing at the system level. Finally, as we saw with rapid prototyping, the executable
specification step can be combined with any of the iterative life cycle models.

11.3 �A gile Testing
The Agile Manifesto (http://agilemanifesto.org/) was written by 17 consultants, the Agile Alliance,
in February 2001. It has been translated into 42 languages and has drastically changed the soft-
ware development world. The underlying characteristics of all agile life cycles are

◾◾ Customer-driven
◾◾ Bottom–up development
◾◾ Flexibility with respect to changing requirements
◾◾ Early delivery of fully functional components

These are sketched in Figure 11.6. Customers express their expectations in terms of user stories,
which are taken as the requirements for very short iterations of design–code–test. When does an

Customer
expectations

Iteration
plan

User story

Design
code
test

Integration
testing

Figure 11.6  Generic agile life cycle.

https://hemanthrajhemu.github.io

Life Cycle–Based Testing  ◾  215

agile project end? When the customer has no more user stories. Looking back at the iterative mod-
els, we see the progenitors of agility, especially in Barry Boehm’s spiral model. Various websites
will list as few as 3 to as many as 40 variations of agile software development. Here we look at three
major ones, and focus on how they deal with testing.

11.3.1 � Extreme Programming
Extreme Programming (XP) was first applied to a project (in a documented way) in 1996 by
Kent Beck (http://www.extremeprogramming.org/) while he was at Chrysler Corporation. The
clear success of the project, even though it was a revision of an earlier version, led to his book
(Beck, 2004). The main aspects of XP are captured in Figure 11.7. It is clearly customer-driven,
as shown by the position of user stories driving both a release plan and system testing. The release
plan defines a sequence of iterations, each of which delivers a small working component. One
distinction of XP is the emphasis on paired programming, in which a pair of developers work
closely together, often sharing a single development computer and keyboard. One person works
at the code level, while the other takes a slightly higher view. In a sense, the pair is conducting a
continuous review. In Chapter 22, we will see that this is better described as a continuous code
walk-through. There are many similarities to the basic iterative life cycle shown in Figure 11.3.
One important difference is that there is no overall preliminary design phase. Why? Because this
is a bottom–up process. If XP were truly driven by a sequence of user stories, it is hard to imagine
what can occur in the release plan phase.

11.3.2 � Test-Driven Development
Test-driven development (TDD) is the extreme case of agility. It is driven by a sequence of user sto-
ries, as shown in Figure 11.8. A user story can be decomposed into several tasks, and this is where
the big difference occurs. Before any code is written for a task, the developer decides how it will
be tested. The tests become the specification. The next step is curious—the tests are run on non-
existent code. Naturally, they fail, but this leads to the best feature of TDD—greatly simplified

User
stories

Release
plan

Iteration

Iteration
plan

Pair
coding

Unit test

Acceptance
test

Small
release

Figure 11.7 T he Extreme Programming life cycle.

https://hemanthrajhemu.github.io

216  ◾  Software Testing﻿

fault isolation. Once the tests have been run (and failed), the developer writes just enough code
to make the tests pass, and the tests are rerun. If any test fails, the developer goes back to the
code and makes a necessary change. Once all the tests pass, the next user story is implemented.
Occasionally, the developer may decide to refactor the existing code. The cleaned–up code is then
subjected to the full set of existing test cases, which is very close to the idea of regression testing.
For TDD to be practical, it must be done in an environment that supports automated testing,
typically with a member of the nUnit family of automated test environments. (We will have an
example of this in Chapter 19.)

Testing in TDD is interesting. Since the story-level test cases drive the coding, they ARE the
specification, so in a sense, TDD uses specification-based testing. But since the code is deliberately
as close as possible to the test cases, we could argue that it is also code-based testing. There are two
problems with TDD. The first is common to all agile flavors—the bottom–up approach prohibits
a single, high-level design step. User stories that arrive late in the sequence may obviate earlier
design choices. Then refactoring would have to also occur at the design level, rather than just at the
code level. The agile community is very passionate about the claim that repeated refactoring results
in an elegant design. Given one of the premises of agile development, namely that the customer is
not sure of what is needed, or equivalently, rapidly changing requirements, refactoring at both the
code and design levels seems the only way to end up with an elegant design. This is an inevitable
constraint on bottom–up development.

The second problem is that all developers make mistakes—that is much of the reason we test
in the first place. But consider: what makes us think that the TDD developer is perfect at devis-
ing the test cases that drive the development? Even worse: what if late user stories are inconsistent
with earlier ones? A final limitation of TDD is there is no place in the life cycle for a cross-check
at the user story level.

11.3.3 � Scrum
Scrum is probably the most frequently used of all the agile life cycles. There is a pervading empha-
sis on the team members and teamwork. The name comes from the rugby maneuver in which the

No

Pass

Fail Yes

User
story

Story
tasks

Story test
cases

Run tests Refactor?

Refactor?
existing code

“Just enough”
code

Figure 11.8 T est-driven development life cycle.

https://hemanthrajhemu.github.io

Life Cycle–Based Testing  ◾  217

opposing teams are locked together and try to hook the football back to their respective sides. A
rugby scrum requires organized teamwork—hence, the name for the software process.

The quick view of Scrum (the development life cycle) is that it is mostly new names for old
ideas. This is particularly true about the accepted Scrum vocabulary. Three examples: roles, cer-
emonies, and artifacts. In common parlance, Scrum roles refer to project participants; the ceremo-
nies are just meetings, the artifacts are work products. Scrum projects have Scrum masters (who
act like traditional supervisors with less administrative power). Product owners are the customers
of old, and the Scrum team is a development team. Figure 11.9 is adapted from the “official”
Scrum literature, the Scrum Alliance (http://www.scrumalliance.org/learn_about_scrum). Think
about the activities in terms of the iterative life cycle in Figure 11.3. The traditional iterations
become “sprints,” which last from 2 to 4 weeks. In a sprint, there is a daily stand-up meeting of
the Scrum team to focus on what happened the preceding day and what needs to be done in the
new day. Then there is a short burst of design–code–test followed by an integration of the team’s
work at the end of the day. This is the agile part—a daily build that contributes to a sprint-level
work product in a short interval. The biggest differences between Scrum and the traditional view
of iterative development are the special vocabulary and the duration of the iterations.

Testing in the Scrum life cycle occurs at two levels—the unit level at each day’s end, and the
integration level of the small release at the end of a sprint. Selection of the Sprint backlog from
the product backlog is done by the product owner (the customer), which corresponds roughly to
a requirements step. Sprint definition looks a lot like preliminary design because this is the point
where the Scrum team identifies the sequence and contents of individual sprints. The bottom line?
Scrum has two distinct levels of testing—unit and integration/system. Why “integration/system?”
The small release is a deliverable product usable by the product owner, so it is clearly a system-level
work product. But this is the point where all of the development work is integrated for the first
time.

Product
backlog

Sprint
backlog

Sprint
definition

Small
release

Sprint
test

Test

Coding

Design

Standup
meeting

Daily activities

Figure 11.9 T he Scrum life cycle.

https://hemanthrajhemu.github.io

218  ◾  Software Testing﻿

11.4 �A gile Model–Driven Development
My German friend Georg is a PhD mathematician, a software developer, and a Go player. For
several months, we had an e-mail-based discussion about agile development. At one point, Georg
asked if I play the oriental game Go. I do not, but he replied that, to be a successful Go player,
one needs both strategy and tactics. A deficiency in either one puts a Go player at a disadvantage.
In the software development realm, he equates strategy with an overall design, and tactics as unit-
level development. His take on the flavors of agile development is that the strategy part is missing,
and this leads us to a compromise between the agile world and the traditional views of software
development. We first look at Agile Model–Driven Development (AMDD) popularized by Scott
Ambler. This is followed by my mild reorganization of Ambler’s work, named here as Model–
Driven Agile Development (MDAD).

11.4.1 � Agile Model–Driven Development
The agile part of AMDD is the modeling step. Ambler’s advice is to model just enough for the
current user story, and then implement it with TDD. The big difference between AMDD and
any of the agile life cycles is that there is a distinct design step. (The agilists usually express their
distaste/disdain for modeling by calling it the “Big Design Up Front” and abbreviate it as simply
the BDUF.) See Figure 11.10.

Ambler’s contribution is the recognition that design does indeed have a place in agile devel-
opment. As this was being written, there was a protracted discussion on LinkedIn started by the
question “Is there any room for design in agile software development?” Most of the thread affirms
the need for design in any agile life cycle. Despite all this, there seems to be no room in AMDD
for integration/system testing.

11.4.2 � Model–Driven Agile Development
Model–driven agile development (MDAD) is my proposal for a compromise between the tra-
ditional and the agile worlds. It is stimulated by Georg’s view of the need for both strategy and
tactics, hence the compromise. How does MDAD differ from iterative development? MDAD
recommends test-driven development as the tactic and it uses Ambler’s view of short iterations.

Project
inception

Iteration
plan

Iteration

Iteration
modeling

Model
storming

Test-driven
development

Figure 11.10 T he agile model–driven development life cycle.

https://hemanthrajhemu.github.io

Life Cycle–Based Testing  ◾  219

The strategy part is the emphasis on an overall model, which in turn, supports MBT. In MDAD,
the three levels of testing, unit, integration, and system, are present (Figure 11.11).

References
Agresti, W.W., New Paradigms for Software Development, IEEE Computer Society Press, Washington, DC,

1986.
Beck, K., Extreme Programming Explained: Embrace Change, 2nd ed., Addison Wesley, Boston, 2004.
Boehm, B.W., A spiral model for software development and enhancement, IEEE Computer, Vol. 21, No. 6,

May 1988, pp. 61–72.
Harel, D., On visual formalisms, Communications of the ACM, Vol. 31, No. 5, May 1988, pp. 514–530.

“Final”
system
testing

Requirements
specification

Project
modeling

Series of
iterations

Iteration

Iteration
modeling

Iteration
integration

Test-driven
development

Figure 11.11 T he model–driven agile development life cycle.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

229

Chapter 13

Integration Testing

In September 1999, the Mars Climate Orbiter mission failed after successfully traveling 416 mil-
lion miles in 41 weeks. It disappeared just as it was to begin orbiting Mars. The fault should
have been revealed by integration testing: Lockheed Martin Astronautics used acceleration data
in English units (pounds), while the Jet Propulsion Laboratory did its calculations with metric
units (newtons). NASA announced a $50,000 project to discover how this could have happened
(Fordahl, 1999). They should have read this chapter.

Of the three distinct levels of software testing—unit, integration, and system—integration
testing is the least well understood of these; hence in practice, it is the phase most poorly done.
This chapter examines two mainline and one less well-known integration testing strategies. They
are illustrated with a continuing procedural example, discussed in some detail, and then critiqued
with respect to their advantages and disadvantages.

Craftspersons are recognized by two essential characteristics: they have a deep knowledge of
the tools of their trade, and they have a similar knowledge of the medium in which they work
so that they understand their tools in terms of how they work with the medium. In Chapters 5
through 10, we focused on the tools (techniques) available to the testing craftsperson at the unit
level. Our goal there was to understand testing techniques in terms of their advantages and limita-
tions with respect to particular types of software. Here, we continue our emphasis on model-based
testing, with the goal of improving the testing craftsperson’s judgment through a better under-
standing of three underlying models. Integration testing for object-oriented software is integrated
into this chapter.

13.1 � Decomposition-Based Integration
Mainline introductory software engineering texts, for example, Pressman (2005) and Schach
(2002), typically present four integration strategies based on the functional decomposition
tree of the procedural software: top–down, bottom–up, sandwich, and the vividly named “big
bang.” Many classic software testing texts echo this approach, Deutsch (1982), Hetzel (1988),
Kaner et al. (1993), and Mosley (1993), to name a few. Each of these strategies (except big bang)
describes the order in which units are to be integrated. We can dispense with the big bang

https://hemanthrajhemu.github.io

230  ◾  Software Testing﻿

approach most easily: in this view of integration, all the units are compiled together and tested
at once. The drawback to this is that when (not if !) a failure is observed, few clues are available
to help isolate the location(s) of the fault. (Recall the distinction we made in Chapter 1 between
faults and failures.)

The functional decomposition tree is the basis for integration testing because it is the
main representation, usually derived from final source code, which shows the structural rela-
tionship of the system with respect to its units. All these integration orders presume that the
units have been separately tested; thus, the goal of decomposition-based integration is to test
the interfaces among separately tested units. A functional decomposition tree reflects the
lexicological inclusion of units, in terms of the order in which they need to be compiled, to
assure the correct referential scope of variables and unit names. In this chapter, our famil-
iar NextDate unit is extended to a main program, Calendar, with procedures and func-
tions. Figure 13.1 contains the functional decomposition tree for the Calendar program. The
pseudocode is given in next.

The Calendar program sketched here in pseudocode acquires a date in the form mm, dd, yyyy,
and provides the following functional capabilities:

◾◾ The date of the next day (our old friend, NextDate)
◾◾ The day of the week corresponding to the date (i.e., Monday, Tuesday, …)
◾◾ The zodiac sign of the date
◾◾ The most recent year in which Memorial Day was celebrated on May 27
◾◾ The most recent Friday the 13th

A sketch of the Calendar program is given next, followed by a condensed “skeleton,” which is the
basis for the functional decomposition in Figure 13.1.

Calendar
(Main)

isLeap weekDay

isValidDate

lastDayOfMonth

dateToDaynum

getDigits DaynumToDate isFriday isMonday

getDate nextDate Friday13th Memorial dayZodiac

Figure 13.1  Functional decomposition of Calendar program.

https://hemanthrajhemu.github.io

Integration Testing  ◾  231

Pseudocode for the Calendar Program

Main	 Calendar
Data Declarations
	 mm, dd, yyyy, dayNumber, dayName, zodiacSign
Function isLeap (input yyyy, returns T/F)
	 (isLeap is self-contained)
End Function isLeap

Procedure getDate (returns mm, dd, yyyy, dayNumber)
	 Function isValidDate (inputs mm, dd, yyyy; returns T/F)
		 Function lastDayOfMonth (inputs mm, yyyy, returns 28, 29, 30, or 31)
			 lastDayOfMonth body
				 (uses isLeap)
			 end lastDayOfMonth body
		 End Function lastDayOfMonth

		 isValidDate body
			 (uses lastDayOfMonth)
		 end isValidDate body
	 End Function isValidDate

	 Procedure getDigits(returns mm, dd, yyyy)
		 (uses Function isValidDate)
	 End Procedure getDigits

	 Procedure memorialDay (inputs mm, dd, yyyy; returns yyyy)
		 Function isMonday (inputs mm, dd, yyyy; returns T/F)
			 (uses weekDay)
		 End Function isMonday

		 memorialDaybody
			 isMonday
		 end memorialDay
	 End Procedure memorialDay

Procedure friday13th (inputs mm, dd, yyyy; returns mm1, dd1, yyyy1)
		 Function isFriday (inputs mm, dd, yyyy; returns T/F)
			 (uses weekDay)
		 End Function isFriday

	 friday13th body
		 (uses isFriday)
	 end friday13th
End Procedure friday13th

getDate body
	 getDigits
	 isValidDate
	 dateToDayNumber
end getDate body
End Procedure getDate
Procedure nextDate (input daynum, output mm1, dd1, yyyy1)
	 Procedure dayNumToDate

https://hemanthrajhemu.github.io

232  ◾  Software Testing﻿

	 dayNumToDate body
		 (uses isLeap)
	 end dayNumToDate body
nextDate body
	 dayNumToDate
end nextDate body
End Procedure nextDate

Procedure weekDay (input mm, dd, yyyy; output dayName)
	 (uses Zeller’s Congruence)
End Procedure weekDay

Procedure zodiac (input dayNumber; output dayName)
	 (uses dayNumbers of zodiac cusp dates)
End Procedure zodiac

Main program body
	 getDate
	 nextDate
	 weekDay
	 zodiac
	 memorialDay
	 friday13th
End Main program body

Lexicological Inclusion of the Calendar Program

Main	 Calendar
	 Function isLeap
	 Procedure weekDay
	 Procedure getDate
		 Function isValidDate
			 Function lastDayOfMonth
		 Procedure getDigits
	 Procedure memorialDay
			 Function isMonday
	 Procedure friday13th
		 Function isFriday
	 Procedure nextDate
		 Procedure dayNumToDate
	 Procedure zodiac

13.1.1 � Top–Down Integration
Top–down integration begins with the main program (the root of the tree). Any lower-level unit
that is called by the main program appears as a “stub,” where stubs are pieces of throwaway
code that emulate a called unit. If we performed top–down integration testing for the Calendar
program, the first step would be to develop stubs for all the units called by the main program—
isLeap, weekDay, getDate, zodiac, nextDate, friday13th, and memorialDay. In a stub for any unit,
the tester hard codes in a correct response to the request from the calling/invoking unit. In the
stub for zodiac, for example, if the main program calls zodiac with 05, 27, 2012, zodiacStub would
return “Gemini.” In extreme practice, the response might be “pretend zodiac returned Gemini.”

https://hemanthrajhemu.github.io

Integration Testing  ◾  233

The use of the pretend prefix emphasizes that it is not a real response. In practice, the effort to
develop stubs is usually quite significant. There is good reason to consider stub code as part of the
software project and maintain it under configuration management. In Figure 13.2, the first step
in top–down integration is shown. The gray-shaded units are all stubs. The goal of the first step is
to check that the main program functionality is correct.

Once the main program has been tested, we replace one stub at a time, leaving the others as
stubs. Figure 13.3 shows the first three steps in the gradual replacement of stubs by actual code.
The stub replacement process proceeds in a breadth-first traversal of the decomposition tree until
all the stubs have been replaced. (In Figures 13.2 and 13.3, the units below the first level are not
shown because they are not needed.)

The “theory” of top–down integration is that, as stubs are replaced one at a time, if there is
a problem, it must be with the interface to the most recently replaced stub. (Note that the fault

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Figure 13.2  First step in top–down integration.

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Calendar
(Main)

getDateisLeap weekDay Friday13th MemorialDayzodiac nextDate

Figure 13.3  Next three steps in top–down integration.

https://hemanthrajhemu.github.io

234  ◾  Software Testing﻿

isolation is similar to that of test-driven development.) The problem is that a functional decom-
position is deceptive. Because it is derived from the lexicological inclusion required by most com-
pilers, the process generates impossible interfaces. Calendar main never directly refers to either
isLeap or weekDay, so those test sessions could not occur.

13.1.2 � Bottom–Up Integration
Bottom–up integration is a “mirror image” to the top–down order, with the difference that stubs
are replaced by driver modules that emulate units at the next level up in the tree. (In Figure 13.4,
the gray units are drivers.) Bottom–up integration begins with the leaves of the decomposition
tree, and use a driver version of the unit that would normally call it to provide it with test cases.
(Note the similarity to test driver units at the unit level. As units are tested, the drivers are gradu-
ally replaced, until the full decomposition tree has been traversed. Less throwaway code exists in
bottom–up integration, but the problem of impossible interfaces persists.

Figure 13.5 shows one case where a unit (zodiac) can be tested with a driver. In this case, the
Calendar driver would probably call zodiac with 36 test dates that are the day before a cusp date,
the cusp date, and the day after the cusp date. The cusp date for Gemini is May 21, so the driver
would call zodiac three times, with May 20, May 21, and May 22. The expected responses would
be “Taurus,” “Gemini,” and “Gemini,” respectively. Note how similar this is to the assert mecha-
nism in the jUnit (and related) test environments.

Calendar
(Main)

isLeap weekDay

isValidDate

lastDayOfMonth

dateToDaynum

getDigits DaynumToDate isFriday isMonday

getDate nextDate Friday13th MemorialDayzodiac

Figure 13.4  First steps in bottom–up integration.

Calendar
(driver)

isLeap weekDay getDate nextDate Friday13th MemorialDayzodiac

Figure 13.5  Bottom–up integration for zodiac.

https://hemanthrajhemu.github.io

Integration Testing  ◾  235

13.1.3 � Sandwich Integration
Sandwich integration is a combination of top–down and bottom–up integration. If we think
about it in terms of the decomposition tree, we are really only doing big bang integration on a
subtree (see Figure 13.6). There will be less stub and driver development effort, but this will be
offset to some extent by the added difficulty of fault isolation that is a consequence of big bang
integration. (We could probably discuss the size of a sandwich, from dainty finger sandwiches to
Dagwood-style sandwiches, but not now.)

A sandwich is a full path from the root to leaves of the functional decomposition tree. In
Figure 13.6, the set of units is almost semantically coherent, except that isLeap is missing. This
set of units could be meaningfully integrated, but test cases at the end of February would not be
covered. Also note that the fault isolation capability of the top–down and bottom–up approaches
is sacrificed. No stubs nor drivers are needed in sandwich integration.

13.1.4 � Pros and Cons
With the exception of big bang integration, the decomposition-based approaches are all intuitively
clear. Build with tested components. Whenever a failure is observed, the most recently added unit
is suspected. Integration testing progress is easily tracked against the decomposition tree. (If the
tree is small, it is a nice touch to shade in nodes as they are successfully integrated.) The top–down
and bottom–up terms suggest breadth-first traversals of the decomposition tree, but this is not
mandatory. (We could use full-height sandwiches to test the tree in a depth-first manner.)

One of the most frequent objections to functional decomposition and waterfall development is that
both are artificial, and both serve the needs of project management more than the needs of software
developers. This holds true also for decomposition-based testing. The whole mechanism is that units are
integrated with respect to structure; this presumes that correct behavior follows from individually cor-
rect units and correct interfaces. (Practitioners know better.) The development effort for stubs or drivers
is another drawback to these approaches, and this is compounded by the retesting effort.

Calendar
(Main)

isLeap weekDay

isValidDate

lastDayOfMonth

dateToDaynum

getDigits DaynumToDate isFriday isMonday

getDate nextDate Friday13th MemorialDayzodiac

Figure 13.6  Sample sandwich integration.

https://hemanthrajhemu.github.io

236  ◾  Software Testing﻿

13.2 � Call Graph–Based Integration
One of the drawbacks of decomposition-based integration is that the basis is the functional decom-
position tree. We saw that this leads to impossible test pairs. If we use the call graph instead, we
resolve this deficiency; we also move in the direction of structural testing. The call graph is devel-
oped by considering units to be nodes, and if unit A calls (or uses) unit B, there is an edge from
node A to node B. The call graph for the Calendar program is shown in Figure 13.7.

Since edges in the call graph refer to actual execution–time connections, the call graph avoids
all the problems we saw in the decomposition tree–based versions of integration. In fact, we could
repeat the discussion of Section 13.1 based on stubs and drivers in the units in Figure 13.7. This
will work well, and it preserves the fault isolation feature of the decomposition-based approaches.
Figure 13.8 shows the first step in call graph–based top–down integration.

The stubs in the first session could operate as follows. When the Calendar main program calls
getDateStub, the stub might return May 27, 2013. The zodiacStub would return “Gemini,” and so
on. Once the main program logic is tested, the stubs would be replaced, as we discussed in Section
13.1. The three strategies of Section 13.1 will all work well when stubs and drivers are based on the
call graph rather than the functional decomposition.

We are in a position to enjoy the investment we made in the discussion of graph theory.
Because the call graph is a directed graph, why not use it the way we used program graphs? This
leads us to two new approaches to integration testing: we will refer to them as pairwise integration
and neighborhood integration.

Calendar
(Main)

isLeap

weekDay

isValidDate

lastDayOfMonth

getDigits dateToDaynum dayNumToDate isFridayisMonday

getDate nextDate Friday13thmemorialDayzodiac

Figure 13.7  Call graph of Calendar program.

Calendar
(Main)

weekDaygetDate nextDate Friday13thmemorialDayzodiac

Figure 13.8  Call graph–based top–down integration of Calendar program.

https://hemanthrajhemu.github.io

Integration Testing  ◾  237

13.2.1 � Pairwise Integration
The idea behind pairwise integration is to eliminate the stub/driver development effort. Instead of
developing stubs and/or drivers, why not use the actual code? At first, this sounds like big bang inte-
gration, but we restrict a session to only a pair of units in the call graph. The end result is that we have
one integration test session for each edge in the call graph. Pairwise integration results in an increased
number of integration sessions when a node (unit) is used by two or more other units. In the Calendar
example, there would be 15 separate sessions for top–down integration (one for each stub replacement);
this increases to 19 sessions for pairwise integration (one for each edge in the call graph). This is offset
by a reduction in stub/driver development. Three pairwise integration sessions are shown in Figure 13.9.

The main advantage of pairwise integration is the high degree of fault isolation. If a test fails,
the fault must be in one of the two units. The biggest drawback is that, for units involved on several
pairs, a fix that works in one pair may not work in another pair. This is yet another example of the
testing pendulum discussed in Chapter 10. Call graph integration is slightly better than the decom-
position tree–based approach, but both can be removed from the reality of the code being tested.

13.2.2 � Neighborhood Integration
We can let the mathematics carry us still further by borrowing the notion of a neighborhood from
topology. (This is not too much of a stretch—graph theory is a branch of topology.) The neighborhood
of a node in a graph is the set of nodes that are one edge away from the given node. (Technically, this
is a neighborhood of radius 1; in larger systems, it makes sense to increase the neighborhood radius.)
In a directed graph, this includes all the immediate predecessor nodes and all the immediate successor
nodes (notice that these correspond to the set of stubs and drivers of the node). The neighborhoods of
getDate, nextDate, Friday13th, and weekDay are shown in Figure 13.10.

The 15 neighborhoods for the Calendar example (based on the call graph in Figure 13.7)
are listed in Table 13.1. To make the table simpler, the original unit names are replaced by node
numbers (in Figure 13.11), where the numbering is generally breadth first. The juxtaposition and
connectivity is preserved in Figure 13.11.

The information in Table 13.1 is given in Table 13.2 as the adjacency matrix for the call graph.
The column sums show the indegrees of each node, and the row sums show the outdegrees.

Calendar
(Main)

isLeap

weekDay

isValidDate

lastDayOfMonth

getDigits dateToDaynum dayNumToDate isFridayisMonday

getDate nextDate Friday13thmemorialDayzodiac

Figure 13.9 T hree pairs for pairwise integration.

https://hemanthrajhemu.github.io

238  ◾  Software Testing﻿

Calendar
(Main)

isLeap

weekDay

isValidDate

lastDayOfMonth

getDigits dateToDaynum dayNumToDate isFridayisMonday

getDate nextDate Friday13thmemorialDayzodiac

Figure 13.10 T hree neighborhoods (of radius 1) for neighborhood integration.

Table 13.1  Neighborhoods of Radius 1 in Calendar Call Graph

Neighborhoods in Calendar Program Call Graph

Node Unit Name Predecessors Successors

1 Calendar (Main) (None) 2, 3, 4, 5, 6, 7

2 getDate 1 8, 9

3 zodiac 1 9

4 nextDate 1 10

5 memorialDay 1 11

6 weekday 1, 11, 12 (None)

7 Friday13th 1 12

8 getDigits 2 13

9 dateToDayNum 3 15

10 dayNumToDate 4 15

11 isMonday 5 6

12 isFriday 7 6

13 isValidDate 8 14

14 lastDayOfMonth 13 15

15 isLeap 9, 10, 14 (None)

https://hemanthrajhemu.github.io

Integration Testing  ◾  239

1

2

8 9 10

13

14 15

11 12

3 4 5 6 7

Figure 13.11  Calendar call graph with units replaced by numbers.

Table 13.2 A djacency Matrix of Calendar Call Graph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Row
Sum

1 1 1 1 1 1 1 6

2 1 1 2

3 1 1

4 1 1

5 1 1

6 0

7 1 1

8 1 1

9 1 1

10 1 1

11 1 1

12 1 1

13 1 1

14 1 1

15 0

Column sum 0 1 1 1 1 1 3 1 2 1 1 1 1 1 3

https://hemanthrajhemu.github.io

240  ◾  Software Testing﻿

We can always compute the number of neighborhoods for a given call graph. Each interior
node will have one neighborhood, plus one extra in case leaf nodes are connected directly to the
root node. (An interior node has a nonzero indegree and a nonzero outdegree.) We have

	 Interior nodes = nodes – (source nodes + sink nodes)

	 Neighborhoods = interior nodes + source nodes

which combine to

	 Neighborhoods = nodes – sink nodes

Neighborhood integration usually yields a reduction in the number of integration test sessions,
and it reduces stub and driver development. The end result is that neighborhoods are essentially
the sandwiches that we slipped past in the previous section. (It is slightly different because the base
information for neighborhoods is the call graph, not the decomposition tree.) What they share
with sandwich integration is more significant—neighborhood integration testing has the fault
isolation difficulties of “medium bang” integration.

13.2.3 � Pros and Cons
The call graph–based integration techniques move away from a purely structural basis toward a
behavioral basis; thus, the underlying assumption is an improvement. (See the Testing Pendulum
in Chapter 10.) The neighborhood-based techniques also reduce the stub/driver development
effort. In addition to these advantages, call graph–based integration matches well with develop-
ments characterized by builds and composition. For example, sequences of neighborhoods can
be used to define builds. Alternatively, we could allow adjacent neighborhoods to merge (into
villages?) and provide an orderly, composition-based growth path. All this supports the use of
neighborhood-based integration for systems developed by life cycles in which composition
dominates.

The biggest drawback to call graph–based integration testing is the fault isolation problem,
especially for large neighborhoods. A more subtle but closely related problem occurs. What hap-
pens if (when) a fault is found in a node (unit) that appears in several neighborhoods? The adja-
cency matrix highlights this immediately—nodes with either a high row sum or a high column
sum will be in several neighborhoods. Obviously, we resolve the fault in one neighborhood; but
this means changing the unit’s code in some way, which in turn means that all the previously
tested neighborhoods that contain the changed node need to be retested.

Finally, a fundamental uncertainty exists in any structural form of testing: the presumption
that units integrated with respect to structural information will exhibit correct behavior. We know
where we are going: we want system-level threads of behavior to be correct. When integration test-
ing based on call graph information is complete, we still have quite a leap to get to system-level
threads. We resolve this by changing the basis from call graph information to special forms of
paths.

https://hemanthrajhemu.github.io

Integration Testing  ◾  241

13.3 �P ath-Based Integration
Much of the progress in the development of mathematics comes from an elegant pattern: have a
clear idea of where you want to go, and then define the concepts that take you there. We do this
here for path-based integration testing, but first we need to motivate the definitions.

We already know that the combination of structural and functional testing is highly desirable
at the unit level; it would be nice to have a similar capability for integration (and system) testing.
We also know that we want to express system testing in terms of behavioral threads. Lastly, we
revise our goal for integration testing: instead of testing interfaces among separately developed
and tested units, we focus on interactions among these units. (“Co-functioning” might be a good
term.) Interfaces are structural; interaction is behavioral.

When a unit executes, some path of source statements is traversed. Suppose that a call goes
to another unit along such a path. At that point, control is passed from the calling unit to the
called unit, where some other path of source statements is traversed. We deliberately ignored this
situation in Chapter 8, because this is a better place to address the question. Two possibilities are
available: abandon the single-entry, single-exit precept and treat such calls as an exit followed by
an entry, or suppress the call statement because control eventually returns to the calling unit any-
way. The suppression choice works well for unit testing, but it is antithetical to integration testing.

13.3.1 � New and Extended Concepts
To get where we need to go, we need to refine some of the program graph concepts. As before,
these refer to programs written in an imperative language. We allow statement fragments to be a
complete statement, and statement fragments are nodes in the program graph.

Definition

A source node in a program is a statement fragment at which program execution begins or resumes.
The first executable statement in a unit is clearly a source node. Source nodes also occur imme-

diately after nodes that transfer control to other units.

Definition

A sink node in a unit is a statement fragment at which program execution terminates.
The final executable statement in a program is clearly a sink node; so are statements that trans-

fer control to other units.

Definition

A module execution path is a sequence of statements that begins with a source node and ends with
a sink node, with no intervening sink nodes.

The effect of the definitions thus far is that program graphs now have multiple source and sink
nodes. This would greatly increase the complexity of unit testing, but integration testing presumes
unit testing is complete.

https://hemanthrajhemu.github.io

242  ◾  Software Testing﻿

Definition

A message is a programming language mechanism by which one unit transfers control to another
unit, and acquires a response from the other unit.

Depending on the programming language, messages can be interpreted as subroutine invoca-
tions, procedure calls, function references, and the usual messages in an object-oriented program-
ming language. We follow the convention that the unit that receives a message (the message
destination) always eventually returns control to the message source. Messages can pass data to
other units. We can finally make the definitions for path-based integration testing. Our goal is to
have an integration testing analog of DD-paths.

Definition

An MM-path is an interleaved sequence of module execution paths and messages.
The basic idea of an MM-path (Jorgensen 1985; Jorgensen and Erickson 1994) is that we

can now describe sequences of module execution paths that include transfers of control among
separate units. In traditional software, “MM” is nicely understood as module–message; in object-
oriented software, it is clearer to interpret “MM” as method–message. These transfers are by mes-
sages, therefore, MM-paths always represent feasible execution paths, and these paths cross unit
boundaries. The hypothetical example in Figure 13.12 shows an MM-path (the solid edges) in
which module A calls module B, which in turn calls module C. Notice that, for traditional (pro-
cedural) software, MM-paths will always begin (and end) in the main program.

a1 b1 c1

c2

c3

c9

c4

c5

c8

c6 c7

b2

b3

b4

b5

a2

a3

a4

a7

a8

a5 a6

msg1

msg2

msg1
return

msg2
return

Figure 13.12  Hypothetical MM-path across three units.

https://hemanthrajhemu.github.io

Integration Testing  ◾  243

In unit A, nodes a1 and a6 are source nodes (a5 and a6 are outcomes of the decision at node
a5), and nodes a4 (a decision) and a8 are sink nodes. Similarly, in unit B, nodes b1 and b3 are
source nodes, and nodes b2 and b5 are sink nodes. Node b2 is a sink node because control leaves
unit B at that point. It could also be a source node, because unit C returns a value used at node
b2. Unit C has a single source node, c1, and a single sink node, c9. Unit A contains three module
execution paths: <a1, a2, a3, a4>, <a4, a5, a7, a8>, and <a4, a6, a7, a8>. The solid edges are edges
actually traversed in this hypothetical example. The dashed edges are in the program graphs of
the units as stand-alone units, but they did not “execute” in the hypothetical MM-path. We
can now define an integration testing analog of the DD-path graph that serves unit testing so
effectively.

Definition

Given a set of units, their MM-path graph is the directed graph in which nodes are module execu-
tion paths and edges correspond to messages and returns from one unit to another.

Notice that MM-path graphs are defined with respect to a set of units. This directly supports
composition of units and composition-based integration testing. We can even compose down to
the level of individual module execution paths, but that is probably more detailed than necessary.

We should consider the relationships among module execution paths, program paths,
DD-paths, and MM-paths. A program path is a sequence of DD-paths, and an MM-path is
a sequence of module execution paths. Unfortunately, there is no simple relationship between
DD-paths and module execution paths. Either might be contained in the other, but more likely,
they partially overlap. Because MM-paths implement a function that transcends unit boundaries,
we do have one relationship: consider the intersection of an MM-path with a unit. The module
execution paths in such an intersection are an analog of a slice with respect to the (MM-path)
function. Stated another way, the module execution paths in such an intersection are the restric-
tion of the function to the unit in which they occur.

The MM-path definition needs some practical guidelines. How long (“deep” might be better)
is an MM-path? The notion of message quiescence helps here. Message quiescence occurs when
a unit that sends no messages is reached (like module C in Figure 13.12). In a sense, this could
be taken as a “midpoint” of an MM-path—the remaining execution consists of message returns.
This is only mildly helpful. What if there are two points of message quiescence? Maybe a better
answer is to take the longer of the two, or, if they are of equal depth, the latter of the two. Points
of message quiescence are natural endpoints for an MM-path.

13.3.2 � MM-Path Complexity
If you compare the MM-paths in Figures 13.12 and 13.17, it seems intuitively clear that the latter
is more complex than the former. Because these are strongly connected directed graphs, we can
“blindly” compute their cyclomatic complexities; recall the formula is V(G) = e – n + 2p, where p
is the number of strongly connected regions. Since messages return to the sending unit, we will
always have p = 1, so the formula reduces to V(G) = e – n + 2. Surprisingly, both graphs have
V(G) = 7. Clearly, MM-path complexity needs some notion of size in addition to cyclomatic com-
plexity (Figure 13.13).

https://hemanthrajhemu.github.io

244  ◾  Software Testing﻿

13.3.3 � Pros and Cons
MM-paths are a hybrid of functional and structural testing. They are functional in the sense
that they represent actions with inputs and outputs. As such, all the functional testing tech-
niques are potentially applicable. The net result is that the cross-check of the functional and
structural approaches is consolidated into the constructs for path-based integration testing. We
therefore avoid the pitfall of structural testing, and, at the same time, integration testing gains
a fairly seamless junction with system testing. Path-based integration testing works equally well
for software developed in the traditional waterfall process or with one of the composition-based
alternative life cycle models. Finally, the MM-path concept applies directly to object-oriented
software.

The most important advantage of path-based integration testing is that it is closely coupled
with actual system behavior, instead of the structural motivations of decomposition and call
graph–based integration. However, the advantages of path-based integration come at a price—
more effort is needed to identify the MM-paths. This effort is probably offset by the elimination
of stub and driver development.

13.4 � Example: integrationNextDate
Our now familiar NextDate is rewritten here as a main program with a functional decom-
position into procedures and functions. This integrationNextDate is a slight extension: there
is added validity checking for months, days, and years, so the pseudocode, which follows
Figures 13.14 and 13.15, grows from 50 statements to 81. Figures 13.14 and 13.15 show the
functional decomposition and the call graph, respectively. Figure 13.16 shows the program
graphs of the units in integrationNextDate. Figure 13.17 shows the MM-path for the input date
May 27, 2012.

A

B

C

V(G) = 3

V(G) = 4

Main

getDate

validDate

lastDayOfMonth

msg1
return

msg7
return

msg6
return

msg1

msg7

msg6

Figure 13.13  Cyclomatic complexities of two MM-paths.

https://hemanthrajhemu.github.io

Integration Testing  ◾  245

13.4.1 � Decomposition-Based Integration
The isLeap and lastDayOfMonth functions are in the first level of decomposition because they
must be available to both GetDate and IncrementDate. (We could move isLeap to be contained
within the scope of lastDayOfMonth.) Pairwise integration based on the decomposition in Figure
13.14 is problematic; the isLeap and lastDayOfMonth functions are never directly called by the
Main program, so these integration sessions would be empty. Bottom–up pairwise integration
starting with isLeap, then lastDayOfMonth, ValidDate, and GetDate would be useful. The pairs
involving Main and GetDate, IncrementDate, and PrintDate are all useful (but short) sessions.
Building stubs for ValidDate and lastDayOfMonth would be easy.

13.4.2 � Call Graph–Based Integration
Pairwise integration based on the call graph in Figure 13.15 is an improvement over that for the
decomposition-based pairwise integration. Obviously, there are no empty integration sessions
because edges refer to actual unit references. There is still the problem of stubs. Sandwich integration
is appropriate because this example is so small. In fact, it lends itself to a build sequence. Build 1
could contain Main and PrintDate. Build 2 could contain Main, IncrementDate, lastDayOfMonth,
and IncrementDate in addition to the already present PrintDate. Finally, build 3 would add the
remaining units, GetDate and ValidDate.

isLeap

isValidDate

lastDayOfMonth

getDigits

getDate

integrationNextDate

printDateincrementDate

Figure 13.14  Functional decomposition of integrationNextDate.

integrationNextDate

getDate

isValidDate lastDayOfMonth isLeap

incrementDate printDate

msg1

msg7 msg8

msg6 msg5

msg3 msg2, msg4
Added

Added

Figure 13.15  Call graph of integrationNextDate.

https://hemanthrajhemu.github.io

246  ◾  Software Testing﻿

Neighborhood integration based on the call graph would likely proceed with the neigh-
borhoods of ValidDate and lastDayOfMonth. Next, we could integrate the neighborhoods of
GetDate and IncrementDate. Finally, we would integrate the neighborhood of Main. Notice that
these neighborhoods form a build sequence.

integrationNextDate pseudocode

1	 Main integrationNextDate	‘start program event occurs here
	 Type	 Date
	 Month As Integer
	 Day As Integer
	 Year As Integer
	 EndType
	 Dim today, tomorrow As Date
2	 Output(“Welcome to NextDate!”)
3	 GetDate(today)	 ‘msg1
4	 PrintDate(today)	 ‘msg2
5	 tomorrow = IncrementDate(today)	 ‘msg3
6	 PrintDate(tomorrow)	 ‘msg4
7	 End Main
8	 Function isLeap(year) Boolean
9	 If (year divisible by 4)
10	 Then
11	 If (year is NOT divisible by 100)
12	 Then isLeap = True
13	 Else
14	 If (year is divisible by 400)
15	 Then isLeap = True
16	 Else isLeap = False
17	 EndIf
18	 EndIf
19	Else isLeap = False
20	EndIf
21	End (Function isLeap)

22	Function lastDayOfMonth(month, year)	 Integer
23	 Case month Of
24	 Case 1: 1, 3, 5, 7, 8, 10, 12
25	 lastDayOfMonth = 31
26	 Case 2: 4, 6, 9, 11
27	 lastDayOfMonth = 30
28	 Case 3: 2
29	 If (isLeap(year))	 ‘msg5
30	 Then lastDayOfMonth = 29
31	 Else lastDayOfMonth = 28
32	 EndIf
33	 EndCase
34	End (Function lastDayOfMonth)
35	Function GetDate(aDate)	 Date
	 dim aDate As Date

36	 Function ValidDate(aDate)	 Boolean ‘within scope of GetDate
	 dim aDate As Date
	 dim dayOK, monthOK, yearOK As Boolean
37	 If ((aDate.Month > 0) AND (aDate.Month <=12)

https://hemanthrajhemu.github.io

Integration Testing  ◾  247

38	 Then	 monthOK = True
39	 Output(“Month OK”)
40	 Else	 monthOK = False
41	 Output(“Month out of range”)
42	 EndIf
43	 If (monthOK)
44	 Then
45	 If ((aDate.Day > 0) AND (aDate.Day <=
	 lastDayOfMonth(aDate.Month, aDate.Year))	 ‘msg6
46	 Then	 dayOK = True
47	 Output(“Day OK”)
48	 Else	 dayOK = False
49	 Output(“Day out of range”)
50	 EndIf
51	 EndIf
52	 If ((aDate.Year > 1811) AND (aDate.Year <=2012)
53	 Then	 yearOK = True
54	 Output(“Year OK”)
55	 Else	 yearOK = False
56	 Output(“Year out of range”)
57	 EndIf
58	 If (monthOK AND dayOK AND yearOK)
59	 Then ValidDate = True
60	 Output(“Date OK”)
61	 Else ValidDate = False
62	 Output(“Please enter a valid date”)
63	 EndIf
64	 End (Function ValidDate)

	 ‘ GetDate body begins here
65	 Do
66	 Output(“enter a month”)
67	 Input(aDate.Month)
68	 Output(“enter a day”)
69	 Input(aDate.Day)
70	 Output(“enter a year”)
71	 Input(aDate.Year)
72	 GetDate.Month = aDate.Month
73	 GetDate.Day = aDate.Day
74	 GetDate.Year = aDate.Year
75	 Until (ValidDate(aDate))	 ‘msg7
76	 End (Function GetDate)
77	 Function IncrementDate(aDate)	Date
78	 If (aDate.Day < lastDayOfMonth(aDate.Month))	 ‘msg8
79	 Then aDate.Day = aDate.Day + 1
80	 Else aDate.Day = 1
81	 If (aDate.Month = 12)
82	 Then	 aDate.Month = 1
83	 aDate.Year = aDate.Year + 1
84	 Else	 aDate.Month = aDate.Month + 1
85	 EndIf
86	 EndIf
87	End (IncrementDate)

88	Procedure PrintDate(aDate)
89	 Output(“Day is “, aDate.Month, “/”, aDate.Day, “/”, aDate.Year)
90	End (PrintDate)

https://hemanthrajhemu.github.io

248  ◾  Software Testing﻿

1 2 3 4 5 6 Main V(G) = 1

ValidDate V(G) = 6

IncrementDate V(G) = 3

GetDate V(G) = 2 PrintDate V(G) = 1

LastDayOfMonth
V(G) = 4

isLeap V(G) = 4

7
21

22

2523 27

2624 28

35

36

39

40

46

47

48 49

50

51

52 53

54

55

41

42

43 44

45
68

69

70 71

72

7677

79

80

81

78

73

74

75

37 38

29 30

31

32

33

8

9

10

11 12

13

16

14 15

18

17
19

20
34

56

66

67

57–65

Figure 13.16 P rogram graphs of units in integrationNextDate.

https://hemanthrajhemu.github.io

Integration Testing  ◾  249

Main V(G) = 1

LastDayOfMonth
V(G) = 4

GetDate V(G) = 2 ValidDate V(G) = 6

msg1

msg7

msg6

msg1
return

msg6
return msg7

return

1

2

34 35

36

39

40

41

21

22

23

24

25

26

27

28

31

32

33

29 30

42

43
44

45
46

47

50

51

54

55

52 53

48 49

37 38

56

66

67

57−65
3

4

5

6

Figure 13.17  MM-path for May 27, 2012.

https://hemanthrajhemu.github.io

250  ◾  Software Testing﻿

13.4.3 � MM-Path-Based Integration
Because the program is data-driven, all MM-paths begin in and return to the main program. Here
is the first MM-path for May 27, 2012 (there are others when the Main program calls PrintDate
and IncrementDate). It is shown in Figure 13.17.

Main (1, 2)
	 msg1
	 GetDate (34, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66)
	 msg7
	 validDate (35, 36, 37, 39, 40, 41, 42))
	 msg6
	 lastDayOfMonth (21, 22, 23, 24, 32, 33)	
	 ‘point of message quiescence
	 ValidDate (43, 45, 46, 47, 48, 50, 51, 52, 54, 55)
	 GetDate (67)
Main (3)

We are now in a strong position to describe how many MM-paths are sufficient: the set of
MM-paths should cover all source-to-sink paths in the set of units. This is subtly present in Figure
13.17. The solid edges are in the MM-path, but the dashed edges are not. When loops are present,
condensation graphs will result in directed acyclic graphs, thereby resolving the problem of poten-
tially infinite (or excessively large) number of paths.

13.5 � Conclusions and Recommendations
Table 13.3 summarizes the observations made in the preceding discussion. The significant
improvement of MM-paths as a basis for integration testing is due to their exact representation of
dynamic software behavior. MM-paths are also the basis for present research in data flow (define/
use) approaches to integration testing. Integration testing with MM-paths requires extra effort. As
a fallback position, perform integration testing based on call graphs.

Table 13.3  Comparison of Integration Testing Strategies

Strategy Basis
Ability to Test

Interfaces
Ability to Test

Co-Functionality
Fault Isolation

Resolution

Functional
decomposition

Acceptable but
can be deceptive

Limited to pairs
of units

Good, to faulty unit

Call graph Acceptable Limited to pairs
of units

Good, to faulty unit

MM-path Excellent Complete Excellent, to faulty
unit execution path

https://hemanthrajhemu.github.io

Integration Testing  ◾  251

EXERCISES
	 1.	Find the source and sink nodes in isValidateDate and in getDate.
	 2.	Write driver modules for isValidateDate and in getDate.
	 3.	Write stubs for isValidateDate and in getDate.
	 4.	Here are some other possible complexity metrics for MM-paths:

V(G) = e – n
V(G) = 0.5e – n + 2
sum of the outdegrees of the nodes
sum of the nodes plus the sum of the edges

		 Make up some examples, try these out, and see if they have any explanatory value.
	 5.	Make up a few test cases, interpret them as MM-paths, and then see what portions of the

unit program graphs in Figure 13.16 are traversed by your MM-paths. Try to devise a “cov-
erage metric” for MM-path-based integration testing.

	 6.	One of the goals of integration testing is to be able to isolate faults when a test case causes
a failure. Consider integration testing for a program written in a procedural programming
language. Rate the relative fault isolation capabilities of the following integration strategies:
A = Decomposition based top–down integration
B = Decomposition based bottom–up integration
C = Decomposition based sandwich integration
D = Decomposition based “big bang” integration
E = Call graph–based pairwise integration
F = Call graph–based neighborhood integration (radius = 2)
G = Call graph–based neighborhood integration (radius = 1)

		 Show your ratings graphically by placing the letters corresponding to a strategy on the
continuum below. As an example, suppose Strategies X and Y are about equal and not very
effective, and Strategy Z is very effective.

	 Y
	 X	 Z
Low	 High

References
Deutsch, M.S., Software Verification and Validation-Realistic Project Approaches, Prentice-Hall, Englewood

Cliffs, NJ, 1982.
Fordahl, M., Elementary Mistake Doomed Mars Probe, The Associated Press, available at http://mars.jpl.nasa.

gov/msp98/news/mco990930.html, October 1, 1999.
Hetzel, B., The Complete Guide to Software Testing, 2nd ed., QED Information Sciences, Inc., Wellesley, MA, 1988.
Jorgensen, P.C., The Use of MM-Paths in Constructive Software Development, Ph.D. dissertation, Arizona State

University, Tempe, AZ, 1985.
Jorgensen, P.C. and Erickson, C., Object-oriented integration testing, Communications of the ACM, September

1994.
Kaner, C., Falk, J. and Nguyen, H.Q., Testing Computer Software, 2nd ed., Van Nostrand Reinhold, New

York, 1993.
Mosley, D.J., The Handbook of MIS Application Software Testing, Yourdon Press, Prentice-Hall, Englewood

Cliffs, NJ, 1993.
Pressman, R.S., Software Engineering: A Practitioner’s Approach, 6th ed., McGraw-Hill, New York, 2005.
Schach, S.R., Object-Oriented and Classical Software Engineering, 5th ed., McGraw-Hill, New York, 2002.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

253
© 2010 Taylor & Francis Group, LLC

Chapter 14

System Testing

Of the three levels of testing, the system level is closest to everyday experience. We test many
things: a used car before we buy it, an online network service before we subscribe, and so on. A
common pattern in these familiar forms is that we evaluate a product in terms of our expecta-
tions—not with respect to a specification or a standard. Consequently, the goal is not to find faults
but to demonstrate correct behavior. Because of this, we tend to approach system testing from a
specification-based standpoint instead of from a code-based one. Because it is so intuitively famil-
iar, system testing in practice tends to be less formal than it might be, and this is compounded by
the reduced testing interval that usually remains before a delivery deadline.

The craftsperson metaphor continues to serve us. We need a better understanding of the
medium; we will view system testing in terms of threads of system-level behavior. We begin with a
new construct—an Atomic System Function (ASF)—and develop the thread concept, highlight-
ing some of the practical problems of thread-based system testing. System testing is closely coupled
with requirements specification; therefore, we shall use appropriate system-level models to enjoy
the benefits of model-based testing. Common to all of these is the idea of “threads,” so we shall see
how to identify system-level threads in a variety of common models. All this leads to an orderly
thread-based system testing strategy that exploits the symbiosis between specification-based and
code-based testing. We will apply the strategy to our simple automated teller machine (SATM)
system, first described in Chapter 2.

14.1 �T hreads
Threads are hard to define; in fact, some published definitions are counterproductive, misleading,
or wrong. It is possible to simply treat threads as a primitive concept that needs no formal defini-
tion. For now, we will use examples to develop a “shared vision.” Here are several views of a thread:

A scenario of normal usage
A system-level test case
A stimulus/response pair
Behavior that results from a sequence of system-level inputs

https://hemanthrajhemu.github.io

254  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

An interleaved sequence of port input and output events
A sequence of transitions in a state machine description of the system
An interleaved sequence of object messages and method executions
A sequence of machine instructions
A sequence of source instructions
A sequence of MM-paths
A sequence of ASFs (to be defined in this chapter)

Threads have distinct levels. A unit-level thread is usefully understood as an execution–time path
of source instructions or, alternatively, as a sequence of DD-paths. An integration-level thread is an
MM-path—that is, an alternating sequence of module execution paths and messages. If we continue
this pattern, a system-level thread is a sequence of ASFs. Because ASFs have port events as their inputs
and outputs, a sequence of ASFs implies an interleaved sequence of port input and output events. The
end result is that threads provide a unifying view of our three levels of testing. Unit testing tests indi-
vidual functions; integration testing examines interactions among units; and system testing examines
interactions among ASFs. In this chapter, we focus on system-level threads and answer some funda-
mental questions, such as, “How big is a thread? Where do we find them? How do we test them?”

14.1.1 � Thread Possibilities
Defining the endpoints of a system-level thread is a bit awkward. We motivate a tidy, graph
theory–based definition by working backward from where we want to go with threads. Here are
four candidate threads in our SATM system:

Entry of a digit
Entry of a personal identification number (PIN)
A simple transaction: ATM card entry, PIN entry, select transaction type (deposit, withdraw),

present account details (checking or savings, amount), conduct the operation, and report
the results

An ATM session containing two or more simple transactions

Digit entry is a good example of a minimal ASF. It begins with a port input event (the digit
keystroke) and ends with a port output event (the screen digit echo), so it qualifies as a stimulus/
response pair. This level of granularity is too fine for the purposes of system testing.

The second candidate, PIN entry, is a good example of an upper limit to integration testing
and, at the same time, a starting point of system testing. PIN entry is a good example of an ASF. It
is also a good example of a family of stimulus/response pairs (system-level behavior that is initiated
by a port input event, traverses some programmed logic, and terminates in one of several possible
responses [port output events]). PIN entry entails a sequence of system-level inputs and outputs.

	 1.	A screen requesting PIN digits.
	 2.	An interleaved sequence of digit keystrokes and screen responses.
	 3.	The possibility of cancellation by the customer before the full PIN is entered.
	 4.	A system disposition: a customer has three chances to enter the correct PIN. Once a correct

PIN has been entered, the user sees a screen requesting the transaction type; otherwise, a
screen advises the customer that the ATM card will not be returned, and no access to ATM
functions is provided.

https://hemanthrajhemu.github.io

System Testing  ◾  255

© 2010 Taylor & Francis Group, LLC

Several stimulus/response pairs are evident, putting ASFs clearly in the domain of system-level test-
ing. Other examples of ASFs include card entry, transaction selection, provision of transaction details,
transaction reporting, and session termination. Each of these is maximal in an integration testing sense
and minimal in a system testing sense. That is, we would not want to integration test something larger
than an ASF; at the same time, we would not want to test anything smaller as part of system testing.

The third candidate, the simple transaction, has a sense of “end-to-end” completion. A cus-
tomer could never execute PIN entry alone (a card entry is needed), but the simple transaction
is commonly executed. This is a good example of a system-level thread; note that it involves the
interaction of several ASFs.

The last possibility (the session) is actually a sequence of threads. This is also properly a part
of system testing; at this level, we are interested in the interactions among threads. Unfortunately,
most system testing efforts never reach the level of thread interaction.

14.1.2 � Thread Definitions
We simplify our discussion by defining a new term that helps us get to our desired goal.

Definition

An Atomic System Function (ASF) is an action that is observable at the system level in terms of port
input and output events.

In an event-driven system, ASFs are separated by points of event quiescence; these occur when
a system is (nearly) idle, waiting for a port input event to trigger further processing. Event qui-
escence has an interesting Petri net insight. In a traditional Petri net, deadlock occurs when no
transition is enabled. In an Event-Driven Petri Net (defined in Chapter 4), event quiescence is
similar to deadlock; but an input event can bring new life to the net. The SATM system exhibits
event quiescence in several places: one is the tight loop at the beginning of an ATM session, where
the system has displayed the welcome screen and is waiting for a card to be entered into the card
slot. Event quiescence is a system-level property; it is a direct analog of message quiescence at the
integration level.

The notion of event quiescence does for ASFs what message quiescence does for MM-paths—it
provides a natural endpoint. An ASF begins with a port input event and terminates with a port
output event. When viewed from the system level, no compelling reason exists to decompose an
ASF into lower levels of detail (hence, the atomicity). In the SATM system, digit entry is a good
example of an ASF—so are card entry, cash dispensing, and session closing. PIN entry is probably
too big; perhaps we should call it a molecular system function.

Atomic system functions represent the seam between integration and system testing. They are
the largest item to be tested by integration testing and the smallest item for system testing. We
can test an ASF at both levels. We will revisit the integrationNextDate program to find ASFs in
Section 14.10.

Definition

Given a system defined in terms of ASFs, the ASF graph of the system is the directed graph in
which nodes are ASFs and edges represent sequential flow.

https://hemanthrajhemu.github.io

256  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

Definition

A source ASF is an Atomic System Function that appears as a source node in the ASF graph of a sys-
tem; similarly, a sink ASF is an Atomic System Function that appears as a sink node in the ASF graph.

In the SATM system, the card entry ASF is a source ASF, and the session termination ASF is a
sink ASF. Notice that intermediary ASFs could never be tested at the system level by themselves—
they need the predecessor ASFs to “get there.”

Definition

A system thread is a path from a source ASF to a sink ASF in the ASF graph of a system.
These definitions provide a coherent set of increasingly broader views of threads, starting with

very short threads (within a unit) and ending with interactions among system-level threads. We
can use these views much like the ocular on a microscope, switching among them to see differ-
ent levels of granularity. Having these concepts is only part of the problem; supporting them is
another. We next take a tester’s view of requirements specification to see how to identify threads.

14.2 � Basis Concepts for Requirements Specification
Recall the notion of a basis of a vector space: a set of independent elements from which all the elements
in the space can be generated (see problem 9, Chapter 8). Instead of anticipating all the variations in
scores of requirements specification methods, notations, and techniques, we will discuss system test-
ing with respect to a basis set of requirements specification constructs: data, actions, devices, events,
and threads. Every system can be modeled in terms of these five fundamental concepts (and every
requirements specification model uses some combination of these). We examine these fundamental
concepts here to see how they support the tester’s process of thread identification.

14.2.1 � Data
When a system is described in terms of its data, the focus is on the information used and created by
the system. We describe data in terms of variables, data structures, fields, records, data stores, and files.
Entity/relationship (E/R) models are the most common choice at the highest level, and some form of a
regular expression (e.g., Jackson diagrams or data structure diagrams) is used at a more detailed level.
The data-centered view is also the starting point for several flavors of object-oriented analysis. Data refers
to information that is either initialized, stored, updated, or (possibly) destroyed. In the SATM system,
initial data describes the various accounts (each with its Personal Account Number, or PAN) and their
PINs, and each account has a data structure with information such as the account balance. As ATM
transactions occur, the results are kept as created data and used in the daily posting of terminal data to
the central bank. For many systems, the data-centered view dominates. These systems are often devel-
oped in terms of CRUD actions (Create, Retrieve, Update, Delete). We could describe the transaction
portion of the SATM system in this way, but it would not work well for the user interface portion.

Sometimes threads can be identified directly from the data model. Relationships among data
entities can be one-to-one, one-to-many, many-to-one, or many-to-many; these distinctions all
have implications for threads that process the data. For example, if bank customers can have several
accounts, each account needs a unique PIN. If several people can access the same account, they need

https://hemanthrajhemu.github.io

System Testing  ◾  257

© 2010 Taylor & Francis Group, LLC

ATM cards with identical PANs. We can also find initial data (such as PAN, ExpectedPIN pairs) that
are read but never written. Such read-only data must be part of the system initialization process. If not,
there must be threads that create such data. Read-only data is therefore an indicator of source ASFs.

14.2.2 � Actions
Action-centered modeling is still a common requirements specification form. This is a historical out-
growth of the action-centered nature of imperative programming languages. Actions have inputs and
outputs, and these can be either data or port events. Here are some methodology-specific synonyms
for actions: transform, data transform, control transform, process, activity, task, method, and service.
Actions can also be decomposed into lower-level actions, most notably in the data flow diagrams of
Structured Analysis. The input/output view of actions is exactly the basis of specification-based testing,
and the decomposition (and eventual implementation) of actions is the basis of code-based testing.

14.2.3 � Devices
Every system has port devices; these are the sources and destinations of system-level inputs and out-
puts (port events). The slight distinction between ports and port devices is sometimes helpful to test
ers. Technically, a port is the point at which an I/O device is attached to a system, as in serial and
parallel ports, network ports, and telephone ports. Physical actions (keystrokes and light emissions
from a screen) occur on port devices, and these are translated from physical to logical (or logical to
physical) forms. In the absence of actual port devices, much of system testing can be accomplished by
“moving the port boundary inward” to the logical instances of port events. From now on, we will just
use the term “port” to refer to port devices. The ports in the SATM system include the digit and can-
cel keys, the function keys, the display screen, the deposit and withdrawal doors, the card and receipt
slots, and several less obvious devices, such as the rollers that move cards and deposit envelopes into the
machine, the cash dispenser, the receipt printer, and so on. (See Figure 14.1 for our working example.)

Cash dispenser

Printed receipt 1 2 3

4 5 6

7 8 9

0

Deposit slot

Card slot

Enter

Clear

Cancel

Welcome to

Rock Solid Federal Credit Union

Please insert your ATM card

Figure 14.1 T he Simple ATM (SATM) terminal.

https://hemanthrajhemu.github.io

258  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

Thinking about the ports helps the tester define both the input space that specification-based
system testing needs; similarly, the output devices provide output-based test information. For
example, we would like to have enough threads to generate all 15 SATM screens in Figure 14.2.

14.2.4 � Events
Events are somewhat schizophrenic: they have some characteristics of data and some of actions.
An event is a system-level input (or output) that occurs on a port device. Similar to data, events
can be inputs to or outputs of actions. Events can be discrete (such as SATM keystrokes) or they
can be continuous (such as temperature, altitude, or pressure). Discrete events necessarily have
a time duration, and this can be a critical factor in real-time systems. We might picture input
events as destructive read-out data, but it is a stretch to imagine output events as destructive write
operations.

Events are like actions in the sense that they are the translation point between real-world physi-
cal events and internal logical manifestations of these. Port input events are physical-to-logical
translations, and, symmetrically, port output events are logical-to-physical translations. System
testers should focus on the physical side of events, not the logical side (the focus of integration
testers). Situations occur where the context of present data values changes the logical meaning of
physical events. In the SATM system, for example, the port input event of depressing button B1

Screen 6

Balance is
$dddd.dd

Screen 1

Welcome
Please insert your

ATM card

Screen 2

Please enter your PIN

Screen 3

Your PIN is incorrect.
Please try again.

Screen 4

Invalid ATM card. It will
be retained.

Screen 5
Select transaction:

balance >
deposit >

withdrawal >

Screen 7

Enter amount.
Withdrawals must
be multiples of $10

Screen 8

Insufficient funds!
Please enter a new

amount

Screen 9

Machine can only
dispense $10 notes

Screen 10

Temporarily unable to
process withdrawals.
Another transaction?

Screen 11

Your balance is being
updated. Please take
cash from dispenser.

Screen 12

Temporarily unable to
process deposits.

Another transaction?

Screen 13

Please insert deposit
into deposit slot.

Screen 14

Your new balance is
being printed. Another

transaction?

Screen 15

Please take your
receipt and ATM card.

�ank you.

Figure 14.2  SATM screens.

https://hemanthrajhemu.github.io

System Testing  ◾  259

© 2010 Taylor & Francis Group, LLC

means “balance” when screen 5 is displayed, “checking” when screen 6 is displayed, and “yes”
when screens 10, 11, and 14 are displayed. We refer to these situations as “context-sensitive port
events,” and we would expect to test such events in each context.

14.2.5 � Threads
Unfortunately for testers, threads are the least frequently used of the five fundamental constructs.
Because we test threads, it usually falls to the tester to find them in the interactions among the
data, events, and actions. About the only place that threads appear per se in a requirements speci-
fication is when rapid prototyping is used in conjunction with a scenario recorder. It is easy to find
threads in control models, as we will soon see. The problem with this is that control models are
just that—they are models, not the reality of a system.

14.2.6 � Relationships among Basis Concepts
Figure 14.3 is an E/R model of our basis concepts. Notice that all relationships are many-to-many:
Data and Events are inputs to or outputs of the Action entity. The same event can occur on several
ports, and typically many events occur on a single port. Finally, an action can occur in several
threads, and a thread is composed of several actions. This diagram demonstrates some of the dif-
ficulty of system testing. Testers must use events and threads to ensure that all the many-to-many
relationships among the five basis concepts are correct.

14.3 � Model-Based Threads
In this section, we will use the SATM system (defined in Chapter 2) to illustrate how threads can
be identified from models. Figure 14.2 shows the 15 screens needed for SATM. (This is really a
bare bones, economy ATM system!)

Finite state machine models of the SATM system are the best place to look for system testing
threads. We will start with a hierarchy of state machines; the upper level is shown in Figure 14.4.
At this level, states correspond to stages of processing, and transitions are caused by abstract logi-
cal (instead of port) events. The card entry “state,” for example, would be decomposed into lower
levels that deal with details such as jammed cards, cards that are upside down, stuck card rollers,

1..n

1..n 1..n
1..n

1..n

1..n

1..n

1..n

inputTo

Data

Event

Device

occursOn

outputOf Action

�read

sequenceOf

Figure 14.3  E/R model of basis concepts.

https://hemanthrajhemu.github.io

260  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

and checking the card against the list of cards for which service is offered. Once the details of a
macro-state are tested, we use a simple thread to get to the next macro-state.

The PIN entry state S2 is decomposed into the more detailed view in Figure 14.5. The adjacent
states are shown because they are sources and destinations of transitions from the PIN entry state
at the upper level. (This approach to decomposition is reminiscent of the old data flow diagram-
ming idea of balanced decomposition.) At the S2 decomposition, we focus on the PIN retry mech-
anism; all of the output events are true port events, but the input events are still logical events.

The transaction processing state S3 is decomposed into a more detailed view in Figure 14.6. In
that finite state machine, we still have abstract input events, but the output events are actual port
events. State 3.1 requires added information. Two steps are combined into this state: choice of the
account type and selection of the transaction type. The little “<” and “>” symbols are supposed to
point to the function buttons adjacent to the screen, as shown in Figure 14.1. As a side note, if this
were split into two states, the system would have to “remember” the account type choice in the
first state. However, there can be no memory in a finite state machine, hence the combined state.
Once again, we have abstract input events and true port output events.

S2: PIN entry

S3: Transaction
processing

S4: Another
transaction?

S5: Close ATM
session

S1: Idle

(Welcome screen)

Invalid card/screen 4

Invalid PIN/screen 3

Valid card/screen 2

Valid PIN/screens 5 then 6

Yes
Balance
inquiry Deposits Withdrawals

No/screen 14

Timeout
screen 15

3rd PIN attempt failed
screen 1

Figure 14.4  Uppermost level SATM finite state machine.

https://hemanthrajhemu.github.io

System Testing  ◾  261

© 2010 Taylor & Francis Group, LLC

S1: Idle

S2: PIN entry

S3: Transaction
choice

S2: 1st PIN try

S2: 1st PIN try

S4: 3rd PIN try

Invalid PIN
screen 1

Valid PIN
screen 5

Valid PIN
screen 5

Valid PIN
screen 5

Invalid PIN
screen 3

Invalid PIN
screen 3

Figure 14.5  Decomposition of PIN entry state.

S3: Transaction processing

S3.1: Specify account
and transaction type

S3.2: Balance
inquiry

S3.2: Deposit

S3.4: Withdrawal

S4: Another
transaction?

Balance/screen 6

Deposit/screen 13 Withdrawal/screen 7

< Checking
< Savings

Balance >
Deposit >

Withdrawal >

Transaction complete
screen 14

Transaction complete
screen 14

Valid amount
screen 11

Invalid amount
screen 9Low on cash

screen 10

Insufficient funds
screen 8

Figure 14.6  Decomposition of transaction processing state.

https://hemanthrajhemu.github.io

262  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

Our final state decomposition is applied to see the details of PIN entry tries S2.1, S2.2, and
S2.3 (see Figure 14.7). Each PIN try is identical, so the lower-level states are numbered S2.n, where
n signifies the PIN try. We almost have true input events. If we knew that the expected PIN was
“2468” and if we replaced the digit entries, for example, “first digit,” with “2,” then we would
finally have true port input events. A few abstract inputs remain—those referring to valid and
invalid PINs and conditions on the number of tries.

It is good form to reach a state machine in which transitions are caused by actual port input
events, and the actions on transitions are port output events. If we have such a finite state machine,
generating system test cases for these threads is a mechanical process—simply follow a path of
transitions and note the port inputs and outputs as they occur along the path. Table 14.1 traces
one such path through the PIN try finite state machine in Figure 14.7. This path corresponds to
a thread in which a PIN is correctly entered on the first try. To make the test case explicit, we
assume a precondition that the expected PIN is “2468.” The event in parentheses in the last row of
Table 14.1 is the logical event that “bumps up” to the parent state machine and causes a transition
there to the Await Transaction Choice state.

S2.n.2: 2 digits
received

S2.n.6: Retry
decision

S2.n.3: 3 digits
received

S2.n.4: 4 digits
received

S3: Transaction
choice S1: Idle

S2.n.0: 0 digits
received

S2.n.1: 1 digit
received

S2.n: nth PIN try

Cancel

Try n < 3
screen 3

Cancel

Cancel

Cancel

Cancel

Enter key, Invalid PIN

Enter key, Valid PIN
screen 5

1st digit
echo ‘--*’

Try n = 3
screen 1

2nd digit
echo ‘--**’

3rd digit
echo ‘-***’

4th digit
echo ‘****’

Figure 14.7  Decomposition of PIN try states.

https://hemanthrajhemu.github.io

System Testing  ◾  263

© 2010 Taylor & Francis Group, LLC

The most common products for model-based testing (Jorgensen, 2009) start with a finite state
machine description of the system to be tested and then generate all paths through the graph. If
there are loops, these are (or should be) replaced by two paths, as we did at the program graph level
in Chapter 8. Given such a path, the port inputs that cause transitions are events in a system test
case; similarly for port outputs that occur as actions on transitions.

Here is a hard lesson from industrial experience. A telephone switching system laboratory tried
defining a small telephone system with finite state machines. The system, a Private Automatic
Branch Exchange (PABX), was chosen because, as switching systems go, it is quite simple. There
was a grizzled veteran system tester, Casimir, assigned to help with the development of the model.
He was well named. According to Wikipedia, his name means “someone who destroys opponent’s
prestige/glory during battle” (http://en.wikipedia.org/wiki/Casimir). Throughout the process,
Casimir was very suspicious, even untrusting. The team reassured him that, once the project was
finished, a tool would generate literally several thousand system test cases. Even better, this pro-
vided a mechanism to trace system testing directly back to the requirements specification model.
The actual finite state machine had more than 200 states, and the tool generated more than 3000
test cases. Finally, Casimir was impressed, until one day when he discovered an automatically
generated test case that was logically impossible. On further, very detailed analysis, the invalid
test case was derived from a pair of states that had a subtle dependency (and finite state machines
must have independent states). Out of 200-plus states, recognizing such dependencies is extremely
difficult. The team explained to Casimir that the tool could analyze any thread that traversed the
pair of dependent states, thereby identifying any other impossible threads. This technical triumph
was short-lived, however, when Casimir asked if the tool could identify any other pairs of depen-
dent states. No tool can do this because this would be equivalent to the famous Halting Problem.
The lesson: generating threads from finite state machines is attractive, and can be quite effective;
however, care must be taken to avoid both memory and dependence issues.

Table 14.1 P ort Event Sequence for Correct PIN
on First Try

Port Input Event Port Output Event

Screen 2 displayed with ‘- - - -’

2 Pressed

Screen 2 displayed with ‘- - - *’

4 Pressed

Screen 2 displayed with ‘- - * *’

6 Pressed

Screen 2 displayed with ‘- * * *’

8 Pressed

Screen 2 displayed with ‘* * * *’

(Valid PIN) Screen 5 displayed

https://hemanthrajhemu.github.io

264  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

14.4 � Use Case–Based Threads
Use Cases are a central part of the Unified Modeling Language (UML). Their main advantage is
that they are easily understood by both customers/users and developers. They capture the does view
that emphasizes behavior, rather than the is view that emphasizes structure. Customers and testers
both tend to naturally think of a system in terms of the does view, so use cases are a natural choice.

14.4.1 � Levels of Use Cases
One author (Larman, 2001) defines a hierarchy of use cases in which each level adds information
to the predecessor level. Larman names these levels as follows:

◾◾ High level (very similar to an agile user story)
◾◾ Essential
◾◾ Expanded essential
◾◾ Real

The information content of these variations is shown in Venn diagram form in Figure 14.8.
Tables 14.2 through 14.4 show the gradual increase in Larman’s use case hierarchy for the

example in Table 14.1. High-level use cases are at the level of the user stories used in agile develop-
ment. A set of high-level use cases gives a quick overview of the does view of a system. Essential use
cases add the sequence of port input and output events. At this stage, the port boundary begins to
become clear to both the customer/user and the developer.

Expanded essential use cases add pre- and postconditions. We shall see that these are key to
linking use cases when they are expressed as system test cases.

Real use cases are at the actual system test case level. Abstract names for port events, such as
“invalid PIN,” are replaced by an actual invalid PIN character string. This presumes that some

Real

Expanded essential

Essential

High level

Figure 14.8  Larman’s levels of use cases.

Table 14.2  High-Level Use Case for Correct PIN on First Try

Use case name Correct PIN entry on first try

Use case ID HLUC-1

Description A customer enters the PIN number
correctly on the first attempt.

https://hemanthrajhemu.github.io

System Testing  ◾  265

© 2010 Taylor & Francis Group, LLC

form of testing database has been assembled. In our SATM system, this would likely include sev-
eral accounts with associated PINs and account balances (Table 14.5).

14.4.2 � An Industrial Test Execution System
This section describes a system for automatic test execution that I was responsible for in the early
1980s. Since it was intended for executing regression test cases (a very boring manual assignment),
it was named the Automatic Regression Testing System (ARTS). This is as close as I ever came to
the art world. The ARTS system had a human readable system test case language that was inter-
pretively executed on a personal computer. In the ARTS language, there were two verbs: CAUSE
would cause a port input event to occur, and VERIFY would observe a port output event. In addi-
tion, a tester could refer to a limited number of devices and to a limited number of input events
associated with those devices. Here is a small paraphrased excerpt of a typical ARTS test case.

CAUSE Go-Offhook On Line 4
VERIFY Dialtone On Line 4
CAUSE TouchDigit ‘3’ On Line 4
VERIFY NoDialtone On Line 4

Table 14.3  Essential Use Case for Correct PIN on First Try

Use case name Correct PIN entry on first try

Use case ID EUC-1

Description A customer enters the PIN number
correctly on the first attempt.

Event Sequence

Input events Output events

1. Screen 2 shows ‘- - - - ’

2. Customer touches 1st digit

 3. Screen 2 shows ‘- - - * ’

4. Customer touches 2nd digit

 5. Screen 2 shows ‘- - * * ’

6. Customer touches 3rd digit

 7. Screen 2 shows ‘- * * * ’

8. Customer touches 4th digit

 9. Screen 2 shows ‘* * * * ’

10. Customer touches Enter

 11. Screen 5 is displayed

https://hemanthrajhemu.github.io

266  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

The physical connection to a telephone prototype required a harness that connected the per-
sonal computer with actual prototype ports. The test case language consisted of the CAUSE and
VERIFY verbs, names for port input and output events, and names for available devices that were
connected to the harness. On the input side, the harness accomplished a logical-to-physical trans-
formation, with the symmetric physical-to-logical transformation on the output side. The basic
architecture is shown in Figure 14.9.

We learned a lesson in human factors engineering. The test case language was actually free form,
and the interpreter eliminated noise words. The freedom to add noise words was intended to give test
case designers a place to put additional notes that would not be executed, but would be kept in the
test execution report. The result was test cases like this (so much for test designer freedom):

As long as it is not raining, see if you can CAUSE a Go-Offhook event right away On
Line 4, and then, see if you can VERIFY that some variation of Dialtone happened to occur

Table 14.4  Expanded Essential Use Case for Correct PIN on First Try

Use case name Correct PIN entry on first try

Use case ID EEUC-1

Description A customer enters the PIN number
correctly on the first attempt.

Preconditions 1. The expected PIN is known

2. Screen 2 is displayed

Event Sequence

Input events Output events

 1. Screen 2 shows ‘- - - - ’

2. Customer touches 1st digit

 3. Screen 2 shows ‘- - - * ’

4. Customer touches 2nd digit

 5. Screen 2 shows ‘- - * * ’

6. Customer touches 3rd digit

 7. Screen 2 shows ‘- * * * ’

8. Customer touches 4th digit

 9. Screen 2 shows ‘* * * * ’

10. Customer touches Enter

 11. Screen 5 is displayed

Cross reference to functions

Postconditions Select Transaction screen is active

https://hemanthrajhemu.github.io

System Testing  ◾  267

© 2010 Taylor & Francis Group, LLC

Table 14.5 R eal Use Case for Correct PIN on First Try

Use case name Correct PIN entry on first try

Use case ID RUC-1

Description A customer enters the PIN number
correctly on the first attempt.

Preconditions 1. The expected PIN is “2468”

2. Screen 2 is displayed

Event Sequence

Input events Output events

 1. Screen 2 shows ‘- - - - ’

2. Customer touches digit 2

 3. Screen 2 shows ‘- - - * ’

4. Customer touches digit 4

 5. Screen 2 shows ‘- - * * ’

6. Customer touches digit 6

 7. Screen 2 shows ‘- * * * ’

8. Customer touches digit 8

 9. Screen 2 shows ‘* * * * ’

10. Customer touches Enter

 11. Screen 5 is displayed

Cross reference to functions (normally done at this point)

Postconditions Select Transaction is active

CAUSE statements Port input events

VERIFY statements Port output events

Personal
computer

System
under

test
Harness

Figure 14.9 A utomated test execution system architecture.

https://hemanthrajhemu.github.io

268  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

On Line 4. Then, if you are in a good mood, why not CAUSE a TouchDigit ‘3’ action On
Line 4. Finally, (at last!), see if you can VERIFY that NoDialtone is present On Line 4.

In retrospect, the ARTS system predated the advent of use cases. Notice how the event sequence
portion of a real use case is dangerously close to an ARTS test case. I learned later that the system
evolved into a commercial product that had a 15-year lifetime.

14.4.3 � System-Level Test Cases
A system-level test case, whether executed manually or automatically, has essentially the same
information as a real use case (Table 14.6).

Table 14.6  System Test Case for Correct PIN on First Try

Test case name Correct PIN entry on first try

Test case ID TC-1

Description A customer enters the PIN number correctly
on the first attempt.

Preconditions needed to run this test case 1. The expected PIN is “2468”

2. Screen 2 is displayed

Event Sequence

Input events (performed by tester) Output events (observed by system tester)

 1. Screen 2 shows ‘- - - - ’

2. Touch digit 2

 3. Screen 2 shows ‘- - - * ’

4. Customer touches digit 4

 5. Screen 2 shows ‘- - * * ’

6. Customer touches digit 6

 7. Screen 2 shows ‘- * * * ’

8. Customer touches digit 8

 9. Screen 2 shows ‘- - - * ’

10. Customer touches Enter

 11. Screen 5 is displayed

Cross reference to functions

Postconditions Select Transaction is active

Test execution result? Pass/Fail

Test run by <tester’s name> date

https://hemanthrajhemu.github.io

System Testing  ◾  269

© 2010 Taylor & Francis Group, LLC

14.4.4 � Converting Use Cases to Event-Driven Petri Nets
Event-Driven Petri Nets (EDPNs) were defined in Chapter 4. They were originally developed
for use in telephone switching systems. As the name implies, they are appropriate for any event-
driven system, particularly those characterized by context-sensitive port input events. In an EDPN
drawing, port events are shown as triangles, data places are circles, transitions are narrow rect-
angles, and the input and output connections are arrows. In an attempt at human factors design,

p2 d1 p1

p4 d2p3

s1

p6 d3p5

p8 d4p7

p10 d5p9

p11

s2

s3

s4

s5

 Port input events
 p2: 1st digit
 p4: 2nd digit
 p6: 3rd digit
 p8: 4th digit
p10: Enter

 Port output events
 p1: screen 2 ‘----’
 p3: screen 2 ‘---*’
 p5: screen 2 ‘--**’
 p7: screen 2 ‘-***’
 p9: screen 2 ‘****’
p11: screen 5

 Data places
 d1: expecting digit 1
 d2: expecting digit 2
 d3: expecting digit 3
 d4: expecting digit 4
 d5: entered PIN

 Transitions
 s1: (not named)
 s2: (not named)
 s3: (not named)
 s4: (not named)
 s5: (not named)

Figure 14.10  Event-Driven Petri Net for correct PIN on first try.

https://hemanthrajhemu.github.io

270  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

EDPN diagrams show input port events as a downward pointing triangle as if they were a funnel.
Similarly, output port events are upward pointing, as if they were megaphones. Figure 14.10 is the
EDPN for our continuing example, Correct PIN on First Try.

Automatic derivation of an EDPN from a use case is only partly successful—port input events
can be derived from the input portion of the event sequence, similarly for port output events. Also,
the interleaved order of input and output events can be preserved. Finally, the pre- and postcondi-
tions are mapped to data places. There are a few problems, however.

	 1.	The most obvious is the port output event p1 that refers to screen 2 being displayed with four
blank positions for the PIN to be entered. It is an orphan, in the sense that it is not created by a
transition.

	 2.	Transitions are not named. If a person were to develop the EDPN, there would likely be
descriptive names for the transitions, for example, s1: accept first digit.

	 3.	An immediate cause-and-effect connection is presumed. This would fail if two out-of-
sequence input events were required to produce an output event.

	 4.	There is no provision for intermediate data that may be produced.
	 5.	The data places d1–d5 do not appear in the use case. (They could be derived from the finite

state machine, however.)

One answer to this is to follow the lead of formal systems and define the information con-
tent of a “well-formed use case.” At a minimum, a well-formed use case should conform to these
requirements.

	 1.	The event sequence cannot begin with an output event. This could just be considered as a
precondition.

	 2.	The event sequence cannot end with an input event. This could just be considered as a
postcondition.

	 3.	Preconditions must be both necessary and sufficient to the use case. There are no superfluous
preconditions, and every precondition must be used or needed by the use case. Similarly for
postconditions.

	 4.	There must be at least one precondition and at least one postcondition.

The value in deriving EDPNs from use cases is that, because they are special cases of Petri Nets,
they inherit a wealth of analytical possibilities. Here are some analyses that are easy with Petri
Nets, and all but impossible with use cases:

	 1.	Interactions among use cases, such as one use case being a prerequisite for another
	 2.	Use cases that are in conflict with others
	 3.	Context-sensitive input events
	 4.	Inverse use cases, where one “undoes” the other

14.4.5 � Converting Finite State Machines to Event-Driven Petri Nets
Mathematically speaking, finite state machines are a special case of ordinary Petri Nets in which
every Petri Net transition has one input place and one output place. Since EDPNs are an extension
of ordinary Petri Nets, the conversion of finite state machines to EDPNs is guaranteed. Figure
14.11 shows a portion of the finite state machine in Figure 14.7 converted to an EDPN.

https://hemanthrajhemu.github.io

System Testing  ◾  271

© 2010 Taylor & Francis Group, LLC

In Figure 14.11, input events p2 and p12 can both occur when the ATM is awaiting the first
PIN digit. Similarly, input events p4 and p12 can both occur when the ATM is awaiting the second
PIN digit. Close examination shows three distinct paths. There are two main ways to describe these
paths—as a sequence of port input events, or as a sequence of EDPN transitions. Using the latter, the
three paths in Figure 14.11 are <s1, s2>, <s1, s4>, and <s3>. There is an interesting connection between
EDPNs and obscure database terminology. The intention of a database is the underlying data model.
Different populations of the intention are known as extensions of the database. The intention of a given
database is unique, but there can be myriad possible extensions. The same is true for unmarked versus
marked EDPNs—an unmarked EDPN can have many possible marking sequence executions.

14.4.6 � Which View Best Serves System Testing?
Of the three views in this section, use cases are the best for communication between customers/users
and developers; however, they do not support much in the way of analysis. Finite state machines are
in common use, but composing finite state machines inevitably leads to the well-known “finite state
machine explosion.” Finite state machine–based support tools are available, but the explosion part is
problematic. Both of these notations can be converted to EDPNs, although some information must be
added to EDPNs derived from use cases. The big advantage of EDPNs is that they are easily composed
with other EDPNs, and the intension/extension relationship between an unmarked EDPN and various
markings (execution sequences) makes them the preferred choice for system testing. We did not discuss
deriving system test cases from an EDPN, but the process is obvious.

14.5 � Long versus Short Use Cases
There is an element of foreshadowing in the preceding material. Early on, we spoke of various
thread candidates. In that discussion, we saw a range of very short to very long threads. Each of
these choices translates directly to our three models, use cases, finite state machines, and EDPNs.

p2 p12

p12p4
p3

p5

s1 s3

s2 s4

d1

d2

d3

d4

 Port input events
 p2: 1st digit
 p4: 2nd digit
p12: Cancel

 Port output events
 p3: screen 2 ‘---*’
 p5: screen 2 ‘--**’

 Data places
 d1: expecting digit 1
 d2: expecting digit 2
 d3: expecting digit 3
 d4: retry decision

 Transitions
 s1: get 1st digit
 s2: get 2nd digit
 s3: Cancel before 1st digit
 s4: Cancel before 2nd digit

Figure 14.11  Event-Driven Petri Net from part of finite state machine in Figure 14.12.

https://hemanthrajhemu.github.io

272  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

In the use case domain, the usual view is that a use case is a full, end-to-end, transaction. For the
SATM system, full use cases would start and end with screen 1, the Welcome screen. In between,
some path would occur, either as a specific use case, a path in the finite state machine, or as a
marking in the full EDPN. The problem with this is that there is a large number of paths in either
model, and a large number of individual use cases. The end-to-end use case is a “long use case.”
The use cases in Chapter 22 (Software Technical Reviews) are short use cases. As a quick example
of a long use case, consider a story with the following sequence:

A customer enters a valid card, followed by a valid PIN entry on the first try. The customer
selects the Withdraw option, and enters $20 for the withdrawal amount. The SATM sys-
tem dispenses two $10 notes and offers the customer a chance to request another transac-
tion. The customer declines, the SATM system updates the customer account, returns the
customer’s ATM card, prints a transaction receipt, and returns to the Welcome screen.

Here we suggest “short use cases,” which begin with a port input event and end with a port
output event. Short use cases must be at the Expanded Essential Use Case level, so the pre- and
postconditions are known. We can then develop sequences of short use cases with the connections
based on the pre- and postconditions. Short use case B can follow short use case A if the postcondi-
tions of A are consistent with the preconditions of B. The long use case above might be expressed
in terms of four short use cases:

	 1.	Valid card
	 2.	Correct PIN on first try
	 3.	Withdrawal of $20
	 4.	Select no more transitions

Table 14.7  Short Use Cases for Successful SATM Transactions

Short Use Case Description

SUC1 Valid ATM card swipe

SUC2 Invalid ATM card swipe

SUC3 Correct PIN attempt

SUC4 Failed PIN attempt

SUC5 Choose Balance

SUC6 Choose Deposit

SUC7 Choose Withdrawal: valid withdrawal amount

SUC8 Choose Withdrawal: amount not a multiple of $20

SUC9 Choose Withdrawal: amount greater than account balance

SUC10 Choose Withdrawal: amount greater than daily limit

SUC11 Choose no other transaction

SUC12 Choose another transaction

https://hemanthrajhemu.github.io

System Testing  ◾  273

© 2010 Taylor & Francis Group, LLC

The motivation for short use cases is that there are 1909 possible paths through the SATM
finite state machine in Figure 14.5 considering all four state decompositions. The great major-
ity of these are due to failed PIN entry attempts (six ways to fail, one way to be successful).
Table 14.7 lists a useful set of short use cases for successful SATM transactions. If we added
short use cases for all the ways that PIN entry can fail, we would have good coverage of the
SATM system.

Figure 14.12 shows the short use cases from Table 14.7 linked with respect to a slightly differ-
ent finite state machine model of the SATM system.

What about the ways PIN entry can fail? One could argue that this is really a unit-level ques-
tion; hence, we do not need short use cases for these possibilities. On the other hand, there are
only 13 transitions in the detailed view of PIN entry in Figure 14.7, and we have port inputs and
outputs for the digit entry transitions. (The transitions for the five possible points of cancellation
and the invalid four-digit PIN all have an intermediate state to simplify the figure.) Table 14.8 lists
the short use cases for complete PIN entry coverage.

SUC 1

SUC 2

SUC 4

SUC 4

SUC 4

SUC 3 SUC 3

SUC 3

SUC 5

SUC 6

SUC 7

SUC 8
SUC 9

SUC 10

SUC 11
SUC 11 SUC 11

SUC 11

SUC 11

SUC 11

SUC 12

S1: Card
swipe

S2: 1st
PIN try

S3: 2nd
PIN try

S3:
Transaction

choice

S6:
Balance

S7:
Deposit

S8: Valid
withdrawal

S12: Close
session?

S9: Not multiple
of $20

S10: Funds
insufficient

S11: Low
on cash

S4: 3rd
PIN try

Figure 14.12  SATM finite state machine with short use cases causing transitions.

https://hemanthrajhemu.github.io

274  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

Now we see the advantage of short use cases—1909 long use cases are covered by the 25 short
use cases. The advantage of model-based testing becomes yet clearer with this compression. Note
the similarity to node and edge test coverage at the unit level that we saw in Chapter 8.

14.6 � How Many Use Cases?
When a project is driven by use cases, there is the inevitable question as to how many use cases are
needed. Use case–driven development is inherently a bottom–up process. In the agile world, the
answer is easy—the customer/user decides how many use cases are needed. But what happens in a
non-agile project? Use case–driven development is still (or can be) an attractive option. In this sec-
tion, we examine four strategies to help decide how many bottom–up use cases are needed. Each
strategy employs an incidence matrix (see Chapter 4). We could have a fifth strategy if bottom–up
use case development is done in conjunction with a gradually developed model, as we just saw in
Section 14.5.

14.6.1 � Incidence with Input Events
As use cases are identified jointly between the customer/user and developers, both parties gradu-
ally identify port-level input events. This very likely is an iterative process, in which use cases
provoke the recognition of port input events, and they, it turn, suggest additional use cases. These
are kept in an incidence showing which use cases require which port input events. As the process
continues, both parties reach a point where the existing set of input events is sufficient for any
new use case. Once this point is reached, it is clear that a minimal set of use cases covers all the

Table 14.8  Short Use Cases for Failed PIN Entry Attempts

Short Use Case Description

SUC13 Digit 1 entered

SUC14 Digit 2 entered

SUC15 Digit 3 entered

SUC16 Digit 4 entered

SUC17 Enter with valid PIN

SUC18 Cancel before digit 1

SUC19 Cancel after digit 1

SUC20 Cancel after digit 2

SUC21 Cancel after digit 3

SUC22 Cancel after digit 4

SUC23 Enter with invalid PIN

SUC24 Next PIN try

SUC25 Last PIN try

https://hemanthrajhemu.github.io

System Testing  ◾  275

© 2010 Taylor & Francis Group, LLC

port level input events. Table 14.9 lists (most of ) the port input events for the SATM system, and
Table 14.10 shows their incidence with the first 12 short use cases. Exercise 5 asks you to develop
a similar table for the PIN entry use cases.

Both Tables 14.9 and 14.10 should be understood as the result of an iterative process, which is
inevitable in a bottom–up approach. If port inputs are identified that are not used anywhere, we
know we need at least one more short use case. Similarly, if we have a short use case that does not
involve any of the existing port input events, we know we need at least one more event.

14.6.2 � Incidence with Output Events
The matrix showing the incidence of short use cases with port output events is developed in the
same iterative way as that for input events. Table 14.11 lists the port output events for the SATM
system. As you develop this incidence matrix (see Exercise 5), you should note if any screen is never
used in the finite state machines in Figures 14.4 through 14.7. This is also revisited in Chapter 22
on Software Technical Reviews.

Table 14.9  SATM Port Input Events

Port Input Event Description

e1 Valid ATM card swipe

e2 Invalid ATM card swipe

e3 Correct PIN attempt

e4 Touch Enter

e5 Failed PIN

e6 Touch Cancel

e7 Touch button corresponding to Checking

e8 Touch button corresponding to Savings

e9 Choose Balance

e10 Choose Deposit

e11 Enter deposit amount

e12 Choose Withdrawal

e13 Enter withdrawal amount

e14 Valid withdrawal amount

e15 Withdrawal amount not a multiple of $20

e16 Withdrawal amount greater than account balance

e17 Withdrawal amount greater than cash in SATM

e18 Touch button corresponding to Yes

e19 Touch button corresponding to No

https://hemanthrajhemu.github.io

276  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

Table 14.10  Short Use Case Incidence Matrix with Port Input Events

SUC

Port Input Events

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 X

2 X

3 X X

4 X X X

5 X X X

6 X X X X

7 X X X X X

8 X X X X X

9 X X X X X

10 X X X X X

11 X

12 X

Table 14.11  SATM Port Output Events

Port Input Event Description

Screen 1 Welcome. Please insert your ATM card.

Screen 2 Please enter your PIN.

Screen 3 Your PIN is incorrect. Please try again.

Screen 4 Invalid ATM card. It will be retained.

Screen 5 Select transaction: balance, deposit, or withdrawal.

Screen 6 Your account balance is $– – –.–.

Screen 7 Enter withdrawal amount. Must be a multiple of $10.

Screen 8 Insufficient funds. Please enter a new withdrawal amount.

Screen 9 Sorry. Machine can only dispense $10 notes.

Screen 10 Temporarily unable to process withdrawals. Another transaction?

Screen 11 Your balance is updated. Please remove cash from dispenser.

Screen 12 Temporarily unable to process deposits. Another transaction?

Screen 13 Please insert deposit envelope into slot.

Screen 14 Your new balance is being printed. Another transaction?

Screen 15 Please take your receipt and ATM card.

https://hemanthrajhemu.github.io

System Testing  ◾  277

© 2010 Taylor & Francis Group, LLC

14.6.3 � Incidence with All Port Events
In practice, the incidence approach needs to be done for all port-level events. This is just a combination
of the discussions in Sections 16.2.1 and 16.2.2. One advantage of the full port event incidence matrix
is that it can be reordered in useful ways. For example, the short use cases could be placed together, or
possibly listed in a sensible transaction-based order. The port events can also be permuted into cohesive
subgroups, for example, input events related to PIN entry, or output events related to deposits.

14.6.4 � Incidence with Classes
There is a perennial debate among object-oriented developers as to how to begin—use cases first,
or classes first. One of my colleagues (a very classy person) insists on the class-first approach, while
others are more comfortable with the use case first view. A good compromise is to develop an inci-
dence matrix showing which classes are needed to support which use cases. Often, it is easier to
identify classes for a use case, rather than for a full system. As with the other incidence matrices,
this approach provides a good answer to when a sufficient set of classes has been identified.

14.7 � Coverage Metrics for System Testing
In Chapter 10, we saw the advantage of combining specification-based and code-based testing
techniques, because they are complementary. We are in the same position now with system test-
ing. The model–based approaches of Section 14.3 can be combined with the use case–based
approaches of Section 14.4. Further, the incidence matrices of Section 14.6 can be used as a basis
for specification-based system test coverage metrics.

14.7.1 � Model-Based System Test Coverage
We can use model-based metrics as a cross-check on use case–based threads in much the same way
that we used DD-paths at the unit level to identify gaps and redundancies in specification-based
test cases. We really have pseudostructural testing (Jorgensen, 1994) because the node and edge
coverage metrics are defined in terms of a model of a system, not derived directly from the system
implementation. In general, behavioral models are only approximations of a system’s reality, which
is why we could decompose our models down to several levels of detail. If we made a true code-
based model, its size and complexity would make it too cumbersome to use. The big weakness of
model-based metrics is that the underlying model may be a poor choice. The three most common
behavioral models (decision tables, finite state machines, and Petri nets) are appropriate to trans-
formational, interactive, and concurrent systems, respectively.

Decision tables and finite state machines are good choices for ASF testing. If an ASF is described
using a decision table, conditions typically include port input events, and actions are port output events.
We can then devise test cases that cover every condition, every action, or, most completely, every rule.
For finite state machine models, test cases can cover every state, every transition, or every path.

Thread testing based on decision tables is cumbersome. We might describe threads as sequences
of rules from different decision tables, but this becomes very messy to track in terms of coverage.
We need finite state machines as a minimum, and if any form of interaction occurs, Petri nets are
a better choice. There, we can devise thread tests that cover every place, every transition, and every
sequence of transitions.

https://hemanthrajhemu.github.io

278  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

14.7.2 � Specification-Based System Test Coverage
The model-based approaches to thread identification are clearly useful, but what if no behavioral
model exists for a system to be tested? The testing craftsperson has two choices: develop a behav-
ioral model or resort to the system-level analogs of specification-based testing. Recall that when
specification-based test cases are identified, we use information from the input and output spaces
as well as the function itself. We describe system testing threads here in terms of coverage metrics
that are derived from three of the basis concepts (events, ports, and data).

14.7.2.1 � Event-Based Thread Testing

Consider the space of port input events. Five port input thread coverage metrics are easily defined.
Attaining these levels of system test coverage requires a set of threads such that

Port Input 1: each port input event occurs
Port Input 2: common sequences of port input events occur
Port Input 3: each port input event occurs in every “relevant” data context
Port Input 4: for a given context, all “inappropriate” input events occur
Port Input 5: for a given context, all possible input events occur

The Port Input 1 metric is a bare minimum and is inadequate for most systems. Port Input 2
coverage is the most common, and it corresponds to the intuitive view of system testing because it
deals with “normal use.” It is difficult to quantify, however. What is a common sequence of input
events? What is an uncommon one?

The last three metrics are defined in terms of a “context.” The best view of a context is that it is
a point of event quiescence. In the SATM system, screen displays occur at the points of event qui-
escence. The Port Input 3 metric deals with context-sensitive port input events. These are physical
input events that have logical meanings determined by the context within which they occur. In the
SATM system, for example, a keystroke on the B1 function button occurs in five separate contexts
(screens displayed) and has three different meanings. The key to this metric is that it is driven by
an event in all of its contexts. The Port Input 4 and Port Input 5 metrics are converses: they start
with a context and seek a variety of events. The Port Input 4 metric is often used on an informal
basis by testers who try to break a system. At a given context, they want to supply unanticipated
input events just to see what happens. In the SATM system, for example, what happens if a func-
tion button is depressed during the PIN entry stage? The appropriate events are the digit and can-
cel keystrokes. The inappropriate input events are the keystrokes on the B1, B2, and B3 buttons.

This is partially a specification problem: we are discussing the difference between prescribed
behavior (things that should happen) and proscribed behavior (things that should not happen). Most
requirements specifications have a hard time only describing prescribed behavior; it is usually testers
who find proscribed behavior. The designer who maintains my local ATM system told me that once
someone inserted a fish sandwich in the deposit envelope slot. (Apparently they thought it was a
waste receptacle.) At any rate, no one at the bank ever anticipated insertion of a fish sandwich as a
port input event. The Port Input 4 and Port Input 5 metrics are usually very effective, but they raise
one curious difficulty. How does the tester know what the expected response should be to a pro-
scribed input? Are they simply ignored? Should there be an output warning message? Usually, this is
left to the tester’s intuition. If time permits, this is a powerful point of feedback to requirements spec-
ification. It is also a highly desirable focus for either rapid prototyping or executable specifications.

https://hemanthrajhemu.github.io

System Testing  ◾  279

© 2010 Taylor & Francis Group, LLC

We can also define two coverage metrics based on port output events:

Port Output 1: each port output event occurs
Port Output 2: each port output event occurs for each cause

Port Output 1 coverage is an acceptable minimum. It is particularly effective when a system has
a rich variety of output messages for error conditions. (The SATM system does not.) Port Output 2
coverage is a good goal, but it is hard to quantify. For now, note that Port Output 2 coverage refers
to threads that interact with respect to a port output event. Usually, a given output event only has
a small number of causes. In the SATM system, screen 10 might be displayed for three reasons: the
terminal might be out of cash, it may be impossible to make a connection with the central bank to
get the account balance, or the withdrawal door might be jammed. In practice, some of the most
difficult faults found in field trouble reports are those in which an output occurs for an unsuspected
cause. Here is one example: My local ATM system (not the SATM) has a screen that informs me that
“Your daily withdrawal limit has been reached.” This screen should occur when I attempt to withdraw
more than $300 in one day. When I see this screen, I used to assume that my wife has made a major
withdrawal (thread interaction), so I request a lesser amount. I found out that the ATM also produces
this screen when the amount of cash in the dispenser is low. Instead of providing a lot of cash to the
first users, the central bank prefers to provide less cash to more users.

14.7.2.2 � Port-Based Thread Testing

Port-based testing is a useful complement to event-based testing. With port-based testing, we ask,
for each port, what events can occur at that port. We then seek threads that exercise input ports
and output ports with respect to the event lists for each port. (This presumes such event lists have
been specified; some requirements specification techniques mandate such lists.) Port-based testing
is particularly useful for systems in which the port devices come from external suppliers. The main
reason for port-based testing can be seen in the E/R model of the basis constructs (Figure 14.3).
The many-to-many relationship between devices and events should be exercised in both direc-
tions. Event-based testing covers the one-to-many relationship from events to ports, and, con-
versely, port-based testing covers the one-to-many relationship from ports to events. The SATM
system fails us at this point—no SATM event occurs at more than one port.

14.8 � Supplemental Approaches to System Testing
All model-based testing approaches have been open to the criticism that the testing is only as good
as the underlying model. There is no escaping this. In response, some authorities recommend vari-
ous “random” supplements. Two such techniques, mutation testing and fuzzing, are discussed in
Chapter 21. In this section, we consider two fallback strategies, each of which has thread execution
probability as a starting point. Both operational profiling and risk-based testing are responses to
the “squeeze” on available system testing time.

14.8.1 � Operational Profiles
In its most general form, Zipf ’s law holds that 80% of the activities occur in 20% of the space.
Activities and space can be interpreted in numerous ways: people with messy desks hardly ever

https://hemanthrajhemu.github.io

280  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

use most of their desktop clutter; programmers seldom use more than 20% of the features of their
favorite programming language, and Shakespeare (whose writings contain an enormous vocabu-
lary) uses a small fraction of his vocabulary most of the time. Zipf ’s law applies to software (and
testing) in several ways. The most useful interpretation for testers is that the space consists of all
possible threads, and activities are thread executions (or traversals). Thus, for a system with many
threads, 80% of the execution traverses only 20% of the threads.

Recall that a failure occurs when a fault is executed. The whole idea of testing is to execute test
cases such that, when a failure occurs, the presence of a fault is revealed. We can make an impor-
tant distinction: the distribution of faults in a system is only indirectly related to the reliability of
the system. The simplest view of system reliability is the probability that no failure occurs during
a specific time interval. (Notice that no mention is even made of faults, the number of faults, or
fault density.) If the only faults are “in the corners” on threads that are seldom traversed, the over-
all reliability is higher than if the same number of faults were on “high-traffic” threads. The idea
of operational profiles is to determine the execution frequencies of various threads and to use this
information to select threads for system testing. Particularly when test time is limited (usually),
operational profiles maximize the probability of finding faults by inducing failures in the most
frequently traversed threads. Here we use our SATM system. In Figure 14.13, the short use case
labels on the transitions in Figure 14.12 are replaced by estimated transition probabilities.

0.02

0.04
0.04

0.04

S1: Card
swipe

S2: 1st
PIN try

S3: 2nd
PIN try

S5:
Transaction

choice

S6:
Balance

S7:
Deposit

S8: Valid
withdrawal

S12: Close
session?

S9: Not multiple
of $20

S10: Funds
insufficient

S11: Low
on cash

S4: 3rd
PIN try

0.98

0.96 0.96

0.96

0.02
0.05

0.05

0.85

0.02

0.01

1.00

1.00

1.00

1.00
1.00

1.00

Figure 14.13 T ransition probabilities in SATM finite state machine of Figure 14.12.

https://hemanthrajhemu.github.io

System Testing  ◾  281

© 2010 Taylor & Francis Group, LLC

Finite state machines are the preferred model for identifying thread execution probabilities.
The mathematics behind this is that the transition probabilities can be expressed is a “transition
matrix” where the element in row i, column j is the probability of the transition from state i to
state j. Powers of the transition matrix are analogous to the powers of the adjacency matrix when
we discussed reachability in Chapter 4. For small systems, it is usually easier to show the transi-
tion probabilities in a spreadsheet, as in Table 14.12. Once the thread probabilities are known,
they sorted according to execution probability, most to least probable. This is done in Table 14.13.

Just as the quality of model-based testing is limited by the correctness of the underlying model, the
analysis of operational profiles is limited by the validity of the transition probability estimates. There
are strategies to develop these estimates. One is to use historical data from similar systems. Another
is to use customer-supplied estimates. Still another is to use a Delphi approach in which a group of
experts give their guesses, and some average is determined. This might be based on convergence of a
series of estimates, or possibly by having seven experts, and eliminating the high and low estimates.

Table 14.12  Spreadsheet of SATM Transition Probabilities

Path Transition Probabilities Path Probability

First try S1, S2, S5, S6, S12 0.999 0.96 0.02 1 1 0.019181

S1, S2, S5, S7, S12 0.999 0.96 0.05 1 1 0.047952

S1, S2, S5, S8, S12 0.999 0.96 0.85 1 1 0.815184

S1, S2, S5, S9, S12 0.999 0.96 0.05 1 1 0.047952

S1, S2, S5, S10, S12 0.999 0.96 0.02 1 1 0.019181

S1, S2, S5, S11, S12 0.999 0.96 0.01 1 1 0.009590

Second
try

S1, S2, S3, S5, S6, S12 0.999 0.04 0.96 0.02 1 0.000767

S1, S2, S3, S5, S7, S12 0.999 0.04 0.96 0.05 1 0.001918

S1, S2, S3, S5, S8, S12 0.999 0.04 0.96 0.85 1 0.032607

S1, S2, S3, S5, S9, S12 0.999 0.04 0.96 0.05 1 0.001918

S1, S2, S3, S5, S10, S12 0.999 0.04 0.96 0.02 1 0.000767

S1, S2, S3, S5, S11, S12 0.999 0.04 0.96 0.01 1 0.000384

Third try S1, S2, S3, S4, S5, S6, S12 0.999 0.04 0.04 0.96 0.02 0.000031

S1, S2, S3, S4, S5, S7, S12 0.999 0.04 0.04 0.96 0.05 0.000077

S1, S2, S3, S4, S5, S8, S12 0.999 0.04 0.04 0.96 0.85 0.001304

S1, S2, S3, S4, S5, S9, S12 0.999 0.04 0.04 0.96 0.05 0.000077

S1, S2, S3, S4, S5, S10, S12 0.999 0.04 0.04 0.96 0.02 0.000031

S1, S2, S3, S4, S5, S11, S12 0.999 0.04 0.04 0.96 0.01 0.000015

Bad card S1, S1 0.001 1 1 1 1 0.001000

PIN failed S1, S2, S3, S1 0.999 0.04 0.04 0.04 1 0.000064

https://hemanthrajhemu.github.io

282  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

Whatever approach is used, the final transition probabilities are still estimates. On the positive side, we
could do a sensitivity analysis. In this situation, the overall ordering of probabilities is not particularly
sensitive to small variations in the individual transition probabilities.

Operational profiles provide a feeling for the traffic mix of a delivered system. This is helpful for
reasons other than only optimizing system testing. These profiles can also be used in conjunction with
simulators to get an early indication of execution time performance and system transaction capacity.

14.8.2 � Risk-Based Testing
Risk-based testing is a refinement of operational profiles. Just knowing which threads are most
likely to execute might not be enough. What if a malfunction of a somewhat obscure thread were
to be extremely costly? The cost might be in terms of legal penalties, loss of revenue, or difficulty
of repair. The basic definition of risk is

Table 14.13  SATM Operational Profile

Path Transition Probabilities Path Probability

First try S1, S2, S5, S8, S12 0.999 0.96 0.85 1 1 81.5184%

First try S1, S2, S5, S7, S12 0.999 0.96 0.05 1 1 4.7952%

First try S1, S2, S5, S9, S12 0.999 0.96 0.05 1 1 4.7952%

Second try S1, S2, S3, S5, S8, S12 0.999 0.04 0.96 0.85 1 3.2607%

First try S1, S2, S5, S6, S12 0.999 0.96 0.02 1 1 1.9181%

First try S1, S2, S5, S10, S12 0.999 0.96 0.02 1 1 1.9181%

First try S1, S2, S5, S11, S12 0.999 0.96 0.01 1 1 0.9590%

Second try S1, S2, S3, S5, S7, S12 0.999 0.04 0.96 0.05 1 0.1918%

Second try S1, S2, S3, S5, S9, S12 0.999 0.04 0.96 0.05 1 0.1918%

Third try S1, S2, S3, S4, S5, S8, S12 0.999 0.04 0.04 0.96 0.85 0.1304%

Bad card S1, S1 0.001 1 1 1 1 0.1000%

Second try S1, S2, S3, S5, S6, S12 0.999 0.04 0.96 0.02 1 0.0767%

Second try S1, S2, S3, S5, S10, S12 0.999 0.04 0.96 0.02 1 0.0767%

Second try S1, S2, S3, S5, S11, S12 0.999 0.04 0.96 0.01 1 0.0384%

Third try S1, S2, S3, S4, S5, S7, S12 0.999 0.04 0.04 0.96 0.05 0.0077%

Third try S1, S2, S3, S4, S5, S9, S12 0.999 0.04 0.04 0.96 0.05 0.0077%

PIN failed S1, S2, S3, S1 0.999 0.04 0.04 0.04 1 0.0064%

Third try S1, S2, S3, S4, S5, S6, S12 0.999 0.04 0.04 0.96 0.02 0.0031%

Third try S1, S2, S3, S4, S5, S10, S12 0.999 0.04 0.04 0.96 0.02 0.0031%

Third try S1, S2, S3, S4, S5, S11, S12 0.999 0.04 0.04 0.96 0.01 0.0015%

https://hemanthrajhemu.github.io

System Testing  ◾  283

© 2010 Taylor & Francis Group, LLC

	 Risk = cost * (probability of occurrence)	

Since operational profiles give the (estimate of ) probability of occurrence, we only need to make
an estimate of the cost factor.

Hans Schaefer, a consultant who specializes in risk-based testing, advises that the first step is
to group the system into risk categories. He advises four risk categories: Catastrophic, Damaging,
Hindering, and Annoying (Schaefer, 2005). Next, the cost weighting is assessed. He suggests a
logarithmic weighting: 1 for low cost of failure, 3 for medium, and 10 for high. Why logarithmic?
Psychologists are moving in this direction because subjects who are asked to rank factors on linear
scales, for example, 1 for low and 5 for high, do not make enough of a distinction in what is usu-
ally a subjective assessment. Table 14.14 is the result of this process for our SATM use cases in
Table 14.13. In this assessment, failure of a deposit was the most severe.

Table 14.14  SATM Risk Assessment

Use Case Description
Use Case

Probability
Cost of
Failure Risk

First try, normal withdrawal 81.5184% 3 2.4456

First try, deposit 4.7952% 10 0.4795

First try, withdrawal but insufficient funds 1.9181% 10 0.1918

First try, withdrawal not multiple of $20 4.7952% 3 0.1439

Second try, normal withdrawal 3.2607% 3 0.0978

First try, withdrawal, ATM low on cash 0.9590% 10 0.0959

First try, balance inquiry 1.9181% 1 0.0192

Second try, deposit 0.1918% 10 0.0192

Insertion of invalid ATM card 0.1000% 10 0.0100

Second try, withdrawal insufficient funds 0.0767% 10 0.0077

Second try, withdrawal not multiple of $20 0.1918% 3 0.0058

Third try, normal withdrawal 0.1304% 3 0.0039

Second try, withdrawal, ATM low on cash 0.0384% 10 0.0038

Second try, balance inquiry 0.0767% 1 0.0008

Third try, deposit 0.0077% 10 0.0008

Third try, withdrawal but insufficient funds 0.0031% 10 0.0003

Third try, withdrawal not multiple of $20 0.0077% 3 0.0002

PIN entry failed after third attempt 0.0064% 3 0.0002

Third try, withdrawal, ATM low on cash 0.0015% 10 0.0002

Third try, balance inquiry 0.0031% 1 0.0000

https://hemanthrajhemu.github.io

284  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

Schaefer’s risk categories applied to the SATM use cases are given below. Deposit failures are
seen as most severe because a customer may depend on a deposit being made to cover other checks.
Balance inquiries are least severe because a malfunction is only inconvenient.

Catastrophic:	 deposits, invalid withdrawals
Damaging:	 normal withdrawals
Hindering:	 invalid ATM card, PIN entry failure
Annoying:	 balance inquiries

The risk-ordered SATM use cases in Table 4.14 differ slightly from their operational profile in
Table 14.13. The normal withdrawal after a successful PIN entry on the first try still heads the list,
mostly due to its high probability.

As a refinement, Schaefer suggests assigning several attributes to a use case and giving these
attributes weighting values. For our SATM system, we might consider factors such as customer
convenience, bank security, and identity theft.

14.9 � Nonfunctional System Testing
The system testing ideas thus far discussed have been based on specification-based, or behavioral,
requirements. Functional requirements are absolutely in the does view, as they describe what a
system does (or should do). To generalize, nonfunctional testing refers to how well a system per-
forms its functional requirements. Many nonfunctional requirements are categorized onto “-abilities”:
reliability, maintainability, scalability, usability, compatibility, and so on. While many practitioners
have clear ideas on the meaning of the -abilities in their product domains, there is not much stan-
dardization of either the terms or the techniques. Here we consider the most common form of
nonfunctional testing—stress testing.

14.9.1 � Stress Testing Strategies
Synonymously called performance testing, capacity testing, or load testing, this is the most com-
mon, and maybe the most important form of nonfunctional testing. Because stress testing is so
closely related to the nature of the system being tested, stress testing techniques are also applica-
tion dependent. Here we describe three common strategies, and illustrate them with examples.

14.9.1.1 � Compression

Consider the performance of a system in the presence of extreme loads. A web-based application
may be very popular, and its server might not have the capacity. Telephone switching systems use
the term Busy Hour Call Attempts (BHCAs) to refer to such offered traffic loads. The strategy in
those systems is best understood as compression.

A local switching system must recognize when a subscriber originates a call. Other than sens-
ing a change in subscriber line status from idle to active, the main indicator of a call attempt is
the entry of digits. Although some dial telephones still exist, most subscribers use digit keys. The
technical term is Dual Tone Multifrequency (DTMF) tones, as the usual 3 × 4 array of digit keys
has three frequencies for the columns and four frequencies for the rows of digit keypads. Each digit
is therefore represented by two frequency tones, hence the name. The local switching system must
convert the tones to a digital form, and this is done with a DTMF receiver.

https://hemanthrajhemu.github.io

System Testing  ◾  285

© 2010 Taylor & Francis Group, LLC

Here is a hypothetical example, with simplified numbers, to help understand the compression
strategy. Suppose a local switching system must support 50,000 BHCAs. To do so, the system
might have 5000 DTMF receivers. To test this traffic load, somehow 50,000 call originations
must be generated in 60 minutes. The whole idea of compression strategies it to reduce these num-
bers to more manageable sizes. If a prototype only has 50 DTMF receivers, the load testing would
need to generate 500 call attempts.

This pattern of compressing some form of traffic and associated devices to handle the offered
traffic occurs in many application domains, hence the general term, traffic engineering.

14.9.1.2 � Replication

Some nonfunctional requirements may be unusually difficult to actually perform. Many times,
actual performance would destroy the system being tested (destructive vs. nondestructive test-
ing). There was a Calvin and Hobbes comic strip that succinctly explained this form of testing.
In the first frame, Calvin sees a sign on a bridge that says “Maximum weight 5 tons.” He asks
his father how this is determined. The father answers that successively heavier trucks are driven
over the bridge until the bridge collapses. In the last frame, Calvin has his standard shock/horror
expression. Rather than destroy a system, some form of replication can be tried. Two examples
follow.

One of the nonfunctional requirements for an army field telephone switching center was that
it had to be operational after a parachute drop. Actually doing this was both very expensive and
logistically complex. None of the system testers knew how to replicate this; however, in consulta-
tion with a former paratrooper, the testers learned that the impact of a parachute drop is similar
to jumping off a ten-foot (three meter) wall. The testers put a prototype on a fork lift skid, lifted it
to a height of ten feet, and tilted it forward until it fell off the skid. After hitting the ground, the
prototype was still operational, and the test passed.

One of the most dangerous incidents for aircraft is a mid-air collision with a bird. Here is
an excerpt of a nonfunctional requirement for the F 35 jet aircraft built by Lockheed Martin
(Owens et al., 2009).

The Canopy System Must Withstand Impact of a 4 lb Bird at 480 Knots on the Reinforced
Windscreen and 350 Knots on the Canopy Crown Without:

◾◾ Breaking or Deflecting so as to Strike the Pilot When Seated in the Design Eye
“High” Position,

◾◾ Damage To The Canopy That Would Cause Incapacitating Injury To The Pilot, or
◾◾ Damage That Would Preclude Safe Operation of, or Emergency Egress from the

Aircraft

Clearly it would be impossible to arrange a mid-air bird collision, so the Lockheed Martin
testers replicated the problem with an elaborate cannon that would shoot a dead chicken at the
windscreen and at the canopy. The tests passed.

There is an urban legend, debunked on Snopes.com, about follow-up on a British (or French,
or fill-in-your-favorite-country) firm that used the same idea for canopy testing, but their tests
all failed. When they asked the US testers why the failures were so consistent, they received a
wry answer: “you need to thaw the chicken first.” Why mention this? If nonfunctional testing is
done with a replication strategy, it is important to replicate, as closely as possible, the actual test
scenario. (But it is funny.)

https://hemanthrajhemu.github.io

286  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

14.9.2 � Mathematical Approaches
In some cases, nonfunctional testing cannot be done either directly, indirectly, or with commercial
tools. There are three forms of analysis that might help—queuing theory, reliability models, and
simulation.

14.9.2.1 � Queuing Theory

Queuing theory deals with servers and queues of tasks that use the service. The mathematics behind
queuing theory deals with task arrival rates, and service times, as well as the number of queues and the
number of servers. In everyday life, we see examples of queuing situations: checkout lines in a grocery
store, lines to buy tickets at a movie theater, or lift lines at a ski area. Some settings, for example, a local
post office, uses a single queue of patrons waiting for service at one of several clerk positions. This hap-
pens to be the most efficient queuing discipline—single queue, multiple server. Service times represent
some form of system capacity, and queues represent traffic (transactions) offered to the system.

14.9.2.2 � Reliability Models

Reliability models are somewhat related to queuing theory. Reliability deals with failure rates
of components and computes characteristics such as likelihood of system failure, mean time to
failure (MTTF), mean time between failures (MTBF), and mean time to repair (MTTR). Given
actual or assumed failure rates of system components, these quantities can be computed.

A telephone switching system has a reliability requirement of not more than two hours of down-
time in 40 years of continuous operation. This is an availability of 0.99999429, or stated negatively,
failure rate of 5.7 × 10–6, (0.0000057). How can this be guaranteed? Reliability models are the first
choice. They can be expressed as tree diagrams or as directed graphs, very similar to the approach
used to compute an operational profile. These models are based on failure rates of individual system
components that are linked together physically, and abstractly in the reliability model.

A digital end office intended for the rural U.S. market had to be certified by an agency of the
U.S. government, the Rural Electric Administration (REA). That body followed a compression
strategy, and required an on-site test for six months. If the system functioned with less than 30
minutes of downtime, it was certified. A few months into the test interval, the system had less than
two minutes of downtime. Then a tornado hit the town and destroyed the building that contained
the system. The REA declared the test to be a failure. Only extreme pleading resulted in a retest.
The second time, there was less than 30 seconds of downtime in the six-month interval.

Reliability models have a solid history of applicability to physical systems, but can they be
applied to software? Physical components can age, and therefore deteriorate. This is usually shown
in the Weibull distribution, in which failures drop to nearly zero rapidly. Some forms show an
increase after an interval that represents the useful life of a component. The problem is that
software, once well tested, does not deteriorate. The main difference between reliability models
applied to software versus hardware comes down to the arrival rate of failures. Testing based on
operational profiles, and the extension to risk-based testing is a good start; however, no amount of
testing can guarantee the absence of software faults.

14.9.2.3 � Monte Carlo Testing

Monte Carlo testing might be considered a last resort in the system tester’s arsenal. The basic idea
of Monte Carlo testing is to randomly generate a large number of threads (transactions) and then

https://hemanthrajhemu.github.io

System Testing  ◾  287

© 2010 Taylor & Francis Group, LLC

see if anything unexpected happens. The Monte Carlo part comes from the use of pseudorandom
numbers, not from the fact that the whole approach is a gamble. Monte Carlo testing has been suc-
cessful in applications where computations involving physical (as opposed to logical, see Chapter
6) variables are used. The major drawback to Monte Carlo testing is that the large number of
random transactions requires a similarly large number of expected outputs in order to determine
whether a random test case passes or fails.

14.10 �A tomic System Function Testing Example
We can illustrate ASF testing on our integrationNextDate pseudocode. This version differs slightly
from that in Chapter 13. A few output statements were added to make ASF identification more
visible.

1	 Main integrationNextDate	 ‘start program event occurs here
	 Type	 Date
	 Month As Integer
	 Day As Integer
	 Year As Integer
	 EndType
	 Dim today As Date
	 Dim tomorrow As Date
2	 Output(“Welcome to NextDate!”)
3	 GetDate(today)	 ‘msg1
4	 PrintDate(today)	 ‘msg2
5	 tomorrow = IncrementDate(today)	 ‘msg3
6	 PrintDate(tomorrow)	 ‘msg4
7	 End Main

8	 Function isLeap(year) Boolean
9	 If (year divisible by 4)
10	 Then
11	 If (year is NOT divisible by 100)
12	 Then isLeap = True
13	 Else
14	 If (year is divisible by 400)
15	 Then isLeap = True
16	 Else isLeap = False
17	 EndIf
18	 EndIf
19	 Else isLeap = False
20	 EndIf
21	 End (Function isLeap)

22	 Function lastDayOfMonth(month, year)	Integer
23	 Case month Of
24	 Case 1: 1, 3, 5, 7, 8, 10, 12
25	 lastDayOfMonth = 31
26	 Case 2: 4, 6, 9, 11
27	 lastDayOfMonth = 30
28	 Case 3: 2

https://hemanthrajhemu.github.io

288  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

29	 If (isLeap(year))	 ‘msg5
30	 Then lastDayOfMonth = 29
31	 Else lastDayOfMonth = 28
32	 EndIf
33	 EndCase
34	 End (Function lastDayOfMonth)

35	 Function GetDate(aDate) Date
	 dim aDate As Date

36	 Function ValidDate(aDate)	 Boolean ‘within scope of GetDate
	 dim aDate As Date
	 dim dayOK, monthOK, yearOK As Boolean

37	 If ((aDate.Month > 0) AND (aDate.Month < = 12)
38	 Then	 monthOK = True
39	 Output(“Month OK”)
40	 Else	 monthOK = False
41	 Output(“Month out of range”)
42	 EndIf
43	 If (monthOK)
44	 Then
45	 If ((aDate.Day > 0) AND (aDate.Day < =
	 lastDayOfMonth(aDate.Month, aDate.Year))	 ‘msg6
46	 Then	 dayOK = True
47	 Output(“Day OK”)
48	 Else	 dayOK = False
49	 Output(“Day out of range”)
50	 EndIf
51	 EndIf
52	 If ((aDate.Year > 1811) AND (aDate.Year < = 2012)
53	 Then	 yearOK = True
54	 Output(“Year OK”)
55	 Else	 yearOK = False
56	 Output(“Year out of range”)
57	 EndIf
58	 If (monthOK AND dayOK AND yearOK)
59	 Then ValidDate = True
60	 Output(“Date OK”)
61	 Else ValidDate = False
62	 Output(“Please enter a valid date”)
63	 EndIf
64	 End (Function ValidDate)

	 ‘GetDate body begins here
65	 Do
66	 Output(“enter a month”)
67	 Input(aDate.Month)
68	 Output(“enter a day”)
69	 Input(aDate.Day)
70	 Output(“enter a year”)
71	 Input(aDate.Year)
72	 GetDate.Month = aDate.Month
73	 GetDate.Day = aDate.Day
74	 GetDate.Year = aDate.Year
75	 Until (ValidDate(aDate))	 ‘msg7
76	 End (Function GetDate)

https://hemanthrajhemu.github.io

System Testing  ◾  289

© 2010 Taylor & Francis Group, LLC

77	 Function IncrementDate(aDate)	Date
78	 If (aDate.Day < lastDayOfMonth(aDate.Month))	 ‘msg8
79	 Then aDate.Day = aDate.Day + 1
80	 Else aDate.Day = 1
81	 If (aDate.Month = 12)
82	 Then aDate.Month = 1
83	 aDate.Year = aDate.Year + 1
84	 Else aDate.Month = aDate.Month + 1
85	 EndIf
86	 EndIf
87	 End (IncrementDate)

88	 Procedure PrintDate(aDate)
89	 Output(“Day is “, aDate.Month, “/”, aDate.Day, “/”, aDate.Year)
90	 End (PrintDate)

14.10.1 � Identifying Input and Output Events
Recall that an ASF begins with a port input event, conducts some processing, and, depending
on the project-chosen granularity, ends with one or more port output events. We can identify
ASFs from source code by locating the nodes at which port inputs and outputs occur. Table
14.15 lists the port input and output events in integrationNextDate and the corresponding node
numbers.

Table 14.15  Location of Port Events in integrationNextDate

Input Events Node Output Event Description Node

e0: Start program event 1 e7: Welcome message 2

e1: Center a valid month 67 e8: Print today’s date 4

e2: Enter an invalid month 67 e9: Print tomorrow’s date 6

e3: Enter a valid day 69 e10: “Month OK” 39

e4: Enter an invalid day 69 e11: “Month out of range” 41

e5: Enter a valid year 71 e12: “Day OK” 47

e6: Enter an invalid year 71 e13: “Day out of range” 49

e14: “Year OK” 54

e15: “Year out of range” 56

e16: “Date OK” 60

e17: “Please enter a valid date” 62

e18: “Enter a month” 66

e19: “Enter a day” 68

e20: “Enter a year” 70

e21: “Day is month, day, year” 89

https://hemanthrajhemu.github.io

290  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

14.10.2 � Identifying Atomic System Functions
The next step is to identify the ASFs in terms of the port input and output events. Table 14.16
contains the first attempt at ASF identification. There is a subtle problem with this first set of ASFs.
They presume that the states in the ASF graph in Figure 14.14 are independent, but they are not.
As we have seen, dependent nodes often lead to impossible paths.

The ASF graph shows all the ways both valid months, days, and years can be entered, but the
transition to ASF-8 (or to ASF-9) depends on the history of previous ASFs. Since FSMs have no
memory, these transitions are necessarily undefined.

Table 14.16  First Attempt at ASFs

Atomic System Function Inputs Outputs

ASF-1: start program e0 e7

ASF-2: enter a valid month e1 e10

ASF-3: enter an invalid month e2 e11

ASF-4: enter a valid day e3 e12

ASF-5: enter an invalid day e4 e13

ASF-6: enter a valid year e5 e14

ASF-7: enter an invalid year e6 e15

ASF-8: print for valid input

ASF-9: print for invalid input

?

ASF-1

ASF-2

ASF-4

ASF-6

ASF-3

ASF-5

ASF-7

ASF-8 ASF-9

Figure 14.14  Directed graph of Atomic System Functions for integrationNextDate.

https://hemanthrajhemu.github.io

System Testing  ◾  291

© 2010 Taylor & Francis Group, LLC

14.10.3 � Revised Atomic System Functions
The Do Until loop from nodes 65 to 75 allows for many mistakes. The checking for valid month,
day, and year values is linear, but all three must be correct to terminate the Do Until loop. Since
we can make any number of input variable mistakes, in any order, there is no way to represent
in an ASF graph when the Do Until loop will terminate. Incidentally, this is case of the Anna
Karenina principle (see Diamond, 1997). The principle refers to situations where a conjunction of
criteria must all be true; any one becoming false negates the whole situation. It comes from the
first sentence in Leo Tolstoy’s famous Russian novel, Anna Karenina: “Happy families are all alike;
every unhappy family is unhappy in its own way.”

The second attempt (see Table 14.17) postulates larger ASFs (maybe they are “molecular”?) that
have pluralities of port inputs and port outputs.

Now each ASF is the entry of a triple (month, day, year). ASFs 2, 3, and 4 make one mistake
at a time, and ASF-5 gets all the values right. Would we really need the last four (two or three
mistakes at a time)? Probably not. That kind of testing should have been done at the unit level.
Figure 14.15 is the new ASF graph for the first five of the “revised” ASFs.

Table 14.17  Second Attempt at ASFs

Atomic System Function Inputs Outputs

ASF-1: start program e0 e7

ASF-2: enter a date with an invalid month, valid day, and
valid year

e2, e3,
e5

e11, e12, e14,
e17

ASF-3: enter a date with an invalid day, valid month, and
valid year

e1, e4,
e5

e10, e13, e14,
e17

ASF-4: enter a date with an invalid year, valid day, and
valid month

e1, e3,
e6

e10, e12, e15,
e17

ASF-5: enter a date with valid month, day, and year e1, e3,
e5

e10, e12, e14, e16,
e21

ASF-6: enter a date with valid month, invalid day, and
invalid year

e1, e4,
e6

e10, e13, e15,
e17

ASF-7: enter a date with valid day, invalid month, and
invalid year

e2, e3,
e6

e11, e12, e15,
e17

ASF-8: enter a date with valid year, invalid day, and
invalid month

e5, e4,
46

e14, e13, e15,
e17

ASF-9: enter a date with invalid month, invalid day, and
invalid year

e2, e4,
e6

e11, e13, e15,
e17

https://hemanthrajhemu.github.io

292  ◾  Software Testing﻿

© 2010 Taylor & Francis Group, LLC

EXERCISES
	 1.	One of the problems of system testing, particularly with interactive systems, is to anticipate

all the strange things the user might do. What happens in the SATM system if a customer
enters three digits of a PIN and then leaves?

	 2.	To remain “in control” of abnormal user behavior (the behavior is abnormal, not the user),
the SATM system might introduce a timer with a 30-second time-out. When no port input
event occurs for 30 seconds, the SATM system could ask if the user needs more time. The
user can answer yes or no. Devise a new screen and identify port events that would imple-
ment such a time-out event.

	 3.	Suppose you add the time-out feature described in Exercise 2 to the SATM system. What
regression testing would you perform?

	 4.	Make an additional refinement to the PIN try finite state machine (Figure 14.6) to implement
your time-out mechanism from Exercise 2, then revise the thread test case in Table 14.3.

	 5.	Develop an incidence matrix similar to Table 14.10 for the PIN entry short use cases in
Table 14.8.

	 6.	Does it make sense to use test coverage metrics in conjunction with operational profiles?
Same question for risk-based testing. Discuss this.

For questions 7 through 9, revisit the description of the Garage Door Controller in Chapter 2
and the corresponding finite state machine in Chapter 4.

	 7.	Develop extended essential use cases for the Garage Door Controller.
	 8.	The input and output events for the Garage Door Controller are shown in Figure 4.6. Use

these as starting points for incidence matrices of your use cases with respect to input events,
output events, and all events.

	 9.	Develop Event-Driven Petri Nets for the Garage Door Controller.

References
Diamond, J., Guns, Germs, and Steel, W. W. Norton, New York, 1997.
Jorgensen, P.C., System testing with pseudo-structures, American Programmer, Vol. 7, No. 4, April 1994,

pp. 29–34.

ASF-1

ASF-2 ASF-4

ASF-3

ASF-5

Figure 14.15  Directed graph of five Atomic System Functions for integrationNextDate.

https://hemanthrajhemu.github.io

System Testing  ◾  293

© 2010 Taylor & Francis Group, LLC

Jorgensen, P.C., Modeling Software Behavior: A Craftsman’s Approach, CRC Press, New York, 2009.
Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design, 2nd ed.,

Prentice-Hall, Upper Saddle River, NJ, 2001.
Schaefer, H., Risk based testing, strategies for prioritizing tests against deadlines, Software Test Consulting,

http://home.c2i.net/schaefer/testing.html, 2005.
Owens, S.D., Caldwell, E.O. and Woodward, M.R., Birdstrike certification tests of F-35 canopy and airframe

structure, 2009 Aircraft Structural Integrity Program (ASIP) Conference, Jacksonville, FL, December
2009, also can be found at Trimble, S., July 28, 2010, http://www.flightglobal.com/blogs/the-dew-
line/2010/07/video-f-35-birdstrike-test-via.html and http://www.flightglobal.com/blogs/the-dewline/
Birdstrike%20Impact%20Studies.pdf.

https://hemanthrajhemu.github.io

https://hemanthrajhemu.github.io

