

Visit : https://hemanthrajhemu.github.io

Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

https://hemanthrajhemu.github.io/
https://bit.ly/VTU_TELEGRAM
mailto:futurevisionbie@gmail.com
http://www.instagram.com/hemanthraj_hemu/
http://www.instagram.com/futurevisionbie/
https://bit.ly/FVBIESHARE

Software Testing and Analysis:
Process, Principles, and

Techniques

https://hemanthrajhemu.github.io

Contents

List of Figures xi

List of Tables xv

I Fundamentals of Test and Analysis 1

1 Software Test and Analysis in a Nutshell 3
1.1 Engineering Processes and Verification 3
1.2 Basic Questions . 5
1.3 When Do Verification and Validation Start and End? 5
1.4 What Techniques Should Be Applied? 7
1.5 How Can We Assess the Readiness of a Product? 10
1.6 How Can We Ensure the Quality of Successive Releases? 11
1.7 How Can the Development Process Be Improved? 11

2 A Framework for Test and Analysis 15
2.1 Validation and Verification . 15
2.2 Degrees of Freedom . 18
2.3 Varieties of Software . 23

3 Basic Principles 29
3.1 Sensitivity . 29
3.2 Redundancy . 32
3.3 Restriction . 33
3.4 Partition . 35
3.5 Visibility . 36
3.6 Feedback . 36

4 Test and Analysis Activities Within a Software Process 39
4.1 The Quality Process . 39
4.2 Planning and Monitoring . 41
4.3 Quality Goals . 42
4.4 Dependability Properties . 43
4.5 Analysis . 46

v

https://hemanthrajhemu.github.io

vi CONTENTS

4.6 Testing . 48
4.7 Improving the Process . 49
4.8 Organizational Factors . 50

II Basic Techniques 53

5 Finite Models 55
5.1 Overview . 55
5.2 Finite Abstractions of Behavior . 58
5.3 Control Flow Graphs . 59
5.4 Call Graphs . 63
5.5 Finite State Machines . 65

6 Dependence and Data Flow Models 77
6.1 Definition-Use Pairs . 77
6.2 Data Flow Analysis . 82
6.3 Classic Analyses: Live and Avail 85
6.4 From Execution to Conservative Flow Analysis 91
6.5 Data Flow Analysis with Arrays and Pointers 94
6.6 Interprocedural Analysis . 96

7 Symbolic Execution and Proof of Properties 101
7.1 Symbolic State and Interpretation 102
7.2 Summary Information . 104
7.3 Loops and Assertions . 105
7.4 Compositional Reasoning . 108
7.5 Reasoning about Data Structures and Classes 109

8 Finite State Verification 113
8.1 Overview . 113
8.2 State Space Exploration . 116
8.3 The State Space Explosion Problem 126
8.4 The Model Correspondence Problem 129
8.5 Granularity of Modeling . 131
8.6 Intensional Models . 134
8.7 Model Refinement . 138
8.8 Data Model Verification with Relational Algebra 140

III Problems and Methods 149

9 Test Case Selection and Adequacy 151
9.1 Overview . 151
9.2 Test Specifications and Cases . 152
9.3 Adequacy Criteria . 154
9.4 Comparing Criteria . 157

https://hemanthrajhemu.github.io

CONTENTS vii

10 Functional Testing 161
10.1 Overview . 161
10.2 Random versus Partition Testing Strategies 162
10.3 A Systematic Approach . 167
10.4 Choosing a Suitable Approach . 174

11 Combinatorial Testing 179
11.1 Overview . 180
11.2 Category-Partition Testing . 180
11.3 Pairwise Combination Testing . 188
11.4 Catalog-Based Testing . 194

12 Structural Testing 211
12.1 Overview . 212
12.2 Statement Testing . 215
12.3 Branch Testing . 217
12.4 Condition Testing . 219
12.5 Path Testing . 222
12.6 Procedure Call Testing . 229
12.7 Comparing Structural Testing Criteria 230
12.8 The Infeasibility Problem . 230

13 Data Flow Testing 235
13.1 Overview . 236
13.2 Definition-Use Associations . 236
13.3 Data Flow Testing Criteria . 239
13.4 Data Flow Coverage with Complex Structures 241
13.5 The Infeasibility Problem . 243

14 Model-Based Testing 245
14.1 Overview . 245
14.2 Deriving Test Cases from Finite State Machines 246
14.3 Testing Decision Structures . 251
14.4 Deriving Test Cases from Control and Data Flow Graphs 257
14.5 Deriving Test Cases from Grammars 257

15 Testing Object-Oriented Software 271
15.1 Overview . 271
15.2 Issues in Testing Object-Oriented Software 272
15.3 An Orthogonal Approach to Test . 280
15.4 Intraclass Testing . 282
15.5 Testing with State Machine Models 282
15.6 Interclass Testing . 286
15.7 Structural Testing of Classes . 293
15.8 Oracles for Classes . 298
15.9 Polymorphism and Dynamic Binding 301

https://hemanthrajhemu.github.io

viii CONTENTS

15.10 Inheritance . 303
15.11 Genericity . 306
15.12 Exceptions . 308

16 Fault-Based Testing 313
16.1 Overview . 313
16.2 Assumptions in Fault-Based Testing 314
16.3 Mutation Analysis . 315
16.4 Fault-Based Adequacy Criteria . 319
16.5 Variations on Mutation Analysis . 321

17 Test Execution 327
17.1 Overview . 327
17.2 From Test Case Specifications to Test Cases 328
17.3 Scaffolding . 329
17.4 Generic versus Specific Scaffolding 330
17.5 Test Oracles . 332
17.6 Self-Checks as Oracles . 334
17.7 Capture and Replay . 337

18 Inspection 341
18.1 Overview . 341
18.2 The Inspection Team . 343
18.3 The Inspection Process . 344
18.4 Checklists . 345
18.5 Pair Programming . 351

19 Program Analysis 355
19.1 Overview . 355
19.2 Symbolic Execution in Program Analysis 356
19.3 Symbolic Testing . 358
19.4 Summarizing Execution Paths . 359
19.5 Memory Analysis . 360
19.6 Lockset Analysis . 363
19.7 Extracting Behavior Models from Execution 365

IV Process 373

20 Planning and Monitoring the Process 375
20.1 Overview . 375
20.2 Quality and Process . 376
20.3 Test and Analysis Strategies . 377
20.4 Test and Analysis Plans . 382
20.5 Risk Planning . 386
20.6 Monitoring the Process . 389

https://hemanthrajhemu.github.io

CONTENTS ix

20.7 Improving the Process . 394
20.8 The Quality Team . 399

21 Integration and Component-based Software Testing 405
21.1 Overview . 405
21.2 Integration Testing Strategies . 408
21.3 Testing Components and Assemblies 413

22 System, Acceptance, and Regression Testing 417
22.1 Overview . 417
22.2 System Testing . 418
22.3 Acceptance Testing . 421
22.4 Usability . 423
22.5 Regression Testing . 427
22.6 Regression Test Selection Techniques 428
22.7 Test Case Prioritization and Selective Execution 434

23 Automating Analysis and Test 439
23.1 Overview . 439
23.2 Automation and Planning . 441
23.3 Process Management . 441
23.4 Static Metrics . 443
23.5 Test Case Generation and Execution 445
23.6 Static Analysis and Proof . 445
23.7 Cognitive Aids . 448
23.8 Version Control . 449
23.9 Debugging . 449
23.10 Choosing and Integrating Tools . 451

24 Documenting Analysis and Test 455
24.1 Overview . 455
24.2 Organizing Documents . 456
24.3 Test Strategy Document . 458
24.4 Analysis and Test Plan . 458
24.5 Test Design Specification Documents 460
24.6 Test and Analysis Reports . 462

Bibliography 467

Index 479

https://hemanthrajhemu.github.io

Chapter 3

Basic Principles

Mature engineering disciplines are characterized by basic principles. Principles pro-
vide a rationale for defining, selecting, and applying techniques and methods. They are
valid beyond a single technique and over a time span in which techniques come and
go, and can help engineers study, define, evaluate, and apply new techniques.

Analysis and testing (A&T) has been common practice since the earliest software
projects. A&T activities were for a long time based on common sense and individual
skills. It has emerged as a distinct discipline only in the last three decades.

This chapter advocates six principles that characterize various approaches and tech-
niques for analysis and testing: sensitivity, redundancy, restriction, partition, visibility,
and feedback. Some of these principles, such as partition, visibility, and feedback, are
quite general in engineering. Others, notably sensitivity, redundancy, and restriction,
are specific to A&T and contribute to characterizing A&T as a discipline.

3.1 Sensitivity

Human developers make errors, producing faults in software. Faults may lead to fail-
ures, but faulty software may not fail on every execution. The sensitivity principle
states that it is better to fail every time than sometimes.

Consider the cost of detecting and repairing a software fault. If it is detected im-
mediately (e.g., by an on-the-fly syntactic check in a design editor), then the cost of
correction is very small, and in fact the line between fault prevention and fault de-
tection is blurred. If a fault is detected in inspection or unit testing, the cost is still
relatively small. If a fault survives initial detection efforts at the unit level, but triggers
a failure detected in integration testing, the cost of correction is much greater. If the
first failure is detected in system or acceptance testing, the cost is very high indeed,
and the most costly faults are those detected by customers in the field.

A fault that triggers a failure on every execution is unlikely to survive past unit
testing. A characteristic of faults that escape detection until much later is that they
trigger failures only rarely, or in combination with circumstances that seem unrelated
or are difficult to control. For example, a fault that results in a failure only for some
unusual configurations of customer equipment may be difficult and expensive to detect.

29

https://hemanthrajhemu.github.io

30 Basic Principles

A fault that results in a failure randomly but very rarely — for example, a race condition
that only occasionally causes data corruption — may likewise escape detection until the
software is in use by thousands of customers, and even then be difficult to diagnose and
correct.

The small C program in Figure 3.1 has three faulty calls to string copy procedures.
The call to strcpy, strncpy, and stringCopy all pass a source string “Muddled,” which
is too long to fit in the array middle. The vulnerability of strcpy is well known, and is
the culprit in the by-now-standard buffer overflow attacks on many network services.
Unfortunately, the fault may or may not cause an observable failure depending on the
arrangement of memory (in this case, it depends on what appears in the position that
would be middle[7], which will be overwritten with a newline character). The standard
recommendation is to use strncpy in place of strcpy. While strncpy avoids overwriting
other memory, it truncates the input without warning, and sometimes without properly
null-terminating the output. The replacement function stringCopy, on the other hand,
uses an assertion to ensure that, if the target string is too long, the program always fails
in an observable manner.

The sensitivity principle says that we should try to make these faults easier to detect
by making them cause failure more often. It can be applied in three main ways: at the
design level, changing the way in which the program fails; at the analysis and testing
level, choosing a technique more reliable with respect to the property of interest; and at
the environment level, choosing a technique that reduces the impact of external factors
on the results.

Replacing strcpy and strncpy with stringCopy in the program of Figure 3.1 is a
simple example of application of the sensitivity principle in design. Run-time array
bounds checking in many programming languages (including Java but not C or C++)
is an example of the sensitivity principle applied at the language level. A variety of
tools and replacements for the standard memory management library are available to
enhance sensitivity to memory allocation and reference faults in C and C++.

The fail-fast property of Java iterators is another application of the sensitivity prin-
ciple. A Java iterator provides a way of accessing each item in a collection data struc-
ture. Without the fail-fast property, modifying the collection while iterating over it
could lead to unexpected and arbitrary results, and failure might occur rarely and be
hard to detect and diagnose. A fail-fast iterator has the property that an immediate and
observable failure (throwing ConcurrentModificationException) occurs when the illegal
modification occurs. Although fail-fast behavior is not guaranteed if the update occurs
in a different thread, a fail-fast iterator is far more sensitive than an iterator without the
fail-fast property.

So far, we have discussed the sensitivity principle applied to design and code: al-
ways privilege design and code solutions that lead to consistent behavior, that is, such
that fault occurrence does not depend on uncontrolled execution conditions that may
mask faults, thus resulting in random failures. The sensitivity principle can also be
applied to test and analysis techniques. In this case, we privilege techniques that cause
faults to consistently manifest in failures.

Deadlock and race conditions in concurrent systems may depend on the relative
speed of execution of the different threads or processes, and a race condition may lead

https://hemanthrajhemu.github.io

Sensitivity 31

1 /**
2 * Worse than broken: Are you feeling lucky?
3 */
4

5 #include <assert.h>
6

7 char before[] = "=Before=";
8 char middle[] = "Middle";
9 char after[] = "=After=";

10

11 void show() {
12 printf("%s\n%s\n%s\n", before, middle, after);
13 }
14

15 void stringCopy(char *target, const char *source, int howBig);
16

17 int main(int argc, char *argv) {
18 show();
19 strcpy(middle, "Muddled"); /* Fault, but may not fail */
20 show();
21 strncpy(middle, "Muddled", sizeof(middle)); /* Fault, may not fail */
22 show();
23 stringCopy(middle, "Muddled",sizeof(middle)); /* Guaranteed to fail */
24 show();
25 }
26

27 /* Sensitive version of strncpy; can be counted on to fail
28 * in an observable way EVERY time the source is too large
29 * for the target, unlike the standard strncpy or strcpy.
30 */
31 void stringCopy(char *target, const char *source, int howBig) {
32 assert(strlen(source) < howBig);
33 strcpy(target, source);
34 }

Figure 3.1: Standard C functions strcpy and strncpy may or may not fail when the
source string is too long. The procedure stringCopy is sensitive: It is guaranteed to fail
in an observable way if the source string is too long.

https://hemanthrajhemu.github.io

32 Basic Principles

to an observable failure only under rare conditions. Testing a concurrent system on
a single configuration may fail to reveal deadlocks and race conditions. Repeating
the tests with different configurations and system loads may help, but it is difficult to
predict or control the circumstances under which failure occurs. We may observe that
testing is not sensitive enough for revealing deadlocks and race conditions, and we
may substitute other techniques that are more sensitive and less dependent on factors
outside the developers’ and testers’ control. Model checking and reachability analysis
techniques are limited in the scope of the faults they can detect, but they are very
sensitive to this particular class of faults, having the advantage that they attain complete
independence from any particular execution environment by systematically exploring
all possible interleavings of processes.

Test adequacy criteria identify partitions of the input domain of the unit under test
that must be sampled by test suites. For example, the statement coverage criterion
requires each statement to be exercised at least once, that is, it groups inputs according
to the statements they execute. Reliable criteria require that inputs belonging to the
same class produce the same test results: They all fail or they all succeed. When this
happens, we can infer the correctness of a program with respect to the a whole class of
inputs from a single execution. Unfortunately, general reliable criteria do not exist1.

Code inspection can reveal many subtle faults. However, inspection teams may
produce completely different results depending on the cohesion of the team, the disci-
pline of the inspectors, and their knowledge of the application domain and the design
technique. The use of detailed checklists and a disciplined review process may reduce
the influence of external factors, such as teamwork attitude, inspectors’ discipline, and
domain knowledge, thus increasing the predictability of the results of inspection. In
this case, sensitivity is applied to reduce the influence of external factors.

Similarly, skilled test designers can derive excellent test suites, but the quality of
the test suites depends on the mood of the designers. Systematic testing criteria may
not do better than skilled test designers, but they can reduce the influence of external
factors, such as the tester’s mood.

3.2 Redundancy

Redundancy is the opposite of independence. If one part of a software artifact (pro-
gram, design document, etc.) constrains the content of another, then they are not en-
tirely independent, and it is possible to check them for consistency.

The concept and definition of redundancy are taken from information theory. In
communication, redundancy can be introduced into messages in the form of error-
detecting and error-correcting codes to guard against transmission errors. In software
test and analysis, we wish to detect faults that could lead to differences between in-
tended behavior and actual behavior, so the most valuable form of redundancy is in the
form of an explicit, redundant statement of intent.

Where redundancy can be introduced or exploited with an automatic, algorithmic
check for consistency, it has the advantage of being much cheaper and more thorough

1Existence of a general, reliable test coverage criterion would allow us to prove the equivalence of pro-
grams. Readers interested in this topic will find more information in Chapter 9.

https://hemanthrajhemu.github.io

Restriction 33

than dynamic testing or manual inspection. Static type checking is a classic application
of this principle: The type declaration is a statement of intent that is at least partly
redundant with the use of a variable in the source code. The type declaration constrains
other parts of the code, so a consistency check (type check) can be applied.

An important trend in the evolution of programming languages is introduction of
additional ways to declare intent and automatically check for consistency. For example,
Java enforces rules about explicitly declaring each exception that can be thrown by a
method.

Checkable redundancy is not limited to program source code, nor is it something
that can be introduced only by programming language designers. For example, soft-
ware design tools typically provide ways to check consistency between different design
views or artifacts. One can also intentionally introduce redundancy in other software
artifacts, even those that are not entirely formal. For example, one might introduce
rules quite analogous to type declarations for semistructured requirements specifica-
tion documents, and thereby enable automatic checks for consistency and some limited
kinds of completeness.

When redundancy is already present — as between a software specification docu-
ment and source code — then the remaining challenge is to make sure the information
is represented in a way that facilitates cheap, thorough consistency checks. Checks that
can be implemented by automatic tools are usually preferable, but there is value even
in organizing information to make inconsistency easier to spot in manual inspection.

Of course, one cannot always obtain cheap, thorough checks of source code and
other documents. Sometimes redundancy is exploited instead with run-time checks.
Defensive programming, explicit run-time checks for conditions that should always
be true if the program is executing correctly, is another application of redundancy in
programming.

3.3 Restriction

When there are no acceptably cheap and effective ways to check a property, sometimes
one can change the problem by checking a different, more restrictive property or by
limiting the check to a smaller, more restrictive class of programs.

Consider the problem of ensuring that each variable is initialized before it is used,
on every execution. Simple as the property is, it is not possible for a compiler or
analysis tool to precisely determine whether it holds. See the program in Figure 3.2 for
an illustration. Can the variable k ever be uninitialized the first time i is added to it?
If someCondition(0) always returns true, then k will be initialized to zero on the first
time through the loop, before k is incremented, so perhaps there is no potential for a
run-time error — but method someCondition could be arbitrarily complex and might
even depend on some condition in the environment. Java’s solution to this problem is to
enforce a stricter, simpler condition: A program is not permitted to have any syntactic
control paths on which an uninitialized reference could occur, regardless of whether
those paths could actually be executed. The program in Figure 3.2 has such a path, so
the Java compiler rejects it.

Java’s rule for initialization before use is a program source code restriction that

https://hemanthrajhemu.github.io

34 Basic Principles

1 /** A trivial method with a potentially uninitialized variable.
2 * Maybe someCondition(0) is always true, and therefore k is
3 * always initialized before use ... but it’s impossible, in
4 * general, to know for sure. Java rejects the method.
5 */
6 static void questionable() {
7 int k;
8 for (int i=0; i < 10; ++i) {
9 if (someCondition(i)) {

10 k = 0;
11 } else {
12 k += i;
13 }
14 }
15 System.out.println(k);
16 }
17 }

Figure 3.2: Can the variable k ever be uninitialized the first time i is added to it? The
property is undecidable, so Java enforces a simpler, stricter property.

enables precise, efficient checking of a simple but important property by the compiler.
The choice of programming language(s) for a project may entail a number of such
restrictions that impact test and analysis. Additional restrictions may be imposed in
the form of programming standards (e.g., restricting the use of type casts or pointer
arithmetic in C), or by tools in a development environment. Other forms of restriction
can apply to architectural and detailed design.

Consider, for example, the problem of ensuring that a transaction consisting of a
sequence of accesses to a complex data structure by one process appears to the outside
world as if it had occurred atomically, rather than interleaved with transactions of other
processes. This property is called serializability: The end result of a set of such trans-
actions should appear as if they were applied in some serial order, even if they didn’t.

One way to ensure serializability is to make the transactions really serial (e.g., by
putting the whole sequence of operations in each transaction within a Java synchro-
nized block), but that approach may incur unacceptable performance penalties. One
would like to allow interleaving of transactions that don’t interfere, while still ensuring
the appearance of atomic access, and one can devise a variety of locking and versioning
techniques to achieve this. Unfortunately, checking directly to determine whether the
serializability property has been achieved is very expensive at run-time, and precisely
checking whether it holds on all possible executions is impossible. Fortunately, the
problem becomes much easier if we impose a particular locking or versioning scheme
on the program at design time. Then the problem becomes one of proving, on the one
hand, that the particular concurrency control protocol has the desired property, and then

https://hemanthrajhemu.github.io

Partition 35

checking that the program obeys the protocol. Database researchers have completed
the first step, and some of the published and well-known concurrency control protocols
are trivial to check at run-time and simple enough that (with some modest additional
restrictions) they can be checked even by source code analysis.

From the above examples it should be clear that the restriction principle is useful
mainly during design and specification; it can seldom be applied post hoc on a com-
plete software product. In other words, restriction is mainly a principle to be applied in
design for test. Often it can be applied not only to solve a single problem (like detecting
potential access of uninitialized variables, or nonserializable execution of transactions)
but also at a more general, architectural level to simplify a whole set of analysis prob-
lems.

Stateless component interfaces are an example of restriction applied at the archi-
tectural level. An interface is stateless if each service request (method call, remote
procedure call, message send and reply) is independent of all others; that is, the service
does not “remember” anything about previous requests. Stateless interfaces are far eas-
ier to test because the correctness of each service request and response can be checked
independently, rather than considering all their possible sequences or interleavings. A
famous example of simplifying component interfaces by making them stateless is the
Hypertext Transport Protocol (HTTP) 1.0 of the World-Wide-Web, which made Web
servers not only much simpler and more robust but also much easier to test.

3.4 Partition

Partition, often also known as “divide and conquer,” is a general engineering principle.
Dividing a complex problem into subproblems to be attacked and solved independently
is probably the most common human problem-solving strategy. Software engineering
in particular applies this principle in many different forms and at almost all develop-
ment levels, from early requirements specifications to code and maintenance. Analysis
and testing are no exception: the partition principle is widely used and exploited.

Partitioning can be applied both at process and technique levels. At the process
level, we divide complex activities into sets of simple activities that can be attacked
independently. For example, testing is usually divided into unit, integration, subsystem,
and system testing. In this way, we can focus on different sources of faults at different
steps, and at each step, we can take advantage of the results of the former steps. For
instance, we can use units that have been tested as stubs for integration testing. Some
static analysis techniques likewise follow the modular structure of the software system
to divide an analysis problem into smaller steps.

Many static analysis techniques first construct a model of a system and then analyze
the model. In this way they divide the overall analysis into two subtasks: first simplify
the system to make the proof of the desired properties feasible and then prove the
property with respect to the simplified model. The question “Does this program have
the desired property?” is decomposed into two questions, “Does this model have the
desired property?” and “Is this an accurate model of the program?”

Since it is not possible to execute the program with every conceivable input, sys-
tematic testing strategies must identify a finite number of classes of test cases to exe-

https://hemanthrajhemu.github.io

36 Basic Principles

cute. Whether the classes are derived from specifications (functional testing) or from
program structure (structural testing), the process of enumerating test obligations pro-
ceeds by dividing the sources of information into significant elements (clauses or spe-
cial values identifiable in specifications, statements or paths in programs), and creating
test cases that cover each such element or certain combinations of elements.

3.5 Visibility

Visibility means the ability to measure progress or status against goals. In software
engineering, one encounters the visibility principle mainly in the form of process vis-
ibility, and then mainly in the form of schedule visibility: ability to judge the state of
development against a project schedule. Quality process visibility also applies to mea-
suring achieved (or predicted) quality against quality goals. The principle of visibility
involves setting goals that can be assessed as well as devising methods to assess their
realization.

Visibility is closely related to observability, the ability to extract useful information
from a software artifact. The architectural design and build plan of a system determines
what will be observable at each stage of development, which in turn largely determines
the visibility of progress against goals at that stage.

A variety of simple techniques can be used to improve observability. For exam-
ple, it is no accident that important Internet protocols like HTTP and SMTP (Simple
Mail Transport Protocol, used by Internet mail servers) are based on the exchange of
simple textual commands. The choice of simple, human-readable text rather than a
more compact binary encoding has a small cost in performance and a large payoff in
observability, including making construction of test drivers and oracles much simpler.
Use of human-readable and human-editable files is likewise advisable wherever the
performance cost is acceptable.

A variant of observability through direct use of simple text encodings is provid-
ing readers and writers to convert between other data structures and simple, human-
readable and editable text. For example, when designing classes that implement a
complex data structure, designing and implementing also a translation from a simple
text format to the internal structure, and vice versa, will often pay back handsomely in
both ad hoc and systematic testing. For similar reasons it is often useful to design and
implement an equality check for objects, even when it is not necessary to the function-
ality of the software product.

3.6 Feedback

Feedback is another classic engineering principle that applies to analysis and testing.
Feedback applies both to the process itself (process improvement) and to individual
techniques (e.g., using test histories to prioritize regression testing).

Systematic inspection and walkthrough derive part of their success from feedback.
Participants in inspection are guided by checklists, and checklists are revised and re-
fined based on experience. New checklist items may be derived from root cause anal-

https://hemanthrajhemu.github.io

Feedback 37

ysis, analyzing previously observed failures to identify the initial errors that lead to
them.

Summary

Principles constitute the core of a discipline. They form the basis of methods, tech-
niques, methodologies and tools. They permit understanding, comparing, evaluating
and extending different approaches, and they constitute the lasting basis of knowledge
of a discipline.

The six principles described in this chapter are

• Sensitivity: better to fail every time than sometimes,

• Redundancy: making intentions explicit,

• Restriction: making the problem easier,

• Partition: divide and conquer,

• Visibility: making information accessible, and

• Feedback: applying lessons from experience in process and techniques.

Principles are identified heuristically by searching for a common denominator of
techniques that apply to various problems and exploit different methods, sometimes
borrowing ideas from other disciplines, sometimes observing recurrent phenomena.
Potential principles are validated by finding existing and new techniques that exploit
the underlying ideas. Generality and usefulness of principles become evident only
with time. The initial list of principles proposed in this chapter is certainly incom-
plete. Readers are invited to validate the proposed principles and identify additional
principles.

Further Reading

Analysis and testing is a relatively new discipline. To our knowledge, the principles
underlying analysis and testing have not been discussed in the literature previously.
Some of the principles advocated in this chapter are shared with other software engi-
neering disciplines and are discussed in many books. A good introduction to software
engineering principles is the third chapter of Ghezzi, Jazayeri, and Mandrioli’s book
on software engineering [GJM02].

https://hemanthrajhemu.github.io

38 Basic Principles

Exercises

3.1. Indicate which principles guided the following choices:

1. Use an externally readable format also for internal files, when possible.

2. Collect and analyze data about faults revealed and removed from the code.

3. Separate test and debugging activities; that is, separate the design and ex-
ecution of test cases to reveal failures (test) from the localization and re-
moval of the corresponding faults (debugging).

4. Distinguish test case design from execution.

5. Produce complete fault reports.

6. Use information from test case design to improve requirements and design
specifications.

7. Provide interfaces for fully inspecting the internal state of a class.

3.2. A simple mechanism for augmenting fault tolerance consists of replicating com-
putation and comparing the obtained results. Can we consider redundancy for
fault tolerance an application of the redundancy principle?

3.3. A system safety specification describes prohibited behaviors (what the system
must never do). Explain how specified safety properties can be viewed as an
implementation of the redundancy principle.

3.4. Process visibility can be increased by extracting information about the progress
of the process. Indicate some information that can be easily produced to increase
process visibility.

https://hemanthrajhemu.github.io

Chapter 4

Test and Analysis Activities
Within a Software Process

Dependability and other qualities of software are not ingredients that can be added in
a final step before delivery. Rather, software quality results from a whole set of in-
terdependent activities, among which analysis and testing are necessary but far from
sufficient. And while one often hears of a testing “phase” in software development,
as if testing were a distinct activity that occurred at a particular point in development,
one should not confuse this flurry of test execution with the whole process of soft-
ware test and analysis any more than one would confuse program compilation with
programming.

Testing and analysis activities occur throughout the development and evolution of
software systems, from early in requirements engineering through delivery and subse-
quent evolution. Quality depends on every part of the software process, not only on
software analysis and testing; no amount of testing and analysis can make up for poor
quality arising from other activities. On the other hand, an essential feature of soft-
ware processes that produce high-quality products is that software test and analysis is
thoroughly integrated and not an afterthought.

4.1 The Quality Process

One can identify particular activities and responsibilities in a software development
process that are focused primarily on ensuring adequate dependability of the software
product, much as one can identify other activities and responsibilities concerned pri-
marily with project schedule or with product usability. It is convenient to group these
quality assurance activities under the rubric “quality process,” although we must also
recognize that quality is intertwined with and inseparable from other facets of the over-
all process. Like other parts of an overall software process, the quality process provides
a framework for selecting and arranging activities aimed at a particular goal, while
also considering interactions and trade-offs with other important goals. All software
development activities reflect constraints and trade-offs, and quality activities are no

39

https://hemanthrajhemu.github.io

40 Test and Analysis Activities Within a Software Process

exception. For example, high dependability is usually in tension with time to market,
and in most cases it is better to achieve a reasonably high degree of dependability on
a tight schedule than to achieve ultra-high dependability on a much longer schedule,
although the opposite is true in some domains (e.g., certain medical devices).

The quality process should be structured for completeness, timeliness, and cost-
effectiveness. Completeness means that appropriate activities are planned to detect
each important class of faults. What the important classes of faults are depends on the
application domain, the organization, and the technologies employed (e.g., memory
leaks are an important class of faults for C++ programs, but seldom for Java programs).
Timeliness means that faults are detected at a point of high leverage, which in practice
almost always means that they are detected as early as possible. Cost-effectiveness
means that, subject to the constraints of completeness and timeliness, one chooses
activities depending on their cost as well as their effectiveness. Cost must be considered
over the whole development cycle and product life, so the dominant factor is likely to
be the cost of repeating an activity through many change cycles.

Activities that one would typically consider as being in the domain of quality as-
surance or quality improvement, that is, activities whose primary goal is to prevent or
detect faults, intertwine and interact with other activities carried out by members of a
software development team. For example, architectural design of a software system
has an enormous impact on the test and analysis approaches that will be feasible and
on their cost. A precise, relatively formal architectural model may form the basis for
several static analyses of the model itself and of the consistency between the model
and its implementation, while another architecture may be inadequate for static analy-
sis and, if insufficiently precise, of little help even in forming an integration test plan.

The intertwining and mutual impact of quality activities on other development ac-
tivities suggests that it would be foolish to put off quality activities until late in a project.
The effects run not only from other development activities to quality activities but also
in the other direction. For example, early test planning during requirements engineer-
ing typically clarifies and improves requirements specifications. Developing a test plan
during architectural design may suggest structures and interfaces that not only facilitate
testing earlier in development, but also make key interfaces simpler and more precisely
defined.

There is also another reason for carrying out quality activities at the earliest oppor-
tunity and for preferring earlier to later activities when either could serve to detect the
same fault: The single best predictor of the cost of repairing a software defect is the
time between its introduction and its detection. A defect introduced in coding is far
cheaper to repair during unit test than later during integration or system test, and most
expensive if it is detected by a user of the fielded system. A defect introduced during
requirements engineering (e.g., an ambiguous requirement) is relatively cheap to repair
at that stage, but may be hugely expensive if it is only uncovered by a dispute about the
results of a system acceptance test.

https://hemanthrajhemu.github.io

Planning and Monitoring 41

4.2 Planning and Monitoring

Process visibility is a key factor in software process in general, and software quality
processes in particular. A process is visible to the extent that one can answer the ques- process visibility

tion, “How does our progress compare to our plan?” Typically, schedule visibility is a
main emphasis in process design (“Are we on schedule? How far ahead or behind?”),
but in software quality process an equal emphasis is needed on progress against quality
goals. If one cannot gain confidence in the quality of the software system long before
it reaches final testing, the quality process has not achieved adequate visibility.

A well-designed quality process balances several activities across the whole devel-
opment process, selecting and arranging them to be as cost-effective as possible, and to
improve early visibility. Visibility is particularly challenging and is one reason (among
several) that quality activities are usually placed as early in a software process as possi-
ble. For example, one designs test cases at the earliest opportunity (not “just in time”)
and uses both automated and manual static analysis techniques on software artifacts
that are produced before actual code.

Early visibility also motivates the use of “proxy” measures, that is, use of quantifi-
able attributes that are not identical to the properties that one really wishes to measure,
but that have the advantage of being measurable earlier in development. For example,
we know that the number of faults in design or code is not a true measure of reliability.
Nonetheless, one may count faults uncovered in design inspections as an early indica-
tor of potential quality problems, because the alternative of waiting to receive a more
accurate estimate from reliability testing is unacceptable.

Quality goals can be achieved only through careful planning of activities that are
matched to the identified objectives. Planning is integral to the quality process and
is elaborated and revised through the whole project. It encompasses both an overall
strategy for test and analysis, and more detailed test plans.

The overall analysis and test strategy identifies company- or project-wide standards
that must be satisfied: procedures for obtaining quality certificates required for certain
classes of products, techniques and tools that must be used, and documents that must
be produced. Some companies develop and certify procedures following international A&T strategy

standards such as ISO 9000 or SEI Capability Maturity Model, which require detailed
documentation and management of analysis and test activities and well-defined phases,
documents, techniques, and tools. A&T strategies are described in detail in Chapter 20,
and a sample strategy document for the Chipmunk Web presence is given in Chapter 24.

The initial build plan for Chipmunk Web-based purchasing functionality includes
an analysis and test plan. A complete analysis and test plan is a comprehensive descrip-
tion of the quality process and includes several items: It indicates objectives and scope A&T plan

of the test and analysis activities; it describes documents and other items that must be
available for performing the planned activities, integrating the quality process with the
software development process; it identifies items to be tested, thus allowing for simple
completeness checks and detailed planning; it distinguishes features to be tested from
those not to be tested; it selects analysis and test activities that are considered essential
for success of the quality process; and finally it identifies the staff involved in analysis
and testing and their respective and mutual responsibilities.

https://hemanthrajhemu.github.io

42 Test and Analysis Activities Within a Software Process

The final analysis and test plan includes additional information that illustrates con-
straints, pass and fail criteria, schedule, deliverables, hardware and software require-
ments, risks, and contingencies. Constraints indicate deadlines and limits that may be
derived from the hardware and software implementation of the system under analysis
and the tools available for analysis and testing. Pass and fail criteria indicate when a test
or analysis activity succeeds or fails, thus supporting monitoring of the quality process.
The schedule describes the individual tasks to be performed and provides a feasible
schedule. Deliverables specify which documents, scaffolding and test cases must be
produced, and indicate the quality expected from such deliverables. Hardware, envi-
ronment and tool requirements indicate the support needed to perform the scheduled
activities. The risk and contingency plan identifies the possible problems and provides
recovery actions to avoid major failures. The test plan is discussed in more detail in
Chapter 20.

4.3 Quality Goals

Process visibility requires a clear specification of goals, and in the case of quality pro-
cess visibility this includes a careful distinction among dependability qualities. A team
that does not have a clear idea of the difference between reliability and robustness,
for example, or of their relative importance in a project, has little chance of attaining
either. Goals must be further refined into a clear and reasonable set of objectives. If
an organization claims that nothing less than 100% reliability will suffice, it is not set-
ting an ambitious objective. Rather, it is setting no objective at all, and choosing not to
make reasoned trade-off decisions or to balance limited resources across various activi-
ties. It is, in effect, abrogating responsibility for effective quality planning, and leaving
trade-offs among cost, schedule, and quality to an arbitrary, ad hoc decision based on
deadline and budget alone.

The relative importance of qualities and their relation to other project objectives
varies. Time-to-market may be the most important property for a mass market product,
usability may be more prominent for a Web based application, and safety may be the
overriding requirement for a life-critical system.

Product qualities are the goals of software quality engineering, and process qual-
ities are means to achieve those goals. For example, development processes with a
high degree of visibility are necessary for creation of highly dependable products. The
process goals with which software quality engineering is directly concerned are often
on the “cost” side of the ledger. For example, we might have to weigh stringent re-
liability objectives against their impact on time-to-market, or seek ways to improve
time-to-market without adversely impacting robustness.

Software product qualities can be divided into those that are directly visible to a
client and those that primarily affect the software development organization. Reliabil-internal and external

qualities ity, for example, is directly visible to the client. Maintainability primarily affects the
development organization, although its consequences may indirectly affect the client
as well, for example, by increasing the time between product releases. Properties that
are directly visible to users of a software product, such as dependability, latency, us-

https://hemanthrajhemu.github.io

Dependability Properties 43

ability, and throughput, are called external properties. Properties that are not directly
visible to end users, such as maintainability, reusability, and traceability, are called in-
ternal properties, even when their impact on the software development and evolution
processes may indirectly affect users.

The external properties of software can ultimately be divided into dependability
(does the software do what it is intended to do?) and usefulness. There is no precise dependability

way to distinguish these, but a rule of thumb is that when software is not dependable,
we say it has a fault, or a defect, or (most often) a bug, resulting in an undesirable
behavior or failure.

It is quite possible to build systems that are very reliable, relatively free from usefulness

hazards, and completely useless. They may be unbearably slow, or have terrible user
interfaces and unfathomable documentation, or they may be missing several crucial
features. How should these properties be considered in software quality? One answer
is that they are not part of quality at all unless they have been explicitly specified, since
quality is the presence of specified properties. However, a company whose products are
rejected by its customers will take little comfort in knowing that, by some definitions,
they were high-quality products.

We can do better by considering quality as fulfillment of required and desired prop-
erties, as distinguished from specified properties. For example, even if a client does not
explicitly specify the required performance of a system, there is always some level of
performance that is required to be useful.

One of the most critical tasks in software quality analysis is making desired proper-
ties explicit, since properties that remain unspecified (even informally) are very likely
to surface unpleasantly when it is discovered that they are not met. In many cases these
implicit requirements can not only be made explicit, but also made sufficiently precise
that they can be made part of dependability or reliability. For example, while it is better
to explicitly recognize usability as a requirement than to leave it implicit, it is better yet
to augment1 usability requirements with specific interface standards, so that a deviation
from the standards is recognized as a defect.

4.4 Dependability Properties

The simplest of the dependability properties is correctness: A program or system is correctness

correct if it is consistent with its specification. By definition, a specification divides
all possible system behaviors2 into two classes, successes (or correct executions) and
failures. All of the possible behaviors of a correct system are successes.

A program cannot be mostly correct or somewhat correct or 30% correct. It is
absolutely correct on all possible behaviors, or else it is not correct. It is very easy
to achieve correctness, since every program is correct with respect to some (very bad)

1Interface standards augment, rather than replace, usability requirements because conformance to the
standards is not sufficient assurance that the requirement is met. This is the same relation that other spec-
ifications have to the user requirements they are intended to fulfill. In general, verifying conformance to
specifications does not replace validating satisfaction of requirements.

2We are simplifying matters somewhat by considering only specifications of behaviors. A specification
may also deal with other properties, such as the disk space required to install the application. A system may
thus also be “incorrect” if it violates one of these static properties.

https://hemanthrajhemu.github.io

44 Test and Analysis Activities Within a Software Process

specification. Achieving correctness with respect to a useful specification, on the other
hand, is seldom practical for nontrivial systems. Therefore, while correctness may
be a noble goal, we are often interested in assessing some more achievable level of
dependability.

Reliability is a statistical approximation to correctness, in the sense that 100% reli-reliability

ability is indistinguishable from correctness. Roughly speaking, reliability is a measure
of the likelihood of correct function for some “unit” of behavior, which could be a sin-
gle use or program execution or a period of time. Like correctness, reliability is relative
to a specification (which determines whether a unit of behavior is counted as a success
or failure). Unlike correctness, reliability is also relative to a particular usage profile.
The same program can be more or less reliable depending on how it is used.

Particular measures of reliability can be used for different units of execution and
different ways of counting success and failure. Availability is an appropriate measureavailability

when a failure has some duration in time. For example, a failure of a network router
may make it impossible to use some functions of a local area network until the ser-
vice is restored; between initial failure and restoration we say the router is “down” or
“unavailable.” The availability of the router is the time in which the system is “up”
(providing normal service) as a fraction of total time. Thus, a network router that av-
erages 1 hour of down time in each 24-hour period would have an availability of 23

24 , or
95.8%.

Mean time between failures (MTBF) is yet another measure of reliability, alsoMTBF

using time as the unit of execution. The hypothetical network switch that typically
fails once in a 24-hour period and takes about an hour to recover has a mean time
between failures of 23 hours. Note that availability does not distinguish between two
failures of 30 minutes each and one failure lasting an hour, while MTBF does.

The definitions of correctness and reliability have (at least) two major weaknesses.
First, since the success or failure of an execution is relative to a specification, they are
only as strong as the specification. Second, they make no distinction between a failure
that is a minor annoyance and a failure that results in catastrophe. These are simplify-
ing assumptions that we accept for the sake of precision, but in some circumstances —
particularly, but not only, for critical systems — it is important to consider dependabil-
ity properties that are less dependent on specification and that do distinguish among
failures depending on severity.

Software safety is an extension of the well-established field of system safety intosafety

software. Safety is concerned with preventing certain undesirable behaviors, called
hazards. It is quite explicitly not concerned with achieving any useful behavior aparthazards

from whatever functionality is needed to prevent hazards. Software safety is typically
a concern in “critical” systems such as avionics and medical systems, but the basic
principles apply to any system in which particularly undesirable behaviors can be dis-
tinguished from run-of-the-mill failure. For example, while it is annoying when a word
processor crashes, it is much more annoying if it irrecoverably corrupts document files.
The developers of a word processor might consider safety with respect to the hazard
of file corruption separately from reliability with respect to the complete functional
requirements for the word processor.

Just as correctness is meaningless without a specification of allowed behaviors,

https://hemanthrajhemu.github.io

Dependability Properties 45

safety is meaningless without a specification of hazards to be prevented, and in practice
the first step of safety analysis is always finding and classifying hazards. Typically,
hazards are associated with some system in which the software is embedded (e.g., the
medical device), rather than the software alone. The distinguishing feature of safety
is that it is concerned only with these hazards, and not with other aspects of correct
functioning.

The concept of safety is perhaps easier to grasp with familiar physical systems.
For example, lawn-mowers in the United States are equipped with an interlock device,
sometimes called a “dead-man switch.” If this switch is not actively held by the op-
erator, the engine shuts off. The dead-man switch does not contribute in any way to
cutting grass; its sole purpose is to prevent the operator from reaching into the mower
blades while the engine runs.

One is tempted to say that safety is an aspect of correctness, because a good system
specification would rule out hazards. However, safety is best considered as a quality
distinct from correctness and reliability for two reasons. First, by focusing on a few
hazards and ignoring other functionality, a separate safety specification can be much
simpler than a complete system specification, and therefore easier to verify. To put it
another way, while a good system specification should rule out hazards, we cannot be
confident that either specifications or our attempts to verify systems are good enough
to provide the degree of assurance we require for hazard avoidance. Second, even if
the safety specification were redundant with regard to the full system specification, it is
important because (by definition) we regard avoidance of hazards as more crucial than
satisfying other parts of the system specification.

Correctness and reliability are contingent upon normal operating conditions. It is
not reasonable to expect a word processing program to save changes normally when the
file does not fit in storage, or to expect a database to continue to operate normally when
the computer loses power, or to expect a Web site to provide completely satisfactory
service to all visitors when the load is 100 times greater than the maximum for which
it was designed. Software that fails under these conditions, which violate the premises
of its design, may still be “correct” in the strict sense, yet the manner in which the
software fails is important. It is acceptable that the word processor fails to write the robustness

new file that does not fit on disk, but unacceptable to also corrupt the previous version
of the file in the attempt. It is acceptable for the database system to cease to function
when the power is cut, but unacceptable for it to leave the database in a corrupt state.
And it is usually preferable for the Web system to turn away some arriving users rather
than becoming too slow for all, or crashing. Software that gracefully degrades or fails
“softly” outside its normal operating parameters is robust.

Software safety is a kind of robustness, but robustness is a more general notion that
concerns not only avoidance of hazards (e.g., data corruption) but also partial function-
ality under unusual situations. Robustness, like safety, begins with explicit consider-
ation of unusual and undesirable situations, and should include augmenting software
specifications with appropriate responses to undesirable events.

Figure 4.1 illustrates the relation among dependability properties.

Quality analysis should be part of the feasibility study. The sidebar on page 47

https://hemanthrajhemu.github.io

46 Test and Analysis Activities Within a Software Process

Reliable Robust

Reliable but not correct:
failures can occur rarely

Robust but not safe:
catastrophic failures can occur

Safe but not correct:
annoying failures can occur

Correct but not safe:
the specification is inadequate

SafeCorrect

Figure 4.1: Relation among dependability properties

shows an excerpt of the feasibility study for the Chipmunk Web presence. The pri-
mary quality requirements are stated in terms of dependability, usability, and security.
Performance, portability and interoperability are typically not primary concerns at this
stage, but they may come into play when dealing with other qualities.

4.5 Analysis

Analysis techniques that do not involve actual execution of program source code play a
prominent role in overall software quality processes. Manual inspection techniques and
automated analyses can be applied at any development stage. They are particularly well
suited at the early stages of specifications and design, where the lack of executability
of many intermediate artifacts reduces the efficacy of testing.

Inspection, in particular, can be applied to essentially any document including re-
quirements documents, architectural and more detailed design documents, test plans
and test cases, and of course program source code. Inspection may also have secondary
benefits, such as spreading good practices and instilling shared standards of quality. On
the other hand, inspection takes a considerable amount of time and requires meetings,
which can become a scheduling bottleneck. Moreover, re-inspecting a changed compo-
nent can be as expensive as the initial inspection. Despite the versatility of inspection,
therefore, it is used primarily where other techniques are either inapplicable or where
other techniques do not provide sufficient coverage of common faults.

Automated static analyses are more limited in applicability (e.g., they can be ap-
plied to some formal representations of requirements models but not to natural lan-
guage documents), but are selected when available because substituting machine cy-
cles for human effort makes them particularly cost-effective. The cost advantage of
automated static analyses is diminished by the substantial effort required to formalize
and properly structure a model for analysis, but their application can be further mo-

https://hemanthrajhemu.github.io

Analysis 47

Excerpt of Web Presence Feasibility Study

Purpose of this document
This document was prepared for the Chipmunk IT management team. It describes

the results of a feasibility study undertaken to advise Chipmunk corporate management
whether to embark on a substantial redevelopment effort to add online shopping func-
tionality to the Chipmunk Computers’ Web presence.

Goals
The primary goal of a Web presence redevelopment is to add online shopping facili-

ties. Marketing estimates an increase of 15% over current direct sales within 24 months,
and an additional 8% savings in direct sales support costs from shifting telephone price
inquiries to online price inquiries. [. . .]

Architectural Requirements
The logical architecture will be divided into three distinct subsystems: human in-

terface, business logic, and supporting infrastructure. Each major subsystem must be
structured for phased development, with initial features delivered 6 months from in-
ception, full features at 12 months, and a planned revision at 18 months from project
inception. [. . .]

Quality Requirements

Dependability: With the introduction of direct sales and customer relationship man-
agement functions, dependability of Chipmunk’s Web services becomes business-
critical. A critical core of functionality will be identified, isolated from less critical func-
tionality in design and implementation, and subjected to the highest level of scrutiny.
We estimate that this will be approximately 20% of new development and revisions, and
that the V&V costs for those portions will be approximately triple the cost of V&V for
noncritical development.

Usability: The new Web presence will be, to a much greater extent than before, the
public face of Chipmunk Computers. [. . .]

Security: Introduction of online direct ordering and billing raises a number of secu-
rity issues. Some of these can be avoided initially by contracting with one of several
service companies that provide secure credit card transaction services. Nonetheless,
order tracking, customer relationship management, returns, and a number of other func-
tions that cannot be effectively outsourced raise significant security and privacy issues.
Identifying and isolating security concerns will add a significant but manageable cost to
design validation. [. . .]

https://hemanthrajhemu.github.io

48 Test and Analysis Activities Within a Software Process

tivated by their ability to thoroughly check for particular classes of faults for which
checking with other techniques is very difficult or expensive. For example, finite state
verification techniques for concurrent systems requires construction and careful struc-
turing of a formal design model, and addresses only a particular family of faults (faulty
synchronization structure). Yet it is rapidly gaining acceptance in some application do-
mains because that family of faults is difficult to detect in manual inspection and resists
detection through dynamic testing.

Sometimes the best aspects of manual inspection and automated static analysis can
be obtained by carefully decomposing properties to be checked. For example, suppose
a desired property of requirements documents is that each special term in the appli-
cation domain appear in a glossary of terms. This property is not directly amenable
to an automated static analysis, since current tools cannot distinguish meaningful do-
main terms from other terms that have their ordinary meanings. The property can be
checked with manual inspection, but the process is tedious, expensive, and error-prone.
A hybrid approach can be applied if each domain term is marked in the text. Manually
checking that domain terms are marked is much faster and therefore less expensive than
manually looking each term up in the glossary, and marking the terms permits effective
automation of cross-checking with the glossary.

4.6 Testing

Despite the attractiveness of automated static analyses when they are applicable, and
despite the usefulness of manual inspections for a variety of documents including but
not limited to program source code, dynamic testing remains a dominant technique. A
closer look, though, shows that dynamic testing is really divided into several distinct
activities that may occur at different points in a project.

Tests are executed when the corresponding code is available, but testing activities
start earlier, as soon as the artifacts required for designing test case specifications are
available. Thus, acceptance and system test suites should be generated before integra-
tion and unit test suites, even if executed in the opposite order.

Early test design has several advantages. Tests are specified independently from
code and when the corresponding software specifications are fresh in the mind of ana-
lysts and developers, facilitating review of test design. Moreover, test cases may high-
light inconsistencies and incompleteness in the corresponding software specifications.
Early design of test cases also allows for early repair of software specifications, pre-
venting specification faults from propagating to later stages in development. Finally,
programmers may use test cases to illustrate and clarify the software specifications,
especially for errors and unexpected conditions.

No engineer would build a complex structure from parts that have not themselves
been subjected to quality control. Just as the “earlier is better” rule dictates using in-
spection to reveal flaws in requirements and design before they are propagated to pro-
gram code, the same rule dictates module testing to uncover as many program faults
as possible before they are incorporated in larger subsystems of the product. At Chip-
munk, developers are expected to perform functional and structural module testing be-
fore a work assignment is considered complete and added to the project baseline. The

https://hemanthrajhemu.github.io

Improving the Process 49

test driver and auxiliary files are part of the work product and are expected to make re-
execution of test cases, including result checking, as simple and automatic as possible,
since the same test cases will be used over and over again as the product evolves.

4.7 Improving the Process

While the assembly-line, mass production industrial model is inappropriate for soft-
ware, which is at least partly custom-built, there is almost always some commonality
among projects undertaken by an organization over time. Confronted by similar prob-
lems, developers tend to make the same kinds of errors over and over, and consequently
the same kinds of software faults are often encountered project after project. The qual-
ity process, as well as the software development process as a whole, can be improved
by gathering, analyzing, and acting on data regarding faults and failures.

The goal of quality process improvement is to find cost-effective countermeasures
for classes of faults that are expensive because they occur frequently, or because the
failures they cause are expensive, or because, once detected, they are expensive to
repair. Countermeasures may be either prevention or detection and may involve either
quality assurance activities (e.g., improved checklists for design inspections) or other
aspects of software development (e.g., improved requirements specification methods).

The first part of a process improvement feedback loop, and often the most difficult
to implement, is gathering sufficiently complete and accurate raw data about faults and
failures. A main obstacle is that data gathered in one project goes mainly to benefit
other projects in the future and may seem to have little direct benefit for the current
project, much less to the persons asked to provide the raw data. It is therefore helpful to
integrate data collection as well as possible with other, normal development activities,
such as version and configuration control, project management, and bug tracking. It
is also essential to minimize extra effort. For example, if revision logs in the revision
control database can be associated with bug tracking records, then the time between
checking out a module and checking it back in might be taken as a rough guide to cost
of repair.

Raw data on faults and failures must be aggregated into categories and prioritized.
Faults may be categorized along several dimensions, none of them perfect. Fortu-
nately, a flawless categorization is not necessary; all that is needed is some categoriza-
tion scheme that is sufficiently fine-grained and tends to aggregate faults with similar
causes and possible remedies, and that can be associated with at least rough estimates
of relative frequency and cost. A small number of categories — maybe just one or two
— are chosen for further study.

The analysis step consists of tracing several instances of an observed fault or failure
back to the human error from which it resulted, or even further to the factors that led
to that human error. The analysis also involves the reasons the fault was not detected
and eliminated earlier (e.g., how it slipped through various inspections and levels of
testing). This process is known as “root cause analysis,” but the ultimate aim is for root cause

analysisthe most cost-effective countermeasure, which is sometimes but not always the ulti-
mate root cause. For example, the persistence of security vulnerabilities through buffer
overflow errors in network applications may be attributed at least partly to widespread

https://hemanthrajhemu.github.io

50 Test and Analysis Activities Within a Software Process

use of programming languages with unconstrained pointers and without array bounds
checking, which may in turn be attributed to performance concerns and a requirement
for interoperability with a large body of legacy code. The countermeasure could involve
differences in programming methods (e.g., requiring use of certified “safe” libraries for
buffer management), or improvements to quality assurance activities (e.g., additions to
inspection checklists), or sometimes changes in management practices.

4.8 Organizational Factors

The quality process includes a wide variety of activities that require specific skills and
attitudes and may be performed by quality specialists or by software developers. Plan-
ning the quality process involves not only resource management but also identification
and allocation of responsibilities.

A poor allocation of responsibilities can lead to major problems in which pursuit
of individual goals conflicts with overall project success. For example, splitting re-
sponsibilities of development and quality-control between a development and a quality
team, and rewarding high productivity in terms of lines of code per person-month dur-
ing development may produce undesired results. The development team, not rewarded
to produce high-quality software, may attempt to maximize productivity to the detri-
ment of quality. The resources initially planned for quality assurance may not suffice if
the initial quality of code from the“very productive” development team is low. On the
other hand, combining development and quality control responsibilities in one undif-
ferentiated team, while avoiding the perverse incentive of divided responsibilities, can
also have unintended effects: As deadlines near, resources may be shifted from quality
assurance to coding, at the expense of product quality.

Conflicting considerations support both the separation of roles (e.g., recruiting
quality specialists), and the mobility of people and roles (e.g, rotating engineers be-
tween development and testing tasks).

At Chipmunk, responsibility for delivery of the new Web presence is distributed
among a development team and a quality assurance team. Both teams are further artic-
ulated into groups. The quality assurance team is divided into the analysis and testing
group, responsible for the dependability of the system, and the usability testing group,
responsible for usability. Responsibility for security issues is assigned to the infras-
tructure development group, which relies partly on external consultants for final tests
based on external attack attempts.

Having distinct teams does not imply a simple division of all tasks between teams
by category. At Chipmunk, for example, specifications, design, and code are inspected
by mixed teams; scaffolding and oracles are designed by analysts and developers; in-
tegration, system, acceptance, and regression tests are assigned to the test and analysis
team; unit tests are generated and executed by the developers; and coverage is checked
by the testing team before starting integration and system testing. A specialist has been
hired for analyzing faults and improving the process. The process improvement spe-
cialist works incrementally while developing the system and proposes improvements
at each release.

https://hemanthrajhemu.github.io

Organizational Factors 51

Summary

Test and analysis activities are not a late phase of the development process, but rather
a wide set of activities that pervade the whole process. Designing a quality process
with a suitable blend of test and analysis activities for the specific application domain,
development environment, and quality goals is a challenge that requires skill and expe-
rience.

A well-defined quality process must fulfill three main goals: improving the soft-
ware product during and after development, assessing its quality before delivery, and
improving the process within and across projects. These challenging goals can be
achieved by increasing visibility, scheduling activities as early as practical, and mon-
itoring results to adjust the process. Process visibility — that is, measuring and com-
paring progress to objectives — is a key property of the overall development process.
Performing A&T activities early produces several benefits: It increases control over
the process, it hastens fault identification and reduces the costs of fault removal, it pro-
vides data for incrementally tuning the development process, and it accelerates product
delivery. Feedback is the key to improving the process by identifying and removing
persistent errors and faults.

Further Reading

Qualities of software are discussed in many software engineering textbooks; the dis-
cussion in Chapter 2 of Ghezzi, Jazayeri, and Mandrioli [GJM02] is particularly useful.
Process visibility is likewise described in software engineering textbooks, usually with
an emphasis on schedule. Musa [Mus04] describes a quality process oriented partic-
ularly to establishing a quantifiable level of reliability based on models and testing
before release. Chillarege et al. [CBC+92] present principles for gathering and ana-
lyzing fault data, with an emphasis on feedback within a single process but applicable
also to quality process improvement.

Exercises

4.1. We have stated that 100% reliability is indistinguishable from correctness, but
they are not quite identical. Under what circumstance might an incorrect pro-
gram be 100% reliable? Hint: Recall that a program may be more or less re-
liable depending on how it is used, but a program is either correct or incorrect
regardless of usage.

4.2. We might measure the reliability of a network router as the fraction of all packets
that are correctly routed, or as the fraction of total service time in which packets
are correctly routed. When might these two measures be different?

4.3. If I am downloading a very large file over a slow modem, do I care more about
the availability of my internet service provider or its mean time between failures?

https://hemanthrajhemu.github.io

52 Test and Analysis Activities Within a Software Process

4.4. Can a system be correct and yet unsafe?

4.5. Under what circumstances can making a system more safe make it less reliable?

4.6. Software application domains can be characterized by the relative importance of
schedule (calendar time), total cost, and dependability. For example, while all
three are important for game software, schedule (shipping product in September
to be available for holiday purchases) has particular weight, while dependability
can be somewhat relaxed. Characterize a domain you are familiar with in these
terms.

4.7. Consider responsiveness as a desirable property of an Internet chat program. The
informal requirement is that messages typed by each member of a chat session
appear instantaneously on the displays of other users. Refine this informal re-
quirement into a concrete specification that can be verified. Is anything lost in
the refinement?

4.8. Identify some correctness, robustness and safety properties of a word processor.

https://hemanthrajhemu.github.io

Chapter 20

Planning and Monitoring the
Process

Any complex process requires planning and monitoring. The quality process requires
coordination of many different activities over a period that spans a full development
cycle and beyond. Planning is necessary to order, provision, and coordinate all the
activities that support a quality goal, and monitoring of actual status against a plan is
required to steer and adjust the process.

Required Background

• Chapter 4
Introduction of basic concepts of quality process, goals, and activities provides
useful background for understanding this chapter.

20.1 Overview

Planning involves scheduling activities, allocating resources, and devising observable,
unambiguous milestones against which progress and performance can be monitored.
Monitoring means answering the question, “How are we doing?”

Quality planning is one aspect of project planning, and quality processes must be
closely coordinated with other development processes. Coordination among quality
and development tasks may constrain ordering (e.g., unit tests are executed after cre-
ation of program units). It may shape tasks to facilitate coordination; for example,
delivery may be broken into smaller increments to allow early testing. Some aspects of
the project plan, such as feedback and design for testability, may belong equally to the
quality plan and other aspects of the project plan.

Quality planning begins at the inception of a project and is developed with the
overall project plan, instantiating and building on a quality strategy that spans several
projects. Like the overall project plan, the quality plan is developed incrementally,
beginning with the feasibility study and continuing through development and delivery.

375

https://hemanthrajhemu.github.io

376 Planning and Monitoring the Process

Formulation of the plan involves risk analysis and contingency planning. Execution of
the plan involves monitoring, corrective action, and planning for subsequent releases
and projects.

Allocating responsibility among team members is a crucial and difficult part of
planning. When one person plays multiple roles, explicitly identifying each responsi-
bility is still essential for ensuring that none are neglected.

20.2 Quality and Process

A software plan involves many intertwined concerns, from schedule to cost to usabil-
ity and dependability. Despite the intertwining, it is useful to distinguish individual
concerns and objectives to lessen the likelihood that they will be neglected, to allocate
responsibilities, and to make the overall planning process more manageable.

For example, a mature software project plan will include architectural design re-
views, and the quality plan will allocate effort for reviewing testability aspects of the
structure and build order. Clearly, design for testability is an aspect of software design
and cannot be carried out by a separate testing team in isolation. It involves both test
designers and other software designers in explicitly evaluating testability as one consid-
eration in selecting among design alternatives. The objective of incorporating design
for testability in the quality process is primarily to ensure that it is not overlooked and
secondarily to plan activities that address it as effectively as possible.

An appropriate quality process follows a form similar to the overall software pro-
cess in which it is embedded. In a strict (and unrealistic) waterfall software process,
one would follow the “V model” (Figure 2.1 on page 16) in a sequential manner, be-
ginning unit testing only as implementation commenced following completion of the
detailed design phase, and finishing unit testing before integration testing commenced.
In the XP “test first” method, unit testing is conflated with subsystem and system test-
ing. A cycle of test design and test execution is wrapped around each small-grain
incremental development step. The role that inspection and peer reviews would play in
other processes is filled in XP largely by pair programming. A typical spiral process
model lies somewhere between, with distinct planning, design, and implementation
steps in several increments coupled with a similar unfolding of analysis and test activi-
ties. Some processes specifically designed around quality activities are briefly outlined
in the sidebars on pages 378, 380, and 381.

A general principle, across all software processes, is that the cost of detecting and
repairing a fault increases as a function of time between committing an error and detect-
ing the resultant faults. Thus, whatever the intermediate work products in a software
plan, an efficient quality plan will include a matched set of intermediate validation and
verification activities that detect most faults within a short period of their introduction.
Any step in a software process that is not paired with a validation or verification step
is an opportunity for defects to fester, and any milestone in a project plan that does not
include a quality check is an opportunity for a misleading assessment of progress.

The particular verification or validation step at each stage depends on the nature
of the intermediate work product and on the anticipated defects. For example, antic-
ipated defects in a requirements statement might include incompleteness, ambiguity,

https://hemanthrajhemu.github.io

Test and Analysis Strategies 377

inconsistency, and overambition relative to project goals and resources. A review step
might address some of these, and automated analyses might help with completeness
and consistency checking.

The evolving collection of work products can be viewed as a set of descriptions of
different parts and aspects of the software system, at different levels of detail. Portions
of the implementation have the useful property of being executable in a conventional
sense, and are the traditional subject of testing, but every level of specification and
design can be both the subject of verification activities and a source of information for
verifying other artifacts. A typical intermediate artifact — say, a subsystem interface
definition or a database schema — will be subject to the following steps:

Internal consistency check: Check the artifact for compliance with structuring rules
that define “well-formed” artifacts of that type. An important point of leverage
is defining the syntactic and semantic rules thoroughly and precisely enough that
many common errors result in detectable violations. This is analogous to syn-
tax and strong-typing rules in programming languages, which are not enough to
guarantee program correctness but effectively guard against many simple errors.

External consistency check: Check the artifact for consistency with related artifacts.
Often this means checking for conformance to a “prior” or “higher-level” speci-
fication, but consistency checking does not depend on sequential, top-down de-
velopment — all that is required is that the related information from two or
more artifacts be defined precisely enough to support detection of discrepancies.
Consistency usually proceeds from broad, syntactic checks to more detailed and
expensive semantic checks, and a variety of automated and manual verification
techniques may be applied.

Generation of correctness conjectures: Correctness conjectures, which can be test
outcomes or other objective criteria, lay the groundwork for external consistency
checks of other work products, particularly those that are yet to be developed
or revised. Generating correctness conjectures for other work products will fre-
quently motivate refinement of the current product. For example, an interface
definition may be elaborated and made more precise so that implementations
can be effectively tested.

20.3 Test and Analysis Strategies

Lessons of past experience are an important asset of organizations that rely heavily
on technical skills. A body of explicit knowledge, shared and refined by the group, is
more valuable than islands of individual competence. Organizational knowledge in a
shared and systematic form is more amenable to improvement and less vulnerable to
organizational change, including the loss of key individuals. Capturing the lessons of
experience in a consistent and repeatable form is essential for avoiding errors, main-
taining consistency of the process, and increasing development efficiency.

https://hemanthrajhemu.github.io

378 Planning and Monitoring the Process

Cleanroom
The Cleanroom process model, introduced by IBM in the late 1980s, pairs develop-

ment with V&V activities and stresses analysis over testing in the early phases. Testing
is left for system certification. The Cleanroom process involves two cooperating teams,
the development and the quality teams, and five major activities: specification, plan-
ning, design and verification, quality certification, and feedback.

UsageFunction

Specification

Customer Requirements

Incremental
Development

Planning

Formal Design
Correctness Verification

Functional Specifications

Statistical Test-Case
Generation

Usage Specifications

Statistical Testing

Source Code Test Cases

Quality Certification
Model

Interfail Times

Improvement
Feedback

MTTF statistics

In the specification activity, the development team defines the required behavior
of the system, while the quality team defines usage scenarios that are later used for
deriving system test suites. The planning activity identifies incremental development
and certification phases.

After planning, all activities are iterated to produce incremental releases of the sys-
tem. Each system increment is fully deployed and certified before the following step.
Design and code undergo formal inspection (“Correctness verification”) before release.
One of the key premises underpinning the Cleanroom process model is that rigorous
design and formal inspection produce “nearly fault-free software.”

Usage profiles generated during specification are applied in the statistical testing
activity to gauge quality of each release. Another key assumption of the Cleanroom
process model is that usage profiles are sufficiently accurate that statistical testing will
provide an accurate measure of quality as perceived by users.a Reliability is measured
in terms of mean time between failures (MTBF) and is constantly controlled after each
release. Failures are reported to the development team for correction, and if reliability
falls below an acceptable range, failure data is used for process improvement before
the next incremental release.

aSee Chapter 22 for more detail on statistical testing and usage profiling.

https://hemanthrajhemu.github.io

Test and Analysis Strategies 379

Software organizations can develop useful, organization-specific strategies because
of similarities among projects carried out by a particular organization in a set of related
application domains. Test and analysis strategies capture commonalities across projects
and provide guidelines for maintaining consistency among quality plans.

A strategy is distinguished from a plan in that it is not specific to a single project.
Rather, it provides guidance and a general framework for developing quality plans for
several projects, satisfying organizational quality standards, promoting homogeneity
across projects, and making both the creation and execution of individual project qual-
ity plans more efficient.

The quality strategy is an intellectual asset of an individual organization prescribing
a set of solutions to problems specific to that organization. Among the factors that
particularize the strategy are:

Structure and size: Large organizations typically have sharper distinctions between
development and quality groups, even if testing personnel are assigned to devel-
opment teams. In smaller organizations, it is more common for a single person to
serve multiple roles. Where responsibility is distributed among more individu-
als, the quality strategy will require more elaborate attention to coordination and
communication, and in general there will be much greater reliance on documents
to carry the collective memory.

In a smaller organization, or an organization that has devolved responsibility to
small, semi-autonomous teams, there is typically less emphasis on formal com-
munication and documents but a greater emphasis on managing and balancing
the multiple roles played by each team member.

Overall process: We have already noted the intertwining of quality process with other
aspects of an overall software process, and this is of course reflected in the quality
strategy. For example, if an organization follows the Cleanroom methodology,
then inspections will be required but unit testing forbidden. An organization that
adopts the XP methodology is likely to follow the “test first” and pair program-
ming elements of that approach, and in fact would find a more document-heavy
approach a difficult fit.

Notations, standard process steps, and even tools can be reflected in the quality
strategy to the extent they are consistent from project to project. For example,
if an organization consistently uses a particular combination of UML diagram
notations to document subsystem interfaces, then the quality strategy might in-
clude derivation of test designs from those notations, as well as review and anal-
ysis steps tailored to detect the most common and important design flaws at that
point. If a particular version and configuration control system is woven into
process management, the quality strategy will likewise exploit it to support and
enforce quality process steps.

Application domain: The domain may impose both particular quality objectives (e.g.,
privacy and security in medical records processing), and in some cases particular
steps and documentation required to obtain certification from an external author-
ity. For example, the RTCA/DO-178B standard for avionics software requires
testing to the modified condition/decision coverage (MC/DC) criterion.

https://hemanthrajhemu.github.io

380 Planning and Monitoring the Process

SRET
The software reliability engineered testing (SRET) approach, developed at AT&T

in the early 1990s, assumes a spiral development process and augments each coil of the
spiral with rigorous testing activities. SRET identifies two main types of testing: devel-
opment testing, used to find and remove faults in software at least partially developed
in-house, and certification testing, used to either accept or reject outsourced software.

The SRET approach includes seven main steps. Two initial, quick decision-making
steps determine which systems require separate testing and which type of testing is
needed for each system to be tested. The five core steps are executed in parallel with
each coil of a spiral development process.

Define “Necessary”
Reliability

Develop
Operational Profiles

Requirements
and

Architecture

Design
and

Implementation

System Test
and

Acceptance Test

Prepare
for Testing

Interpret
Failure dataExecute

Tests

The five core steps of SRET are:

Define “Necessary” Reliability: Determine operational models, that is, distinct pat-
terns of system usage that require separate testing, classify failures according
to their severity, and engineer the reliability strategy with fault prevention, fault
removal, and fault tolerance activities.

Develop Operational Profiles: Develop both overall profiles that span operational
models and operational profiles within single operational models.

Prepare for Testing: Specify test cases and procedures.

Execute Tests

Interpret Failure Data: Interpretation of failure data depends on the type of testing.
In development testing, the goal is to track progress and compare present failure
intensities with objectives. In certification testing, the goal is to determine if a
software component or system should be accepted or rejected.

https://hemanthrajhemu.github.io

Test and Analysis Strategies 381

Extreme Programming (XP)
The extreme programming methodology (XP) emphasizes simplicity over general-

ity, global vision and communication over structured organization, frequent changes
over big releases, continuous testing and analysis over separation of roles and respon-
sibilities, and continuous feedback over traditional planning.

Customer involvement in an XP project includes requirements analysis (develop-
ment, refinement, and prioritization of user stories) and acceptance testing of very
frequent iterative releases. Planning is based on prioritization of user stories, which are
implemented in short iterations. Test cases corresponding to scenarios in user stories
serve as partial specifications.

Generate User
Stories

Create Unit
Tests

Review, refine,
prioritize

Pair
Programming
+ Unit testing

Passed all unit tests

Acceptance
Testing

Passed all
unit tests

Failed
acceptance
 test

Incremental
Release

Pass

Next version

Create
Acceptance

Tests

Test cases suitable for batch execution are part of the system code base and are im-
plemented prior to the implementation of features they check (“test-first”). Developers
work in pairs, incrementally developing and testing a module. Pair programming effec-
tively conflates a review activity with coding. Each release is checked by running all
the tests devised up to that point of development, thus essentially merging unit testing
with integration and system testing. A failed acceptance test is viewed as an indication
that additional unit tests are needed.

Although there are no standard templates for analysis and test strategies, we can
identify a few elements that should be part of almost any good strategy. A strategy
should specify common quality requirements that apply to all or most products, pro-
moting conventions for unambiguously stating and measuring them, and reducing the
likelihood that they will be overlooked in the quality plan for a particular project. A
strategy should indicate a set of documents that is normally produced during the quality
process, and their contents and relationships. It should indicate the activities that are
prescribed by the overall process organization. Often a set of standard tools and prac-
tices will be prescribed, such as the interplay of a version and configuration control
tool with review and testing procedures. In addition, a strategy includes guidelines for
project staffing and assignment of roles and responsibilities. An excerpt of a sample
strategy document is presented in Chapter 24.

https://hemanthrajhemu.github.io

382 Planning and Monitoring the Process

20.4 Test and Analysis Plans

An analysis and test plan details the steps to be taken in a particular project. A plan
should answer the following questions:

• What quality activities will be carried out?

• What are the dependencies among the quality activities and between quality and
development activities?

• What resources are needed and how will they be allocated?

• How will both the process and the evolving product be monitored to maintain
an adequate assessment of quality and early warning of quality and schedule
problems?

Each of these issues is addressed to some extent in the quality strategy, but must
be elaborated and particularized. This is typically the responsibility of a quality man-
ager, who should participate in the initial feasibility study to identify quality goals and
estimate the contribution of test and analysis tasks on project cost and schedule.

To produce a quality plan that adequately addresses the questions above, the quality
manager must identify the items and features to be verified, the resources and activities
that are required, the approaches that should be followed, and criteria for evaluating
the results.

Items and features to be verified circumscribe the target of the quality plan. While
there is an obvious correspondence between items to be developed or modified and
those to undergo testing, they may differ somewhat in detail. For example, overall
evaluation of the user interface may be the purview of a separate human factors group.
The items to be verified, moreover, include many intermediate artifacts such as require-
ments specifications and design documents, in addition to portions of the delivered
system. Approaches to be taken in verification and validation may vary among items.
For example, the plan may prescribe inspection and testing for all items and additional
static analyses for multi-threaded subsystems.

Quality goals must be expressed in terms of properties satisfied by the product and
must be further elaborated with metrics that can be monitored during the course of
the project. For example, if known failure scenarios are classified as critical, severe,
moderate, and minor, then we might decide in advance that a product version may
enter end-user acceptance testing only when it has undergone system testing with no
outstanding critical or severe failures.

Defining quality objectives and process organization in detail requires information
that is not all available in the early stages of development. Test items depend on de-
sign decisions; detailed approaches to evaluation can be defined only after examining
requirements and design specifications; tasks and schedule can be completed only after
the design; new risks and contingencies may be introduced by decisions taken during
development. On the other hand, an early plan is necessary for estimating and control-
ling cost and schedule. The quality manager must start with an initial plan based on
incomplete and tentative information, and incrementally refine the plan as more and
better information becomes available during the project.

https://hemanthrajhemu.github.io

Test and Analysis Plans 383

After capturing goals as well as possible, the next step in construction of a quality
plan is to produce an overall rough list of tasks. The quality strategy and past expe-
rience provide a basis for customizing the list to the current project and for scaling
tasks appropriately. For example, experience (preferably in the form of collected and
analyzed data from past projects, rather than personal memory) might suggest a ratio
of 3:5 for person-months of effort devoted to integration test relative to coding effort.
Historical data may also provide scaling factors for the application domain, interfaces
with externally developed software, and experience of the quality staff. To the extent
possible, the quality manager must break large tasks into component subtasks to ob-
tain better estimates, but it is inevitable that some task breakdown must await further
elaboration of the overall project design and schedule.

The manager can start noting dependencies among the quality activities and be-
tween them and other activities in the overall project, and exploring arrangements of
tasks over time. The main objective at this point is to schedule quality activities so that
assessment data are provided continuously throughout the project, without unneces-
sary delay of other development activities. For example, the quality manager may note
that the design and implementation of different subsystems are scheduled in different
phases, and may plan subsystem testing accordingly.

Where there is a choice between scheduling a quality activity earlier or later, the
earliest point possible is always preferable. However, the demand on resources (staff
time, primarily) must be leveled over time, and often one must carefully schedule the
availability of particular critical resources, such as an individual test designer with ex-
pertise in a particular technology. Maintaining a consistent level of effort limits the
number of activities that can be carried on concurrently, and resource constraints to-
gether with the objective of minimizing project delays tends to force particular order-
ings on tasks.

If one has a choice between completing two tasks in four months, or completing
the first task in two months and then the second in another two months, the schedule
that brings one task to completion earlier is generally advantageous from the perspec-
tive of process visibility, as well as reduced coordination overhead. However, many
activities demand a fraction of a person’s attention over a longer period and cannot be
compressed. For example, participation in design and code inspection requires a sub-
stantial investment of effort, but typically falls short of a full-time assignment. Since
delayed inspections can be a bottleneck in progress of a project, they should have a
high priority when they can be carried out, and are best interleaved with tasks that can
be more flexibly scheduled.

While the project plan shows the expected schedule of tasks, the arrangement and
ordering of tasks are also driven by risk. The quality plan, like the overall project
plan, should include an explicit risk plan that lists major risks and contingencies, as
discussed in the next section.

A key tactic for controlling the impact of risk in the project schedule is to minimize
the likelihood that unexpected delay in one task propagates through the whole schedule
and delays project completion. One first identifies the critical paths through the project
schedule. Critical paths are chains of activities that must be completed in sequence and
that have maximum overall duration. Tasks on the critical path have a high priority critical paths

for early scheduling, and likewise the tasks on which they depend (which may not

https://hemanthrajhemu.github.io

384 Planning and Monitoring the Process

themselves be on the critical path) should be scheduled early enough to provide some
schedule slack and prevent delay in the inception of the critical tasks.

A critical dependence occurs when a task on a critical path is scheduled immedi-
ately after some other task on the critical path, particularly if the length of the critical
path is close to the length of the project. Critical dependence may occur with taskscritical dependence

outside the quality plan part of the overall project plan.
The primary tactic available for reducing the schedule risk of a critical dependence

is to decompose a task on the critical path, factoring out subtasks that can be performed
earlier. For example, an acceptance test phase late in a project is likely to have a critical
dependence on development and system integration. One cannot entirely remove this
dependence, but its potential to delay project completion is reduced by factoring test
design from test execution.

Figure 20.1 shows alternative schedules for a simple project that starts at the be-
ginning of January and must be completed by the end of May. In the top schedule,
indicated as CRITICAL SCHEDULE, the tasks Analysis and design, Code and Integra-
tion, Design and execute subsystem tests, and Design and execute system tests form a
critical path that spans the duration of the entire project. A delay in any of the activities
will result in late delivery. In this schedule, only the Produce user documentation task
does not belong to the critical path, and thus only delays of this task can be tolerated.

In the middle schedule, marked as UNLIMITED RESOURCES, the test design and
execution activities are separated into distinct tasks. Test design tasks are scheduled
early, right after analysis and design, and only test execution is scheduled after Code
and integration. In this way the tasks Design subsystem tests and Design system tests
are removed from the critical path, which now spans 16 weeks with a tolerance of 5
weeks with respect to the expected termination of the project. This schedule assumes
enough resources for running Code and integration, Production of user documentation,
Design of subsystem tests, and Design of system tests.

The LIMITED RESOURCES schedule at the bottom of Figure 20.1 rearranges tasks
to meet resource constraints. In this case we assume that test design and execution, and
production of user documentation share the same resources and thus cannot be exe-
cuted in parallel. We can see that, despite the limited parallelism, decomposing testing
activities and scheduling test design earlier results in a critical path of 17 weeks, 4
weeks earlier than the expected termination of the project. Notice that in the example,
the critical path is formed by the tasks Analysis and design, Design subsystem tests,
Design system tests, Produce user documentation, Execute subsystem tests, and Exe-
cute system tests. In fact, the limited availability of resources results in dependencies
among Design subsystem tests, Design system tests and Produce user documentation
that last longer than the parallel task Code and integration.

The completed plan must include frequent milestones for assessing progress. A
rule of thumb is that, for projects of a year or more, milestones for assessing progress
should occur at least every three months. For shorter projects, a reasonable maximum
interval for assessment is one quarter of project duration.

Figure 20.2 shows a possible schedule for the initial analysis and test plan for the
business logic of the Chipmunk Web presence in the form of a GANTT diagram. In
the initial plan, the manager has allocated time and effort to inspections of all major
artifacts, as well as test design as early as practical and ongoing test execution dur-

https://hemanthrajhemu.github.io

Test and Analysis Plans 385

ID Task Name
Dec 2006 Jan 2007 Feb 2007 Mar 2007 Apr 2007

3 Analysis and design

4 Code and integration

5 Design and execute
subsystem tests

6 Design and execute
system tests

7 Produce user
documentation

9 UNLIMITED RESOURCES

11 Analysis and design

12 Code and integration

13 Design subsystem tests

14 Design system tests

15 Produce user
documentation

16 Execute subsystem tests

17 Execute system tests

19 LIMITED RESOURCES

21 Analysis and design

22 Code and integration

23 Design subsystem tests

24 Design system tests

25 Produce user
documentation

26 Execute subystem tests

27 Execute system tests

2 Project start

8 Product delivery

Project start10

18 Product delivery

20 Project start

1 CRITICAL SCHEDULE

28 Product delivery

Figure 20.1: Three possible simple schedules with different risks and resource alloca-
tion. The bars indicate the duration of the tasks. Diamonds indicate milestones, and
arrows between bars indicate precedence between tasks.

https://hemanthrajhemu.github.io

386 Planning and Monitoring the Process

ing development. Division of the project into major parts is reflected in the plan, but
further elaboration of tasks associated with units and smaller subsystems must await
corresponding elaboration of the architectural design. Thus, for example, inspection
of the shopping facilities code and the unit test suites is shown as a single aggregate
task. Even this initial plan does reflect the usual Chipmunk development strategy of
regular “synch and stabilize” periods punctuating development, and the initial quality
plan reflects the Chipmunk strategy of assigning responsibility for producing unit test
suites to developers, with review by a member of the quality team.

The GANTT diagram shows four main groups of analysis and test activities: de-
sign inspection, code inspection, test design, and test execution. The distribution of
activities over time is constrained by resources and dependence among activities. For
example, system test execution starts after completion of system test design and cannot
finish before system integration (the sync and stablize elements of development frame-
work) is complete. Inspection activities are constrained by specification and design
activities. Test design activities are constrained by limited resources. Late scheduling
of the design of integration tests for the administrative business logic subsystem is nec-
essary to avoid overlap with design of tests for the shopping functionality subsystem.

The GANTT diagram does not highlight intermediate milestones, but we can easily
identify two in April and July, thus dividing the development into three main phases.
The first phase (January to April) corresponds to requirements analysis and architec-
tural design activities and terminates with the architectural design baseline. In this
phase, the quality team focuses on design inspection and on the design of acceptance
and system tests. The second phase (May to July) corresponds to subsystem design and
to the implementation of the first complete version of the system. It terminates with
the first stabilization of the administrative business logic subsystem. In this phase, the
quality team completes the design inspection and the design of test cases. In the final
stage, the development team produces the final version, while the quality team focuses
on code inspection and test execution.

Absence of test design activities in the last phase results from careful identification
of activities that allowed early planning of critical tasks.

20.5 Risk Planning

Risk is an inevitable part of every project, and so risk planning must be a part of every
plan. Risks cannot be eliminated, but they can be assessed, controlled, and monitored.

The risk plan component of the quality plan is concerned primarily with personnel
risks, technology risks, and schedule risk. Personnel risk is any contingency that may
make a qualified staff member unavailable when needed. For example, the reassign-
ment of a key test designer cannot always be avoided, but the possible consequences
can be analyzed in advance and minimized by careful organization of the work. Tech-
nology risks in the quality plan include risks of technology used specifically by the
quality team and risks of quality problems involving other technology used in the prod-
uct or project. For example, changes in the target platform or in the testing environ-
ment, due to new releases of the operating system or to the adoption of a new testing
tool suite, may not be schedulable in advance, but may be taken into account in the

https://hemanthrajhemu.github.io

Risk Planning 387

ID
Ta

sk
 N

am
e

1s
t q

ua
rte

r
2n

d
qu

ar
te

r
3r

d
qu

ar
te

r

1/
7

2/
4

1
D

ev
el

op
m

en
t f

ra
m

ew
or

k

2
R

eq
ui

re
m

en
ts

 s
pe

ci
fic

at
io

ns

3
Ar

ch
ite

ct
ur

al
 d

es
ig

n

4
D

et
ai

le
d

de
si

gn
 o

f s
ho

pp
in

g
fa

ci
lit

y
su

bs
ys

.

5
D

et
ai

le
d

de
si

gn
 o

f
ad

m
in

is
tra

tiv
e

bi
z

lo
gi

c

7
Sy

nc
 a

nd
 s

ta
bi

liz
e

sh
op

pi
ng

fa

c.

8
Ad

m
in

 b
iz

 lo
gi

c
co

de
 a

nd

in
te

gr
at

io
n

(in
cl

ud
in

g
un

it
te

st
)

9
Sy

nc
 a

nd
 s

ta
bi

liz
e

ad
m

in
is

tra
tiv

e
bi

z
lo

gi
c

10
D

es
ig

n
in

sp
ec

tio
n

11
In

sp
ec

tio
n

of
 re

qu
ire

m
en

ts

sp
ec

s.

12
In

sp
ec

tio
n

of
 a

rc
hi

te
ct

ur
al

de

si
gn

13
In

sp
ec

tio
n

of
 d

et
. D

es
ig

n
of

sh

op
. f

ac
ili

tie
s

14
In

sp
ec

tio
n

of
 d

et
ai

le
d

de
si

gn

of
 a

dm
in

 lo
gi

c
15

C
od

e
in

sp
ec

tio
n

16
In

sp
ec

tio
n

of
 s

ho
p.

 F
un

. C
or

e
co

de
 a

nd
 u

ni
t t

es
ts

17
In

sp
ec

tio
n

of
 a

dm
in

. B
iz

. L
og

.
C

od
e

co
de

 a
nd

 u
ni

t t
es

ts

18
D

es
ig

n
te

st
s

19
D

es
ig

n
ac

ce
pt

an
ce

 te
st

s

20
D

es
ig

n
sy

st
em

 te
st

s

21
D

es
ig

n
sh

op
 fu

n
su

bs
ys

te
m

in

te
gr

at
io

n
te

st

22
D

es
ig

n
ad

m
in

 b
ix

 lo
g

su
bs

ys
te

m
 in

te
gr

at
io

n
te

st
s

23
Te

st
 e

xe
cu

tio
n

24
Ex

ec
 in

te
gr

at
io

n
te

st
s

25
Ex

ec
 s

ys
te

m
 te

st
s

26
Ex

ec
 a

cc
ep

ta
nc

e
te

st
s

6
Sh

op
pi

ng
 fa

c
co

de
 a

nd

in
te

gr
at

io
n

(in
cl

 u
ni

t t
es

t)

Fi
gu

re
20

.2
:

In
iti

al
sc

he
du

le
fo

r
qu

al
ity

ac
tiv

iti
es

in
de

ve
lo

pm
en

to
ft

he
bu

si
ne

ss
lo

gi
c

su
bs

ys
te

m
of

th
e

C
hi

pm
un

k
W

eb
pr

es
en

ce
,p

re
se

nt
ed

as
a

G
A

N
TT

di
ag

ra
m

.

https://hemanthrajhemu.github.io

388 Planning and Monitoring the Process

organization of the testing environment. Schedule risk arises primarily from optimistic
assumptions in the quality plan. For example, underestimating scaffolding design and
maintenance is a common mistake that cannot always be avoided, but consequences
can be mitigated (e.g., by allowing for a reasonable slack time that can absorb possible
delays). Many risks and the tactics for controlling them are generic to project manage-
ment (e.g., cross-training to reduce the impact of losing a key staff member). Here we
focus on risks that are specific to quality planning or for which risk control measures
play a special role in the quality plan.

The duration of integration, system, and acceptance test execution depends to a
large extent on the quality of software under test. Software that is sloppily constructed
or that undergoes inadequate analysis and test before commitment to the code base
will slow testing progress. Even if responsibility for diagnosing test failures lies with
developers and not with the testing group, a test execution session that results in many
failures and generates many failure reports is inherently more time consuming than exe-
cuting a suite of tests with few or no failures. This schedule vulnerability is yet another
reason to emphasize earlier activities, in particular those that provide early indications
of quality problems. Inspection of design and code (with quality team participation)
can help control this risk, and also serves to communicate quality standards and best
practices among the team.

If unit testing is the responsibility of developers, test suites are part of the unit deliv-
erable and should undergo inspection for correctness, thoroughness, and automation.
While functional and structural coverage criteria are no panacea for measuring test
thoroughness, it is reasonable to require that deviations from basic coverage criteria be
justified on a case-by-case basis. A substantial deviation from the structural coverage
observed in similar products may be due to many causes, including inadequate testing,
incomplete specifications, unusual design, or implementation decisions. The modules
that present unusually low structural coverage should be inspected to identify the cause.

The cost of analysis and test is multiplied when some requirements demand a very
high level of assurance. For example, if a system that has previously been used in
biological research is modified or redeveloped for clinical use, one should anticipate
that all development costs, and particularly costs of analysis and test, will be an order
of magnitude higher. In addition to the risk of underestimating the cost and sched-
ule impact of stringent quality requirements, the risk of failing to achieve the required
dependability increases. One important tactic for controlling this risk is isolating crit-
ical properties as far as possible in small, simple components. Of course these aspects
of system specification and architectural design are not entirely within control of the
quality team; it is crucial that at least the quality manager, and possibly other mem-
bers of the quality team, participate in specification and design activities to assess and
communicate the impact of design alternatives on cost and schedule.

Architectural design is also the primary point of leverage to control cost and risks of
testing systems with complex external interfaces. For example, the hardware platform
on which an embedded system must be tested may be a scarce resource, in demand for
debugging as well as testing. Preparing and executing a test case on that platform may
be time-consuming, magnifying the risk that system and operational testing may go
over schedule and delay software delivery. This risk may be reduced by careful consid-
eration of design-for-testability in architectural design. A testable design isolates and

https://hemanthrajhemu.github.io

Monitoring the Process 389

minimizes platform dependencies, reducing the portion of testing that requires access
to the platform. It will typically provide additional interfaces to enhance controllabil-
ity and observability in testing. A considerable investment in test scaffolding, from
self-diagnosis to platform simulators, may also be warranted.

Risks related both to critical requirements and limitations on testability can be par-
tially addressed in system specifications and programming standards. For example,
it is notoriously difficult to detect race conditions by testing multi-threaded software.
However, one may impose a design and programming discipline that prevents race
conditions, such as a simple monitor discipline with resource ordering. Detecting vi-
olations of that discipline, statically and dynamically, is much simpler than detecting
actual data races. This tactic may be reflected in several places in the project plan, from
settling on the programming discipline in architectural design to checking for proper
use of the discipline in code and design inspections, to implementation or purchase of
tools to automate compliance checking.

The sidebars on page 390 and 391 summarize a set of risks both generic to process
management and specific to quality control that a quality manager must consider when
defining a quality plan.

20.6 Monitoring the Process

The quality manager monitors progress of quality activities, including results as well as
schedule, to identify deviations from the quality plan as early as possible and take cor-
rective action. Effective monitoring, naturally, depends on a plan that is realistic, well
organized, and sufficiently detailed with clear, unambiguous milestones and criteria.
We say a process is visible to the extent that it can be effectively monitored.

Successful completion of a planned activity must be distinguished from mere ter-
mination, as otherwise it is too tempting to meet an impending deadline by omitting
some planned work. Skipping planned verification activities or addressing them su-
perficially can seem to accelerate a late project, but the boost is only apparent; the real
effect is to postpone detection of more faults to later stages in development, where their
detection and removal will be far more threatening to project success.

For example, suppose a developer is expected to deliver unit test cases as part of a
work unit. If project deadlines are slipping, the developer is tempted to scrimp on de-
signing unit tests and writing supporting code, perhaps dashing off a few superficial test
cases so that the unit can be committed to the code base. The rushed development and
inadequate unit testing are nearly guaranteed to leave bugs that surface later, perhaps
in integration or system testing, where they will have a far greater impact on project
schedule. Worst of all, they might be first detected in operational use, reducing the real
and perceived quality of the delivered product. In monitoring progress, therefore, it
is essential to include appropriate metrics of the thoroughness or completeness of the
activity.

Monitoring produces a surfeit of detail about individual activities. Managers need
to make decisions based on an overall understanding of project status, so raw monitor-
ing information must be aggregated in ways that provide an overall picture.

https://hemanthrajhemu.github.io

390 Planning and Monitoring the Process

Risk Management in the Quality Plan: Risks Generic to Process Management
The quality plan must identify potential risks and define appropriate control tactics. Some risks

and control tactics are generic to process management, while others are specific to the quality process.
Here we provide a brief overview of some risks generic to process management. Risks specific to the
quality process are summarized in the sidebar on page 391.

Personnel Risks Example Control Tactics
A staff member is lost (becomes ill, changes em-
ployer, etc.) or is underqualified for task (the
project plan assumed a level of skill or familiar-
ity that the assigned member did not have).

Cross train to avoid overdependence on individ-
uals; encourage and schedule continuous educa-
tion; provide open communication with oppor-
tunities for staff self-assessment and identifica-
tion of skills gaps early in the project; provide
competitive compensation and promotion poli-
cies and a rewarding work environment to re-
tain staff; include training time in the project
schedule.

Technology Risks Example Control Tactics
Many faults are introduced interfacing to an un-
familiar commercial off-the-shelf (COTS) com-
ponent.

Anticipate and schedule extra time for testing
unfamiliar interfaces; invest training time for
COTS components and for training with new
tools; monitor, document, and publicize com-
mon errors and correct idioms; introduce new
tools in lower-risk pilot projects or prototyping
exercises.

Test and analysis automation tools do not meet
expectations.

Introduce new tools in lower-risk pilot projects
or prototyping exercises; anticipate and schedule
time for training with new tools.

COTS components do not meet quality expecta-
tions.

Include COTS component qualification testing
early in project plan; introduce new COTS com-
ponents in lower-risk pilot projects or prototyp-
ing exercises.

Schedule Risks Example Control Tactics
Inadequate unit testing leads to unanticipated ex-
pense and delays in integration testing.

Track and reward quality unit testing as evi-
denced by low-fault densities in integration.

Difficulty of scheduling meetings makes inspec-
tion a bottleneck in development.

Set aside times in a weekly schedule in which
inspections take precedence over other meetings
and other work; try distributed and asynchronous
inspection techniques, with a lower frequency of
face-to-face inspection meetings.

https://hemanthrajhemu.github.io

Monitoring the Process 391

Risk Management in the Quality Plan: Risks Specific to Quality Management
Here we provide a brief overview of some risks specific to the quality process. Risks generic to

process management are summarized in the sidebar at page 390.

Development Risks Example Control Tactics
Poor quality software delivered to testing group
or inadequate unit test and analysis before com-
mitting to the code base.

Provide early warning and feedback; schedule
inspection of design, code and test suites; con-
nect development and inspection to the reward
system; increase training through inspection; re-
quire coverage or other criteria at unit test level.

Executions Risks Example Control Tactics
Execution costs higher than planned; scarce re-
sources available for testing (testing requires ex-
pensive or complex machines or systems not eas-
ily available.)

Minimize parts that require full system to be exe-
cuted; inspect architecture to assess and improve
testability; increase intermediate feedback; in-
vest in scaffolding.

Requirements Risks Example Control Tactics
High assurance critical requirements. Compare planned testing effort with former

projects with similar criticality level to avoid
underestimating testing effort; balance test and
analysis; isolate critical parts, concerns and
properties.

One key aggregate measure is the number of faults that have been revealed and
removed, which can be compared to data obtained from similar past projects. Fault
detection and removal can be tracked against time and will typically follow a charac-
teristic distribution similar to that shown in Figure 20.3. The number of faults detected
per time unit tends to grow across several system builds, then to decrease at a much
lower rate (usually half the growth rate) until it stabilizes.

An unexpected pattern in fault detection may be a symptom of problems. If de-
tected faults stop growing earlier than expected, one might hope it indicates exception-
ally high quality, but it would be wise to consider the alternative hypothesis that fault
detection efforts are ineffective. A growth rate that remains high through more than
half the planned system builds is a warning that quality goals may be met late or not at
all, and may indicate weaknesses in fault removal or lack of discipline in development
(e.g., a rush to add features before delivery, with a consequent deemphasis on quality
control).

A second indicator of problems in the quality process is faults that remain open
longer than expected. Quality problems are confirmed when the number of open faults
does not stabilize at a level acceptable to stakeholders.

The accuracy with which we can predict fault data and diagnose deviations from
expectation depends on the stability of the software development and quality processes,
and on availability of data from similar projects. Differences between organizations
and across application domains are wide, so by far the most valuable data is from

https://hemanthrajhemu.github.io

392 Planning and Monitoring the Process

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

Builds

Fa
ul
ts

Total
Critical
Severe
Moderate

Figure 20.3: A typical distribution of faults for system builds through time.

similar projects in one’s own organization.
The faultiness data in Figure 20.3 are aggregated by severity levels. This helps in

better understanding the process. Growth in the number of moderate faults late in the
development process may be a symptom of good use of limited resources concentrated
in removing critical and severe faults, not spent solving moderate problems.

Accurate classification schemata can improve monitoring and may be used in very
large projects, where the amount of detailed information cannot be summarized in
overall data. The orthogonal defect classification (ODC) approach has two main steps:
(1) fault classification and (2) fault analysis.orthogonal defect

classification (ODC) ODC fault classification is done in two phases: when faults are detected and when
they are fixed. At detection time, we record the activity executed when the fault is
revealed, the trigger that exposed the fault, and the perceived or actual impact of the
fault on the customer. A possible taxonomy for activities and triggers is illustrated in
the sidebar at page 395. Notice that triggers depend on the activity. The sidebar at
page 396 illustrates a possible taxonomy of customer impacts.

At fix time, we record target, type, source, and age of the software. The target
indicates the entity that has been fixed to remove the fault, and can be requirements,
design, code, build/package, or documentation/development. The type indicates the
type of the fault. Taxonomies depend on the target. The sidebar at page 396 illustrates
a taxonomy of types of faults removed from design or code. Fault types may be aug-
mented with an indication of the nature of the fault, which can be: missing, that is, the
fault is to due to an omission, as in a missing statement; incorrect, as in the use of a
wrong parameter; or extraneous, that is, due to something not relevant or pertinent to
the document or code, as in a section of the design document that is not pertinent to the
current product and should be removed. The source of the fault indicates the origin of
the faulty modules: in-house, library, ported from other platforms, or outsourced code.

https://hemanthrajhemu.github.io

Monitoring the Process 393

The age indicates the age of the faulty element — whether the fault was found in new,
old (base), rewritten, or re-fixed code.

The detailed information on faults allows for many analyses that can provide in-
formation on the development and the quality process. As in the case of analysis of
simple faultiness data, the interpretation depends on the process and the product, and
should be based on past experience. The taxonomy of faults, as well as the analysis of
faultiness data, should be refined while applying the method.

When we first apply the ODC method, we can perform some preliminary analysis
using only part of the collected information:

Distribution of fault types versus activities: Different quality activities target differ-
ent classes of faults. For example, algorithmic (that is, local) faults are targeted
primarily by unit testing, and we expect a high proportion of faults detected by
unit testing to be in this class. If the proportion of algorithmic faults found during
unit testing is unusually small, or a larger than normal proportion of algorithmic
faults are found during integration testing, then one may reasonably suspect that
unit tests have not been well designed. If the mix of faults found during inte-
gration testing contains an unusually high proportion of algorithmic faults, it is
also possible that integration testing has not focused strongly enough on interface
faults.

Distribution of triggers over time during field test: Faults corresponding to simple
usage should arise early during field test, while faults corresponding to complex
usage should arise late. In both cases, the rate of disclosure of new faults should
asymptotically decrease. Unexpected distributions of triggers over time may
indicate poor system or acceptance test. If triggers that correspond to simple
usage reveal many faults late in acceptance testing, we may have chosen a sample
that is not representative of the user population. If faults continue growing during
acceptance test, system testing may have failed, and we may decide to resume it
before continuing with acceptance testing.

Age distribution over target code: Most faults should be located in new and rewrit-
ten code, while few faults should be found in base or re-fixed code, since base and
re-fixed code has already been tested and corrected. Moreover, the proportion of
faults in new and rewritten code with respect to base and re-fixed code should
gradually increase. Different patterns may indicate holes in the fault tracking and
removal process or may be a symptom of inadequate test and analysis that failed
in revealing faults early (in previous tests of base or re-fixed code). For example,
an increase of faults located in base code after porting to a new platform may
indicate inadequate tests for portability.

Distribution of fault classes over time: The proportion of missing code faults should
gradually decrease, while the percentage of extraneous faults may slowly in-
crease, because missing functionality should be revealed with use and repaired,
while extraneous code or documentation may be produced by updates. An in-
creasing number of missing faults may be a symptom of instability of the prod-
uct, while a sudden sharp increase in extraneous faults may indicate maintenance
problems.

https://hemanthrajhemu.github.io

394 Planning and Monitoring the Process

20.7 Improving the Process

Many classes of faults that occur frequently are rooted in process and development
flaws. For example, a shallow architectural design that does not take into account
resource allocation can lead to resource allocation faults. Lack of experience with
the development environment, which leads to misunderstandings between analysts and
programmers on rare and exceptional cases, can result in faults in exception handling.
A performance assessment system that rewards faster coding without regard to quality
is likely to promote low quality code.

The occurrence of many such faults can be reduced by modifying the process and
environment. For example, resource allocation faults resulting from shallow architec-
tural design can be reduced by introducing specific inspection tasks. Faults attributable
to inexperience with the development environment can be reduced with focused train-
ing sessions. Persistently poor programming practices may require modification of the
reward system.

Often, focused changes in the process can lead to product improvement and signif-
icant cost reduction. Unfortunately, identifying the weak aspects of a process can be
extremely difficult, and often the results of process analysis surprise even expert man-
agers. The analysis of the fault history can help software engineers build a feedback
mechanism to track relevant faults to their root causes, thus providing vital informa-
tion for improving the process. In some cases, information can be fed back directly
into the current product development, but more often it helps software engineers im-
prove the development of future products. For example, if analysis of faults reveals
frequent occurrence of severe memory management faults in C programs, we might
revise inspection checklists and introduce dynamic analysis tools, but it may be too
late to change early design decisions or select a different programming language in the
project underway. More fundamental changes may be made in future projects.

Root cause analysis (RCA) is a technique for identifying and eliminating process
faults. RCA was first developed in the nuclear power industry and later extended to
software analysis. It consists of four main steps to select significant classes of faults∆ root cause

analysis and track them back to their original causes: What, When, Why, and How.

What are the faults? The goal of this first step is to identify a class of important
faults. Faults are categorized by severity and kind. The severity of faults characterizes
the impact of the fault on the product. Although different methodologies use slightly
different scales and terms, all of them identify a few standard levels, described in Ta-
ble 20.1.

The RCA approach to categorizing faults, in contrast to ODC, does not use a pre-
defined set of categories. The objective of RCA is not to compare different classes of
faults over time, or to analyze and eliminate all possible faults, but rather to identify the
few most important classes of faults and remove their causes. Successful application of
RCA progressively eliminates the causes of the currently most important faults, which
lose importance over time, so applying a static predefined classification would be use-
less. Moreover, the precision with which we identify faults depends on the specific
project and process and varies over time.

https://hemanthrajhemu.github.io

Improving the Process 395

ODC Classification of Triggers Listed by Activity

Design Review and Code Inspection

Design Conformance A discrepancy between the reviewed artifact and a prior-stage artifact
that serves as its specification.

Logic/Flow An algorithmic or logic flaw.

Backward Compatibility A difference between the current and earlier versions of an artifact
that could be perceived by the customer as a failure.

Internal Document An internal inconsistency in the artifact (e.g., inconsistency between code
and comments).

Lateral Compatibility An incompatibility between the artifact and some other system or mod-
ule with which it should interoperate.

Concurrency A fault in interaction of concurrent processes or threads.

Language Dependency A violation of language-specific rules, standards, or best practices.

Side Effects A potential undesired interaction between the reviewed artifact and some other part
of the system.

Rare Situation An inappropriate response to a situation that is not anticipated in the artifact.
(Error handling as specified in a prior artifact design conformance, not rare situation.)

Structural (White-Box) Test

Simple Path The fault is detected by a test case derived to cover a single program element.

Complex Path The fault is detected by a test case derived to cover a combination of program
elements.

Functional (Black-Box) Test

Coverage The fault is detected by a test case derived for testing a single procedure (e.g., C func-
tion or Java method), without considering combination of values for possible parameters.

Variation The fault is detected by a test case derived to exercise a particular combination of
parameters for a single procedure.

Sequencing The fault is detected by a test case derived for testing a sequence of procedure calls.

Interaction The fault is detected by a test case derived for testing procedure interactions.

System Test

Workload/Stress The fault is detected during workload or stress testing.

Recovery/Exception The fault is detected while testing exceptions and recovery procedures.

Startup/Restart The fault is detected while testing initialization conditions during start up or
after possibly faulty shutdowns.

Hardware Configuration The fault is detected while testing specific hardware configurations.

Software Configuration The fault is detected while testing specific software configurations.

Blocked Test Failure occurred in setting up the test scenario.

https://hemanthrajhemu.github.io

396 Planning and Monitoring the Process

ODC Classification of Customer Impact
Installability Ability of the customer to place the software into actual use. (Usability of the

installed software is not included.)

Integrity/Security Protection of programs and data from either accidental or malicious destruc-
tion or alteration, and from unauthorized disclosure.

Performance The perceived and actual impact of the software on the time required for the
customer and customer end users to complete their tasks.

Maintenance The ability to correct, adapt, or enhance the software system quickly and at min-
imal cost.

Serviceability Timely detection and diagnosis of failures, with minimal customer impact.

Migration Ease of upgrading to a new system release with minimal disruption to existing cus-
tomer data and operations.

Documentation Degree to which provided documents (in all forms, including electronic) com-
pletely and correctly describe the structure and intended uses of the software.

Usability The degree to which the software and accompanying documents can be understood
and effectively employed by the end user.

Standards The degree to which the software complies with applicable standards.

Reliability The ability of the software to perform its intended function without unplanned in-
terruption or failure.

Accessibility The degree to which persons with disabilities can obtain the full benefit of the
software system.

Capability The degree to which the software performs its intended functions consistently with
documented system requirements.

Requirements The degree to which the system, in complying with document requirements,
actually meets customer expectations

ODC Classification of Defect Types for Targets Design and Code
Assignment/Initialization A variable was not assigned the correct initial value or was not as-

signed any initial value.

Checking Procedure parameters or variables were not properly validated before use.

Algorithm/Method A correctness or efficiency problem that can be fixed by reimplementing a
single procedure or local data structure, without a design change.

Function/Class/Object A change to the documented design is required to conform to product
requirements or interface specifications.

Timing/Synchronization The implementation omits necessary synchronization of shared re-
sources, or violates the prescribed synchronization protocol.

Interface/Object-Oriented Messages Module interfaces are incompatible; this can include
syntactically compatible interfaces that differ in semantic interpretation of communicated
data.

Relationship Potentially problematic interactions among procedures, possibly involving differ-
ent assumptions but not involving interface incompatibility.

https://hemanthrajhemu.github.io

Improving the Process 397

Level Description Example
Critical The product is unusable. The fault causes the program to crash.
Severe Some product features

cannot be used, and there
is no workaround.

The fault inhibits importing files saved
with a previous version of the program,
and there is no way to convert files
saved in the old format to the new one.

Moderate Some product features re-
quire workarounds to use,
and reduce efficiency, re-
liability, or convenience
and usability.

The fault inhibits exporting in
Postscript format. Postscript can be
produced using the printing facility,
but the process is not obvious or
documented (loss of usability) and
requires extra steps (loss of efficiency).

Cosmetic Minor inconvenience. The fault limits the choice of colors
for customizing the graphical interface,
violating the specification but causing
only minor inconvenience.

Table 20.1: Standard severity levels for root cause analysis (RCA).

A good RCA classification should follow the uneven distribution of faults across
categories. If, for example, the current process and the programming style and environ-
ment result in many interface faults, we may adopt a finer classification for interface
faults and a coarse-grain classification of other kinds of faults. We may alter the clas-
sification scheme in future projects as a result of having identified and removed the
causes of many interface faults.

Classification of faults should be sufficiently precise to allow identifying one or two
most significant classes of faults considering severity, frequency, and cost of repair. It
is important to keep in mind that severity and repair cost are not directly related. We
may have cosmetic faults that are very expensive to repair, and critical faults that can
be easily repaired. When selecting the target class of faults, we need to consider all the
factors. We might, for example, decide to focus on a class of moderately severe faults
that occur very frequently and are very expensive to remove, investing fewer resources
in preventing a more severe class of faults that occur rarely and are easily repaired.

When did faults occur, and when were they found? It is typical of mature software
processes to collect fault data sufficient to determine when each fault was detected (e.g.,
in integration test or in a design inspection). In addition, for the class of faults identified
in the first step, we attempt to determine when those faults were introduced (e.g., was
a particular fault introduced in coding, or did it result from an error in architectural
design?).

Why did faults occur? In this core RCA step, we attempt to trace representative
faults back to causes, with the objective of identifying a “root” cause associated with
many faults in the class. Analysis proceeds iteratively by attempting to explain the

https://hemanthrajhemu.github.io

398 Planning and Monitoring the Process

The 80/20 or Pareto Rule
Fault classification in root cause analysis is justified by the so-called 80/20 or Pareto

rule. The Pareto rule is named for the Italian economist Vilfredo Pareto, who in the
early nineteenth century proposed a mathematical power law formula to describe the
unequal distribution of wealth in his country, observing that 20% of the people owned
80% of the wealth.

Pareto observed that in many populations, a few (20%) are vital and many (80%) are
trivial. In fault analysis, the Pareto rule postulates that 20% of the code is responsible
for 80% of the faults. Although proportions may vary, the rule captures two important
facts:

1. Faults tend to accumulate in a few modules, so identifying potentially faulty
modules can improve the cost effectiveness of fault detection.

2. Some classes of faults predominate, so removing the causes of a predominant
class of faults can have a major impact on the quality of the process and of the
resulting product.

The predominance of a few classes of faults justifies focusing on one class at a time.

error that led to the fault, then the cause of that error, the cause of that cause, and so
on. The rule of thumb “ask why six times” does not provide a precise stopping rule for
the analysis, but suggests that several steps may be needed to find a cause in common
among a large fraction of the fault class under consideration.

Tracing the causes of faults requires experience, judgment, and knowledge of the
development process. We illustrate with a simple example. Imagine that the first RCA
step identified memory leaks as the most significant class of faults, combining a mod-
erate frequency of occurrence with severe impact and high cost to diagnose and repair.
The group carrying out RCA will try to identify the cause of memory leaks and may
conclude that many of them result from forgetting to release memory in exception han-
dlers. The RCA group may trace this problem in exception handling to lack of infor-
mation: Programmers can’t easily determine what needs to be cleaned up in exception
handlers. The RCA group will ask why once more and may go back to a design error:
The resource management scheme assumes normal flow of control and thus does not
provide enough information to guide implementation of exception handlers. Finally,
the RCA group may identify the root problem in an early design problem: Exceptional
conditions were an afterthought dealt with late in design.

Each step requires information about the class of faults and about the development
process that can be acquired through inspection of the documentation and interviews
with developers and testers, but the key to success is curious probing through several
levels of cause and effect.

How could faults be prevented? The final step of RCA is improving the process by
removing root causes or making early detection likely. The measures taken may have

https://hemanthrajhemu.github.io

The Quality Team 399

a minor impact on the development process (e.g., adding consideration of exceptional
conditions to a design inspection checklist), or may involve a substantial modification
of the process (e.g., making explicit consideration of exceptional conditions a part of all
requirements analysis and design steps). As in tracing causes, prescribing preventative
or detection measures requires judgment, keeping in mind that the goal is not perfection
but cost-effective improvement.

ODC and RCA are two examples of feedback and improvement, which are an im-
portant dimension of most good software processes. Explicit process improvement
steps are, for example, featured in both SRET (sidebar on page 380) and Cleanroom
(sidebar on page 378).

20.8 The Quality Team

The quality plan must assign roles and responsibilities to people. As with other aspects
of planning, assignment of responsibility occurs at a strategic level and a tactical level.
The tactical level, represented directly in the project plan, assigns responsibility to in-
dividuals in accordance with the general strategy. It involves balancing level of effort
across time and carefully managing personal interactions. The strategic level of orga-
nization is represented not only in the quality strategy document, but in the structure of
the organization itself.

The strategy for assigning responsibility may be partly driven by external require-
ments. For example, independent quality teams may be required by certification agen-
cies or by a client organization. Additional objectives include ensuring sufficient ac-
countability that quality tasks are not easily overlooked; encouraging objective judg-
ment of quality and preventing it from being subverted by schedule pressure; fostering
shared commitment to quality among all team members; and developing and commu-
nicating shared knowledge and values regarding quality.

Measures taken to attain some objectives (e.g., autonomy to ensure objective as-
sessment) are in tension with others (e.g., cooperation to meet overall project objec-
tives). It is therefore not surprising to find that different organizations structure roles
and responsibilities in a wide variety of different ways. The same individuals can play
the roles of developer and tester, or most testing responsibility can be assigned to mem-
bers of a distinct group, and some may even be assigned to a distinct organization on
a contractual basis. Oversight and accountability for approving the work product of a
task are sometimes distinguished from responsibility for actually performing a task, so
the team organization is somewhat intertwined with the task breakdown.

Each of the possible organizations of quality roles makes some objectives easier
to achieve and some more challenging. Conflict of one kind or another is inevitable,
and therefore in organizing the team it is important to recognize the conflicts and take
measures to control adverse consequences. If an individual plays two roles in potential
conflict (e.g., a developer responsible for delivering a unit on schedule is also respon-
sible for integration testing that could reveal faults that delay delivery), there must be
countermeasures to control the risks inherent in that conflict. If roles are assigned to
different individuals, then the corresponding risk is conflict between the individuals

https://hemanthrajhemu.github.io

400 Planning and Monitoring the Process

(e.g., if a developer and a tester do not adequately share motivation to deliver a quality
product on schedule).

An independent and autonomous testing team lies at one end of the spectrum of
possible team organizations. One can make that team organizationally independent
so that, for example, a project manager with schedule pressures can neither bypass
quality activities or standards, nor reallocate people from testing to development, nor
postpone quality activities until too late in the project. Separating quality roles from
development roles minimizes the risk of conflict between roles played by an individual,
and thus makes most sense for roles in which independence is paramount, such as final
system and acceptance testing. An independent team devoted to quality activities also
has an advantage in building specific expertise, such as test design. The primary risk
arising from separation is in conflict between goals of the independent quality team
and the developers.

When quality tasks are distributed among groups or organizations, the plan should
include specific checks to ensure successful completion of quality activities. For ex-
ample, when module testing is performed by developers and integration and system
testing is performed by an independent quality team, the quality team should check the
completeness of module tests performed by developers, for example, by requiring sat-
isfaction of coverage criteria or inspecting module test suites. If testing is performed by
an independent organization under contract, the contract should carefully describe the
testing process and its results and documentation, and the client organization should
verify satisfactory completion of the contracted tasks.

Existence of a testing team must not be perceived as relieving developers from re-
sponsibility for quality, nor is it healthy for the testing team to be completely oblivious
to other pressures, including schedule pressure. The testing team and development
team, if separate, must at least share the goal of shipping a high-quality product on
schedule.

Independent quality teams require a mature development process to minimize com-
munication and coordination overhead. Test designers must be able to work on suffi-
ciently precise specifications and must be able to execute tests in a controllable test
environment. Versions and configurations must be well defined, and failures and faults
must be suitably tracked and monitored across versions.

It may be logistically impossible to maintain an independent quality group, espe-
cially in small projects and organizations, where flexibility in assignments is essential
for resource management. Aside from the logistical issues, division of responsibility
creates additional work in communication and coordination. Finally, quality activities
often demand deep knowledge of the project, particularly at detailed levels (e.g., unit
and early integration test). An outsider will have less insight into how and what to
test, and may be unable to effectively carry out the crucial earlier activities, such as
establishing acceptance criteria and reviewing architectural design for testability. For
all these reasons, even organizations that rely on an independent verification and val-
idation (IV&V) group for final product qualification allocate other responsibilities to
developers and to quality professionals working more closely with the development
team.

At the polar opposite from a completely independent quality team is full integra-
tion of quality activities with development, as in some “agile” processes including XP.

https://hemanthrajhemu.github.io

The Quality Team 401

Communication and coordination overhead is minimized this way, and developers take
full responsibility for the quality of their work product. Moreover, technology and ap-
plication expertise for quality tasks will match the expertise available for development
tasks, although the developer may have less specific expertise in skills such as test
design.

The more development and quality roles are combined and intermixed, the more
important it is to build into the plan checks and balances to be certain that quality
activities and objective assessment are not easily tossed aside as deadlines loom. For
example, XP practices like “test first” together with pair programming (sidebar on page
381) guard against some of the inherent risks of mixing roles.

Separate roles do not necessarily imply segregation of quality activities to distinct
individuals. It is possible to assign both development and quality responsibility to de-
velopers, but assign two individuals distinct responsibilities for each development work
product. Peer review is an example of mixing roles while maintaining independence
on an item-by-item basis. It is also possible for developers and testers to participate
together in some activities.

Many variations and hybrid models of organization can be designed. Some orga-
nizations have obtained a good balance of benefits by rotating responsibilities. For
example, a developer may move into a role primarily responsible for quality in one
project and move back into a regular development role in the next. In organizations
large enough to have a distinct quality or testing group, an appropriate balance between
independence and integration typically varies across levels of project organization. At
some levels, an appropriate balance can be struck by giving responsibility for an ac-
tivity (e.g., unit testing) to developers who know the code best, but with a separate
oversight responsibility shared by members of the quality team. For example, unit tests
may be designed and implemented by developers, but reviewed by a member of the
quality team for effective automation (particularly, suitability for automated regression
test execution as the product evolves) as well as thoroughness. The balance tips further
toward independence at higher levels of granularity, such as in system and acceptance
testing, where at least some tests should be designed independently by members of the
quality team.

Outsourcing test and analysis activities is sometimes motivated by the perception
that testing is less technically demanding than development and can be carried out by
lower-paid and lower-skilled individuals. This confuses test execution, which should in
fact be straightforward, with analysis and test design, which are as demanding as design
and programming tasks in development. Of course, less skilled individuals can design
and carry out tests, just as less skilled individuals can design and write programs, but
in both cases the results are unlikely to be satisfactory.

Outsourcing can be a reasonable approach when its objectives are not merely min-
imizing cost, but maximizing independence. For example, an independent judgment
of quality may be particularly valuable for final system and acceptance testing, and
may be essential for measuring a product against an independent quality standard (e.g.,
qualifying a product for medical or avionic use). Just as an organization with mixed
roles requires special attention to avoid the conflicts between roles played by an indi-
vidual, radical separation of responsibility requires special attention to control conflicts

https://hemanthrajhemu.github.io

402 Planning and Monitoring the Process

between the quality assessment team and the development team.
The plan must clearly define milestones and delivery for outsourced activities, as

well as checks on the quality of delivery in both directions: Test organizations usually
perform quick checks to verify the consistency of the software to be tested with respect
to some minimal “testability” requirements; clients usually check the completeness and
consistency of test results. For example, test organizations may ask for the results of
inspections on the delivered artifact before they start testing, and may include some
quick tests to verify the installability and testability of the artifact. Clients may check
that tests satisfy specified functional and structural coverage criteria, and may inspect
the test documentation to check its quality. Although the contract should detail the
relation between the development and the testing groups, ultimately, outsourcing relies
on mutual trust between organizations.

Open Research Issues

Orthogonal defect classification (introduced in the 1990s) and root cause analysis (in-
troduced in the 1980s) remain key techniques for deriving useful guidance from expe-
rience. Considering widespread agreement on the importance of continuous process
improvement, we should expect innovation and adaptation of these key techniques for
current conditions. An example is the renewed interest in fault-proneness models, ex-
ploiting the rich historical data available in version control systems and bug tracking
databases.

Globally distributed software teams and teams that span multiple companies and
organizations pose many interesting challenges for software development in general
and test and analysis in particular. We expect that both technical and management
innovations will adapt to these important trends, with increasing interplay between
research in software test and analysis and research in computer-supported collaborative
work (CSCW).

Further Reading

IEEE publishes a standard for software quality assurance plans [Ins02], which serves
as a good starting point. The plan outline in this chapter is based loosely on the IEEE
standard. Jaaksi [Jaa03] provides a useful discussion of decision making based on dis-
tribution of fault discovery and resolution over the course of a project, drawn from
experience at Nokia. Chaar et al. [CHBC93] describe the orthogonal defect clas-
sification technique, and Bhandari et al. [BHC+94] provide practical details useful in
implementing it. Leszak et al. [LPS02] describe a retrospective process with root cause
analysis, process compliance analysis, and software complexity analysis. Denaro and
Pezzè [DP02] describe fault-proneness models for allocating effort in a test plan. De-
Marco and Lister [DL99] is a popular guide to the human dimensions of managing
software teams.

https://hemanthrajhemu.github.io

The Quality Team 403

Exercises

20.1. Testing compatibility with a variety of device drivers is a significant cost and
schedule factor in some projects. For example, a well-known developer of desk-
top publishing software maintains a test laboratory containing dozens of current
and outdated models of Macintosh computer, running several operating system
versions.

Put yourself in the place of the quality manager for a new version of this desktop
publishing software, and consider in particular the printing subsystem of the
software package. Your goal is to minimize the schedule impact of testing the
software against a large number of printers, and in particular to reduce the risk
that serious problems in the printing subsystem surface late in the project, or that
testing on the actual hardware delays product release.

How can the software architectural design be organized to serve your goals of
reducing cost and risk? Do you expect your needs in this regard will be aligned
with those of the development manager, or in conflict? What other measures
might you take in project planning, and in particular in the project schedule, to
minimize risks of problems arising when the software is tested in an operational
environment? Be as specific as possible, and avoid simply restating the general
strategies presented in this chapter.

20.2. Chipmunk Computers has signed an agreement with a software house for soft-
ware development under contract. Project leaders are encouraged to take advan-
tage of this agreement to outsource development of some modules and thereby
reduce project cost. Your project manager asks you to analyze the risks that
may result from this choice and propose approaches to reduce the impact of the
identified risks. What would you suggest?

20.3. Suppose a project applied orthogonal defect classification and analyzed corre-
lation between fault types and fault triggers, as well as between fault types and
impact. What useful information could be derived from cross-correlating those
classifications, beyond the information available from each classification alone?

20.4. ODC attributes have been adapted and extended in several ways, one of which is
including fault qualifier, which distinguishes whether the fault is due to missing,
incorrect, or extraneous code. What attributes might fault qualifier be correlated
with, and what useful information might thereby be obtained?

https://hemanthrajhemu.github.io

404 Planning and Monitoring the Process

https://hemanthrajhemu.github.io

Chapter 24

Documenting Analysis and
Test

Mature software processes include documentation standards for all the activities of
the software process, including test and analysis activities. Documentation can be in-
spected to verify progress against schedule and quality goals and to identify problems,
supporting process visibility, monitoring, and replicability.

Required Background

• Chapter 20
This chapter describes test and analysis strategy and plans, which are intertwined
with documentation. Plans and strategy documents are part of quality documen-
tation, and quality documents are used in process monitoring.

24.1 Overview

Documentation is an important element of the software development process, including
the quality process. Complete and well-structured documents increase the reusability
of test suites within and across projects. Documents are essential for maintaining a
body of knowledge that can be reused across projects. Consistent documents provide a
basis for monitoring and assessing the process, both internally and for external author-
ities where certification is desired. Finally, documentation includes summarizing and
presenting data that forms the basis for process improvement. Test and analysis docu-
mentation includes summary documents designed primarily for human comprehension
and details accessible to the human reviewer but designed primarily for automated
analysis.

Documents are divided into three main categories: planning, specification, and
reporting. Planning documents describe the organization of the quality process and
include strategies and plans for the division or the company, and plans for individual
projects. Specification documents describe test suites and test cases. A complete set of

455

https://hemanthrajhemu.github.io

456 Documenting Analysis and Test

W B XX - YY ZZ

“W” for Web Presence

“B” for Business Logic

item type

alphanumeric identifier within a type

version number (if applicable)

analysis and test documentation
WB05-YYZZ analysis and test strategy
WB06-YYZZ analysis and test plan
WB07-YYZZ test design specifications
WB08-YYZZ test case specification
WB09-YYZZ checklists
WB10-YYZZ analysis and test logs
WB11-YYZZ analysis and test summary reports
WB12-YYZZ other analysis and test documents

Figure 24.1: Sample document naming conventions, compliant with IEEE standards.

analysis and test specification documents include test design specifications, test case
specification, checklists, and analysis procedure specifications. Reporting documents
include details and summary of analysis and test results.

24.2 Organizing Documents

In a small project with a sufficiently small set of documents, the arrangement of other
project artifacts (e.g., requirements and design documents) together with standard con-
tent (e.g., mapping of subsystem test suites to the build schedule) provides sufficient
organization to navigate through the collection of test and analysis documentation. In
larger projects, it is common practice to produce and regularly update a global guide
for navigating among individual documents.

Mature processes require all documents to contain metadata that facilitate their
management. Documents must include some basic information about its context in
order to make the document self-contained, approval indicating the persons responsible
for the document and document history, as illustrated in the template on page 457.

Naming conventions help in quickly identifying documents. A typical standard for
document names would include keywords indicating the general scope of the docu-
ment, its nature, the specific document, and its version, as in Figure 24.1.

https://hemanthrajhemu.github.io

Organizing Documents 457

Chipmunk Document Template

Document Title
Approvals

issued by name signature date
approved by name signature date
distribution status (internal use only, restricted, ...)
distribution list (people to whom the document must be sent)

History
version description

Table of Contents
List of sections.

Summary
Summarize the contents of the document. The summary should clearly explain the

relevance of the document to its possible uses.

Goals of the document
Describe the purpose of this document: Who should read it, and why?

Required documents and references
Provide a reference to other documents and artifacts needed for understanding and

exploiting this document. Provide a rationale for the provided references.

Glossary
Provide a glossary of terms required to understand this document.

Section 1
. . .

Section N
. . .

https://hemanthrajhemu.github.io

458 Documenting Analysis and Test

24.3 Test Strategy Document

Analysis and test strategies (Chapter 20) describe quality guidelines for sets of projects,
usually for an entire company or organization. Strategies, and therefore strategy docu-
ments, vary widely among organizations, but we can identify a few key elements that
should be included in almost any well-designed strategy document. These are illus-
trated in the document excerpt on page 459.

Strategy documents indicate common quality requirements across products. Re-overall quality

quirements may depend on business conditions. For example, a company that produces
safety-critical software may need to satisfy minimum dependability requirements de-
fined by a certification authority, while a department that designs software embedded
in hardware products may need to ensure portability across product lines. Some re-
quirements on dependability and usability may be necessary to maintain brand image
and market position. For example, a company might decide to require conformance to
W3C-WAI accessibility standards (see Chapter 22) uniformly across the product line.

The strategy document sets out requirements on other quality documents, typically
including an analysis and test plan, test design specifications, test case specifications,
test logs, and test summary reports. Basic document requirements, such as naming anddocumentation

quality versioning, follow standards for other project documentation, but quality documents
may have additional, specialized requirements. For example, testing logs for avionics
software may be required to contain references to the version of the simulator used for
executing the test before installing the software on board the aircraft.

24.4 Analysis and Test Plan

While the format of an analysis and test strategy vary from company to company, the
structure of an analysis and test plan is more standardized. A typical structure of a test
and analysis plan includes information about items to be verified, features to be tested,
the testing approach, pass and fail criteria, test deliverables, tasks, responsibilities and
resources, and environment constraints. Basic elements are described in the sidebar on
page 461.

The overall quality plan usually comprises several individual plans of limited scope.
Each test and analysis plan should indicate the items to be verified through analysis or
testing. They may include specifications or documents to be inspected, code to beitems to be verified

analyzed or tested, and interface specifications to undergo consistency analysis. They
may refer to the whole system or part of it — like a subsystem or a set of units. Where
the project plan includes planned development increments, the analysis and test plan
indicates the applicable versions of items to be verified.

For each item, the plan should indicate any special hardware or external software
required for testing. For example, the plan might indicate that one suite of subsystem
tests for a security package can be executed with a software simulation of a smart
card reader, while another suite requires access to the physical device. Finally, for each
item, the plan should reference related documentation, such as requirements and design
specifications, and user, installation, and operations guides.

A test and analysis plan may not address all aspects of software quality and testing

https://hemanthrajhemu.github.io

Analysis and Test Plan 459

An Excerpt of the Chipmunk Analysis and Test Strategy
Document CP05-14.03: Analysis and Test Strategy
. . .

Applicable Standards and Procedures
Artifact Applicable Standards and Guidelines
Web application Accessibility: W3C-WAI . . .
Reusable component
(internally developed)

Inspection procedure: [WB12-03.12]

External component Qualification procedure: [WB12-22.04]
. . .

Documentation Standards
Project documents must be archived according to the standard Chipmunk archive procedure
[WB02-01.02]. Standard required documents include

Document Content & Organization Standard
Quality plan [WB06-01.03]
Test design specifications [WB07-01.01] (per test suite)
Test case specifications [WB08-01.07] (per test suite)
Test logs [WB10-02.13]
Test summary reports [WB11-01.11]
Inspection reports [WB12-09.01]

. . .

Analysis and Test Activities
. . .

Tools
The following tools are approved and should be used in all development projects. Exceptions
require configuration committee approval and must be documented in the project plan.

Fault logging Chipmunk BgT [WB10-23.01]
. . .

. . .

Staff and Roles
A development work unit consists of unit source code, including unit test cases, stubs, and har-
nesses, and unit test documentation. A unit may be committed to the project baseline when the
source code, test cases, and test results have passed peer review.
. . .

References
[WB02-01.02] Archive Procedure [WB06-01.03] Quality Plan Guidelines
[WB07-01.01] Test Design Specifications
Guidelines

[WB08-01.07] Test Case Specifications
Guidelines

[WB11-01.11] Summary Reports Template [WB10-02.13] Test Log Template
[WB11-09.01] Inspection Report Template [WB12-03.12] Standard Inspection Proce-

dures
[WB12-22.04] Quality Procedures for Soft-
ware Developed by Third Parties

[WB12-23.01] BgT Installation Manual and
User Guide

. . .

https://hemanthrajhemu.github.io

460 Documenting Analysis and Test

activities. It should indicate the features to be verified and those that are excluded
from consideration (usually because responsibility for them is placed elsewhere). Forfeatures to be

analyzed or tested example, if the item to be verified includes a graphical user interface, the test and
analysis plan might state that it deals only with functional properties and not with
usability, which is to be verified separately by a usability and human interface design
team.

Explicit indication of features not to be tested, as well as those included in an
analysis and test plan, is important for assessing completeness of the overall set of
analysis and test activities. Assumption that a feature not considered in the current plan
is covered at another point is a major cause of missing verification in large projects.

The quality plan must clearly indicate criteria for deciding the success or failure of
each planned activity, as well as the conditions for suspending and resuming analysis
and test.suspend and

resume criteria Plans define items and documents that must be produced during verification. Test
test deliverables deliverables are particularly important for regression testing, certification, and process

improvement. We will see the details of analysis and test documentation in the next
section.

The core of an analysis and test plan is a detailed schedule of tasks. The scheduletasks and schedule

is usually illustrated with GANTT and PERT diagrams showing the relation among
tasks as well as their relation to other project milestones.1 The schedule includes the
allocation of limited resources (particularly staff) and indicates responsibility for re-resources and

responsibilities sults.
A quality plan document should also include an explicit risk plan with contingen-

cies. As far as possible, contingencies should include unambiguous triggers (e.g., a
date on which a contingency is activated if a particular task has not be completed) as
well as recovery procedures.

Finally, the test and analysis plan should indicate scaffolding, oracles, and anyenvironmental
needs other software or hardware support required for test and analysis activities.

24.5 Test Design Specification Documents

Design documentation for test suites and test cases serve essentially the same purpose
as other software design documentation, guiding further development and preparing for
maintenance. Test suite design must include all the information needed for initial se-
lection of test cases and maintenance of the test suite over time, including rationale and
anticipated evolution. Specification of individual test cases includes purpose, usage,
and anticipated changes.

Test design specification documents describe complete test suites (i.e., sets of test
cases that focus on particular aspects, elements, or phases of a software project). They
may be divided into unit, integration, system, and acceptance test suites, if we orga-
nize them by the granularity of the tests, or functional, structural, and performance test
suites, if the primary organization is based on test objectives. A large project may in-
clude many test design specifications for test suites of different kinds and granularity,

1Project scheduling is discussed in more detail in Chapter 20.

https://hemanthrajhemu.github.io

Test Design Specification Documents 461

A Standard Organization of an Analysis and Test Plan

Analysis and test items:
The items to be tested or analyzed. The description of each item indicates version and instal-

lation procedures that may be required.

Features to be tested:
The features considered in the plan.

Features not to be tested:
Features not considered in the current plan.

Approach:
The overall analysis and test approach, sufficiently detailed to permit identification of the major

test and analysis tasks and estimation of time and resources.

Pass/Fail criteria:
Rules that determine the status of an artifact subjected to analysis and test.

Suspension and resumption criteria:
Conditions to trigger suspension of test and analysis activities (e.g., an excessive failure rate)

and conditions for restarting or resuming an activity.

Risks and contingencies:
Risks foreseen when designing the plan and a contingency plan for each of the identified

risks.

Deliverables:
A list all A&T artifacts and documents that must be produced.

Task and schedule:
A complete description of analysis and test tasks, relations among them, and relations be-

tween A&T and development tasks, with resource allocation and constraints. A task schedule
usually includes GANTT and PERT diagrams.

Staff and responsibilities:
Staff required for performing analysis and test activities, the required skills, and the allocation

of responsibilities among groups and individuals. Allocation of resources to tasks is described in
the schedule.

Environmental needs:
Hardware and software required to perform analysis or testing activities.

https://hemanthrajhemu.github.io

462 Documenting Analysis and Test

and for different versions or configurations of the system and its components. Each
specification should be uniquely identified and related to corresponding project docu-
ments, as illustrated in the sidebar on page 463.

Test design specifications identify the features they are intended to verify and the
approach used to select test cases. Features to be tested should be cross-referenced to
relevant parts of a software specification or design document. The test case selection
approach will typically be one of the test selection techniques described in Chapters 10
through 16 with documentation on how the technique has been applied.

A test design specification also includes description of the testing procedure and
pass/fail criteria. The procedure indicates steps required to set up the testing environ-
ment and perform the tests, and includes references to scaffolding and oracles. Pass/fail
criteria distinguish success from failure of a test suite as a whole. In the simplest case
a test suite execution may be determined to have failed if any individual test case exe-
cution fails, but in system and acceptance testing it is common to set a tolerance level
that may depend on the number and severity of failures.

A test design specification logically includes a list of test cases. Test case speci-
fications may be physically included in the test design specification document, or the
logical inclusion may be implemented by some form of automated navigation. For
example, a navigational index can be constructed from references in test case specifi-
cations.

Individual test case specifications elaborate the test design for each individual test
case, defining test inputs, required environmental conditions and procedures for test
execution, as well as expected outputs or behavior. The environmental conditions may
include hardware and software as well as any other requirements. For example, while
most tests should be executed automatically without human interaction, intervention of
personnel with certain special skills (e.g., a device operator) may be an environmental
requirement for some.

A test case specification indicates the item to be tested, such as a particular module
or product feature. It includes a reference to the corresponding test design document
and describes any dependence on execution of other test cases. Like any standard
document, a test case specification is labeled with a unique identifier. A sample test
case specification is provided on page 464.

24.6 Test and Analysis Reports

Reports of test and analysis results serve both developers and test designers. They
identify open faults for developers and aid in scheduling fixes and revisions. They help
test designers assess and refine their approach, for example, noting when some class of
faults is escaping early test and analysis and showing up only in subsystem and system
testing (see Section 20.6, page 389).

A prioritized list of open faults is the core of an effective fault handling and repair
procedure. Failure reports must be consolidated and categorized so that repair effort
can be managed systematically, rather than jumping erratically from problem to prob-
lem and wasting time on duplicate reports. They must be prioritized so that effort is not

https://hemanthrajhemu.github.io

Test and Analysis Reports 463

Functional Test Design Specification of check configuration

Test Suite Identifier
WB07-15.01

Features to Be Tested
Functional test for check configuration, module specification WB02-15.32.a

Approach
Combinatorial functional test of feature parameters, enumerated by category-

partition method over parameter table on page 3 of this document.b

Procedure
Designed for conditional inclusion in nightly test run. Build target T02 15 32 11 includes
JUnit harness and oracles, with test reports directed to standard test log. Test environ-
ment includes table MDB 15 32 03 for loading initial test database state.

Test casesc

WB07-15.01.C01 malformed model number
WB07-15.01.C02 model number not in DB
... ...
WB07-15.01.C09d valid model number with all legal required slots

and some legal optional slots
... ...
WB07-15.01.C19 empty model DB
WB07-15.01.C23 model DB with a single element
WB07-15.01.C24 empty component DB
WB07-15.01.C29 component DB with a single element

Pass/Fail Criterion
Successful completion requires correct execution of all test cases with no violations in
test log.

aAn excerpt of specification WB02-15.32 is presented in Figure 11.1, page 182.
bReproduced in Table 11.1, page 187.
cThe detailed list of test cases is produced automatically from the test case file, which in turn is generated

from the specification of categories and partitions. The test suite is implicitly referenced by individual test
case numbers (e.g., WB07-15.01.C09 is a test case in test suite WB07-15.01).

dSee sample test case specification, page 464.

https://hemanthrajhemu.github.io

464 Documenting Analysis and Test

Test Case Specification for check configuration

Test Case Identifier
WB07-15.01.C09a

Test items
Module check configuration of the Chipmunk Web presence system, business logic subsystem.

Input specification
Test Case Specification:

Model No. valid
No. of required slots for selected model (#SMRS) many
No. of optional slots for selected model (#SMOS) many
Correspondence of selection with model slots complete
No. of required components with selection 6= empty = No. of required slots
No. of optional components with select 6= empty < No. of optional slots
Required component selection all valid
Optional component selection all valid
No. of models in DB many
No. of components in DB many

Test case:
Model number Chipmunk C20
#SMRS 5
Screen 13”
Processor Chipmunk II plus
Hard disk 30 GB
RAM 512 MB
OS RodentOS 3.2 Personal Edition
#SMOS 4
External storage device DVD player

Output Specification
return value valid

Environment Needs
Execute with ChipmunkDBM v3.4 database initialized from table MDB 15 32 03.

Special Procedural Requirements
none

Intercase Dependencies
none

aThe prefix WB07-15.01 implicitly references a test suite to which this test case directly belongs. That
test suite may itself be a component of higher level test suites, so logically the test case also belongs to any
of those test suites. Furthermore, some additional test suites may be composed of selections from other test
suites.

https://hemanthrajhemu.github.io

Test and Analysis Reports 465

squandered on faults of relatively minor importance while critical faults are neglected
or even forgotten.

Other reports should be crafted to suit the particular needs of an organization and
project, including process improvement as described in Chapter 23. Summary reports
serve primarily to track progress and status. They may be as simple as confirmation
that the nightly build-and-test cycle ran successfully with no new failures, or they may
provide somewhat more information to guide attention to potential trouble spots. De-
tailed test logs are designed for selective reading, and include summary tables that
typically include the test suites executed, the number of failures, and a breakdown of
failures into those repeated from prior test execution, new failures, and test cases that
previously failed but now execute correctly.

In some domains, such as medicine or avionics, the content and form of test logs
may be prescribed by a certifying authority. For example, some certifications require
test execution logs signed by both the person who performed the test and a quality
inspector, who ascertains conformance of the test execution with test specifications.

Open Research Issues

Many available tools generate documentation from test execution records and the tables
used to generate test specifications, minimizing the extra effort of producing documents
in a useful form. Test design derived automatically or semiautomatically from design
models is growing in importance, as is close linking of program documentation with
source code, ranging from simple comment extraction and indexing like Javadoc to
sophisticated hypermedia systems. In the future we should see these trends converge,
and expect to see test documentation fit in an overall framework for managing and
navigating information on a software product and project.

Further Reading

The guidelines in this chapter are based partly on IEEE Standard 829-1998 [Ins98].
Summary reports must convey information efficiently, managing both overview and
access to details. Tufte’s books on information design are useful sources of principles
and examples. The second [Tuf90] and fourth [Tuf06] volumes in the series are partic-
ularly relevant. Experimental hypermedia software documentation systems [ATWJ00]
hint at possible future systems that incorporate test documentation with other views of
an evolving software product.

Exercises

24.1. Agile software development methods (XP, Scrum, etc.) typically minimize doc-
umentation written during software development. Referring to the sidebar on
page 381, identify standard analysis and test documents that could be generated
automatically or semiautomatically or replaced with functionally equivalent, au-
tomatically generated documentation during an XP project.

https://hemanthrajhemu.github.io

466 Documenting Analysis and Test

24.2. Test documents may become very large and unwieldy. Sometimes a more com-
pact specification of several test cases together is more useful than individual
specifications of each test case. Referring to the test case specification on page
464, design a tabular form to compactly document a suite of similar test case
specifications.

24.3. Design a checklist for inspecting test design specification documents.

24.4. The Chipmunk Web presence project is starting up, and it has been decided that
all project artifacts, including requirements documents, documentation in En-
glish, Italian, French, and German, source code, test plans, and test suites, will
be managed in one or more CVS repositories.2 The project team is divided
between Milan, Italy, and Eugene, Oregon. What are the main design choices
and issues you will consider in designing the organization of the version control
repositories?

2If you are more familiar with another version control system, such as Subversion or Perforce, you may
substitute it for CVS.

https://hemanthrajhemu.github.io

