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Chapter 21

Integration and
Component-based
Software Testing

Problems arise in integration even of well-designed modules and components. Integra-
tion testing aims to uncover interaction and compatibility problems as early as possible.
This chapter presents integration testing strategies, including the increasingly impor-
tant problem of testing integration with commercial off-the-shelf (COTS) components,
libraries, and frameworks.

Required Background

• Chapter 4
Basic concepts of quality process, goals, and activities are important for under-
standing this chapter.

• Chapter 17
Scaffolding is a key cost element of integration testing. Some knowledge about
scaffolding design and implementation is important to fully understand an essen-
tial dimension of integration testing.

21.1 Overview

The traditional V model introduced in Chapter 2 divides testing into four main levels
of granularity: module, integration, system, and acceptance test. Module or unit test
checks module behavior against specifications or expectations; integration test checks
module compatibility; system and acceptance tests check behavior of the whole system
with respect to specifications and user needs, respectively.

An effective integration test is built on a foundation of thorough module testing and
inspection. Module test maximizes controllability and observability of an individual

405
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406 Integration and Component-based Software Testing

unit, and is more effective in exercising the full range of module behaviors, rather than
just those that are easy to trigger and observe in a particular context of other modules.
While integration testing may to some extent act as a process check on module testing
(i.e., faults revealed during integration test can be taken as a signal of unsatisfactory
unit testing), thorough integration testing cannot fully compensate for sloppiness at the
module level. In fact, the quality of a system is limited by the quality of the modules
and components from which it is built, and even apparently noncritical modules can
have widespread effects. For example, in 2004 a buffer overflow vulnerability in a
single, widely used library for reading Portable Network Graphics (PNG) files caused
security vulnerabilities in Windows, Linux, and Mac OS X Web browsers and email
clients.

On the other hand, some unintended side-effects of module faults may become
apparent only in integration test (see sidebar on page 409), and even a module that
satisfies its interface specification may be incompatible because of errors introduced
in design decomposition. Integration tests therefore focus on checking compatibility
between module interfaces.

Integration faults are ultimately caused by incomplete specifications or faulty im-
plementations of interfaces, resource usage, or required properties. Unfortunately, it
may be difficult or not cost-effective to anticipate and completely specify all module
interactions. For example, it may be very difficult to anticipate interactions between
remote and apparently unrelated modules through sharing a temporary hidden file that
just happens to be given the same name by two modules, particularly if the name clash
appears rarely and only in some installation configurations. Some of the possible man-
ifestations of incomplete specifications and faulty implementations are summarized in
Table 21.1.

The official investigation of the Ariane 5 accident that led to the loss of the rocket
on July 4, 1996 concluded that the accident was caused by incompatibility of a soft-
ware module with the Ariane 5 requirements. The software module was in charge of
computing the horizontal bias, a value related to the horizontal velocity sensed by the
platform that is calculated as an indicator of alignment precision. The module had func-
tioned correctly for Ariane 4 rockets, which were smaller than the Ariane 5, and thus
had a substantially lower horizontal velocity. It produced an overflow when integrated
into the Ariane 5 software. The overflow started a series of events that terminated with
self-destruction of the launcher. The problem was not revealed during testing because
of incomplete specifications:

The specification of the inertial reference system and the tests performed
at equipment level did not specifically include the Ariane 5 trajectory data.
Consequently the realignment function was not tested under simulated Ar-
iane 5 flight conditions, and the design error was not discovered. [From
the official investigation report]

As with most software problems, integration problems may be attacked at many
levels. Good design and programming practice and suitable choice of design and
programming environment can reduce or even eliminate some classes of integration
problems. For example, in applications demanding management of complex, shared
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Overview 407

Integration fault Example
Inconsistent interpretation of
parameters or values
Each module’s interpretation may
be reasonable, but they are
incompatible.

Unit mismatch: A mix of metric and British measures (meters and
yards) is believed to have led to loss of the Mars Climate Orbiter
in September 1999.

Violations of value domains or
of capacity or size limits
Implicit assumptions on ranges of
values or sizes.

Buffer overflow, in which an implicit (unchecked) capacity bound
imposed by one module is violated by another, has become notori-
ous as a security vulnerability. For example, some versions of the
Apache 2 Web server between 2.0.35 and 2.0.50 could overflow
a buffer while expanding environment variables during configura-
tion file parsing.

Side-effects on parameters or
resources

A module often uses resources that are not explicitly mentioned in
its interface. Integration problems arise when these implicit effects
of one module interfere with those of another. For example, using
a temporary file “tmp” may be invisible until integration with an-
other module that also attempts to use a temporary file “tmp” in
the same directory of scratch files.

Missing or misunderstood
functionality
Underspecification of
functionality may lead to
incorrect assumptions about
expected results.

Counting hits on Web sites may be done in many different ways:
per unique IP address, per hit, including or excluding spiders, and
so on. Problems arise if the interpretation assumed in the counting
module differs from that of its clients.

Nonfunctional problems Nonfunctional properties like performance are typically specified
explicitly only when they are expected to be an issue. Even when
performance is not explicitly specified, we expect that software
provides results in a reasonable time. Interference between mod-
ules may reduce performance below an acceptable threshold.

Dynamic mismatches
Many languages and frameworks
allow for dynamic binding.
Problems may be caused by
failures in matchings when
modules are integrated.

Polymorphic calls may be dynamically bound to incompatible
methods, as discussed in Chapter 15.

This core taxonomy can be extended to effectively classify important or frequently occurring integration
faults in particular domains.

Table 21.1: Integration faults.
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408 Integration and Component-based Software Testing

structures, choosing a language with automatic storage management and garbage col-
lection greatly reduces memory disposal errors such as dangling pointers and redundant
deallocations (“double frees”).

Even if the programming language choice is determined by other factors, many
errors can be avoided by choosing patterns and enforcing coding standards across the
entire code base; the standards can be designed in such a way that violations are easy
to detect manually or with tools. For example, many projects using C or C++ require
use of “safe” alternatives to unchecked procedures, such as requiring strncpy or strlcpy
(string copy procedures less vulnerable to buffer overflow) in place of strcpy. Check-
ing for the mere presence of strcpy is much easier (and more easily automated) than
checking for its safe use. These measures do not eliminate the possibility of error, but
integration testing is more effective when focused on finding faults that slip through
these design measures.

21.2 Integration Testing Strategies

Integration testing proceeds incrementally with assembly of modules into successively
larger subsystems. Incremental testing is preferred, first, to provide the earliest possible
feedback on integration problems. In addition, controlling and observing the behavior
of an integrated collection of modules grows in complexity with the number of mod-
ules and the complexity of their interactions. Complex interactions may hide faults,
and failures that are manifested may propagate across many modules, making fault lo-
calization difficult. Therefore it is worthwhile to thoroughly test a small collection of
modules before adding more.

A strategy for integration testing of successive partial subsystems is driven by the
order in which modules are constructed (the build plan), which is an aspect of the
system architecture. The build plan, in turn, is driven partly by the needs of test. Design
and integration testing are so tightly coupled that in many companies the integration
and the testing groups are merged in a single group in charge of both design and test
integration.

Since incremental assemblies of modules are incomplete, one must often construct
scaffolding — drivers, stubs, and various kinds of instrumentation — to effectively test
them. This can be a major cost of integration testing, and it depends to a large extent
on the order in which modules are assembled and tested.

One extreme approach is to avoid the cost of scaffolding by waiting until all mod-
ules are integrated, and testing them together — essentially merging integration test-
ing into system testing. In this big bang approach, neither stubs nor drivers need bebig bang testing

constructed, nor must the development be carefully planned to expose well-specified
interfaces to each subsystem. These savings are more than offset by losses in observ-
ability, diagnosability, and feedback. Delaying integration testing hides faults whose
effects do not always propagate outward to visible failures (violating the principle that
failing always is better than failing sometimes) and impedes fault localization and di-
agnosis because the failures that are visible may be far removed from their causes.
Requiring the whole system to be available before integration does not allow early test
and feedback, and so faults that are detected are much more costly to repair. Big bang
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Integration Testing Strategies 409

Memory Leaks

Memory leaks are typical of program faults that often escape module testing. They
may be detected in integration testing, but often escape further and are discovered only
in actual system operation.

The Apache Web server, version 2.0.48, contained the following code for reacting
to normal Web page requests that arrived on the secure (https) server port:

1 static void ssl io filter disable(ap filter t *f)
2 {
3 bio filter in ctx t *inctx = f->ctx;
4 inctx->ssl = NULL;
5 inctx->filter ctx->pssl = NULL;
6 }

This code fails to reclaim some dynamically allocated memory, causing the Web
server to “leak” memory at run-time. Over a long period of use, or over a shorter
period if the fault is exploited in a denial-of-service attack, this version of the Apache
Web server will allocate and fail to reclaim more and more memory, eventually slowing
to the point of unusability or simply crashing.

The fault is nearly impossible to see in this code. The memory that should be
deallocated here is part of a structure defined and created elsewhere, in the SSL (secure
sockets layer) subsystem, written and maintained by a different set of developers. Even
reading the definition of the ap filter t structure, which occurs in a different part of the
Apache Web server source code, doesn’t help, since the ctx field is an opaque pointer
(type void * in C) . The repair, applied in version 2.0.49 of the server, is:

1 static void ssl io filter disable(SSLConnRec *sslconn, ap filter t *f)
2 {
3 bio filter in ctx t *inctx = f->ctx;
4 SSL free(inctx->ssl);
5 sslconn->ssl = NULL;
6 inctx->ssl = NULL;
7 inctx->filter ctx->pssl = NULL;
8 }

This memory leak illustrates several properties typical of integration faults. In prin-
ciple, it stems from incomplete knowledge of the protocol required to interact with
some other portion of the code, either because the specification is (inevitably) incom-
plete or because it is not humanly possible to remember everything. The problem is
due at least in part to a weakness of the programming language — it would not have oc-
curred in a language with automatic garbage collection, such as Java. Finally, although
the fault would be very difficult to detect with conventional unit testing techniques,
there do exist both static and dynamic analysis techniques that could have made early
detection much more likely, as discussed in Chapter 18.
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410 Integration and Component-based Software Testing

integration testing is less a rational strategy than an attempt to recover from a lack of
planning; it is therefore also known as the desperate tester strategy.

Among strategies for incrementally testing partially assembled systems, we can dis-
tinguish two main classes: structural and feature oriented. In a structural approach,structural integration

test strategy modules are constructed, assembled, and tested together in an order based on hierarchi-
cal structure in the design. Structural approaches include bottom-up, top-down, and a
combination sometimes referred to as sandwich or backbone strategy. Feature-oriented
strategies derive the order of integration from characteristics of the application, and
include threads and critical modules strategies.

Top-down and bottom-up strategies are classic alternatives in system construction
and incremental integration testing as modules accumulate. They consist in sortingtop-down and

bottom-up testing modules according to the use/include relation (see Chapter 15, page 286), and in start-
ing testing from the top or from the bottom of the hierarchy, respectively.

A top-down integration strategy begins at the top of the uses hierarchy, including
the interfaces exposed through a user interface or top-level application program inter-
face (API). The need for drivers is reduced or eliminated while descending the hierar-
chy, since at each stage the already tested modules can be used as drivers while testing
the next layer. For example, referring to the excerpt of the Chipmunk Web presence
shown in Figure 21.1, we can start by integrating CustomerCare with Customer, while
stubbing Account and Order. We could then add either Account or Order and Package,
stubbing Model and Component in the last case. We would finally add Model, Slot, and
Component in this order, without needing any driver.

Bottom-up integration similarly reduces the need to develop stubs, except for break-
ing circular relations. Referring again to the example in Figure 21.1, we can start
bottom-up by integrating Slot with Component, using drivers for Model and Order. We
can then incrementally add Model and Order. We can finally add either Package or
Account and Customer, before integrating CustomerCare, without constructing stubs.

Top-down and bottom-up approaches to integration testing can be applied early
in the development if paired with similar design strategies: If modules are delivered
following the hierarchy, either top-down or bottom-up, they can be integrated and tested
as soon as they are delivered, thus providing early feedback to the developers. Both
approaches increase controllability and diagnosability, since failures are likely caused
by interactions with the newly integrated modules.

In practice, software systems are rarely developed strictly top-down or bottom-up.
Design and integration strategies are driven by other factors, like reuse of existing mod-
ules or commercial off-the-shelf (COTS) components, or the need to develop early pro-
totypes for user feedback. Integration may combine elements of the two approaches,
starting from both ends of the hierarchy and proceeding toward the middle. An early
top-down approach may result from developing prototypes for early user feedback,
while existing modules may be integrated bottom-up. This is known as the sandwich
or backbone strategy. For example, referring once more to the small system of Fig-sandwich or

backbone ure 21.1, let us imagine reusing existing modules for Model, Slot, and Component, and
developing CustomerCare and Customer as part of an early prototype. We can start in-
tegrating CustomerCare and Customer top down, while stubbing Account and Order.
Meanwhile, we can integrate bottom-up Model, Slot, and Component with Order, us-
ing drivers for Customer and Package. We can then integrate Account with Customer,
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Order

Customer

Model

Component

Slot

Account

Package

CustomerCare

1*

1*
1

*

1

Figure 21.1: An excerpt of the class diagram of the Chipmunk Web presence. Modules
are sorted from the top to the bottom according to the use/include relation. The topmost
modules are not used or included in any other module, while the bottom-most modules
do not include or use other modules.
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412 Integration and Component-based Software Testing

and Package with Order, before finally integrating the whole prototype system.

The price of flexibility and adaptability in the sandwich strategy is complex plan-
ning and monitoring. While top-down and bottom-up are straightforward to plan and
monitor, a sandwich approach requires extra coordination between development and
test.

In contrast to structural integration testing strategies, feature-driven strategies se-
lect an order of integration that depends on the dynamic collaboration patterns among
modules regardless of the static structure of the system. The thread integration test-
ing strategy integrates modules according to system features. Test designers identifythread testing

threads of execution that correspond to system features, and they incrementally test
each thread. The thread integration strategy emphasizes module interplay for specific
functionality.

Referring to the Chipmunk Web presence, we can identify feature threads for as-
sembling models, finalizing orders, completing payments, packaging and shipping, and
so on. Feature thread integration fits well with software processes that emphasize in-
cremental delivery of user-visible functionality. Even when threads do not correspond
to usable end-user features, ordering integration by functional threads is a useful tactic
to make flaws in integration externally visible.

Incremental delivery of usable features is not the only possible consideration in
choosing the order in which functional threads are integrated and tested. Risk reduction
is also a driving force in many software processes. Critical module integration testing
focuses on modules that pose the greatest risk to the project. Modules are sorted andcritical module

incrementally integrated according to the associated risk factor that characterizes the
criticality of each module. Both external risks (such as safety) and project risks (such
as schedule) can be considered.

A risk-based approach is particularly appropriate when the development team does
not have extensive experience with some aspect of the system under development. Con-
sider once more the Chipmunk Web presence. If Chipmunk has not previously con-
structed software that interacts directly with shipping services, those interface modules
will be critical because of the inherent risks of interacting with externally provided
subsystems, which may be inadequately documented or misunderstood and which may
also change.

Feature-driven test strategies usually require more complex planning and manage-
ment than structural strategies. Thus, we adopt them only when their advantages ex-
ceed the extra management costs. For small systems a structural strategy is usually
sufficient, but for large systems feature-driven strategies are usually preferred. Often
large projects require combinations of development strategies that do not fit any single
test integration strategies. In these cases, quality managers would combine different
strategies: top-down, bottom-up, and sandwich strategies for small subsystems, and a
blend of threads and critical module strategies at a higher level.
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Testing Components and Assemblies 413

21.3 Testing Components and Assemblies

Many software products are constructed, partly or wholly, from assemblies of prebuilt
software components.1 A key characteristic of software components is that the orga-
nization that develops a component is distinct from the (several) groups of developers
who use it to construct systems. The component developers cannot completely antici-
pate the uses to which a component will be put, and the system developers have limited
knowledge of the component. Testing components (by the component developers) and
assemblies (by system developers) therefore brings some challenges and constraints
that differ from testing other kinds of module.

Reusable components are often more dependable than software developed for a sin-
gle application. More effort can be invested in improving the quality of a component
when the cost is amortized across many applications. Moreover, when reusing a com-
ponent that has been in use in other applications for some time, one obtains the benefit
not only of test and analysis by component developers, but also of actual operational
use.

The advantages of component reuse for quality are not automatic. They do not ap-
ply to code that was developed for a single application and then scavenged for use in
another. The benefit of operational experience as a kind of in vivo testing, moreover, is
obtained only to the extent that previous uses of the component are quite similar to the
new use. These advantages are balanced against two considerable disadvantages. First,
a component designed for wide reuse will usually be much more complex than a mod-
ule designed for a single use; a rule of thumb is that the development effort (including
analysis and test) for a widely usable component is at least twice that for a module
that provides equivalent functionality for a single application. In addition, a reusable
component is by definition developed without full knowledge of the environment in
which it will be used, and it is exceptionally difficult to fully and clearly describe all
the assumptions, dependencies, and limitations that might impinge upon its use in a
particular application.

In general, a software component is characterized by a contract or application pro-
gram interface (API) distinct from its implementation. Where a mature market has
developed for components addressing a particular need, a single interface specification
(e.g., SQL for database access or document object model (DOM) for access and traver-
sal of XML data) can have several distinct implementations. The contract describes the
component by specifying access points of the component, such as procedures (meth-
ods) and their parameters, possible exceptions, global variables, and input and output
network connections. Even when the interface specification is bound to a single im-
plementation, the logical distinction between interface and implementation is crucial
to effective use and testing.

The interface specification of a component should provide all the information re-
quired for reusing the component, including so-called nonfunctional properties such as
performance or capacity limits, in addition to functional behavior. All dependence of
the component on the environment in which it executes should also be specified. In

1The term component is used loosely and often inconsistently in different contexts. Our working defini-
tion and related terms are explained in the sidebar on page 414.
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414 Integration and Component-based Software Testing

Terminology for Components and Frameworks
Component A software component is a reusable unit of deployment and composition

that is deployed and integrated multiple times and usually by different teams.
Components are characterized by a contract or interface and may or may not
have state.

Components are often confused with objects, and a component can be encapsu-
lated by an object or a set of objects, but they typically differ in many respects:

• Components typically use persistent storage, while objects usually have
only local state.

• Components may be accessed by an extensive set of communication mech-
anisms, while objects are activated through method calls.

• Components are usually larger grain subsystems than objects.

Component contract or interface The component contract describes the access
points and parameters of the component, and specifies functional and nonfunc-
tional behavior and any conditions required for using the component.

Framework A framework is a micro-architecture or a skeleton of an application, with
hooks for attaching application-specific functionality or configuration-specific
components. A framework can be seen as a circuit board with empty slots for
components.

Frameworks and design patterns Patterns are logical design fragments, while
frameworks are concrete elements of the application. Frameworks often imple-
ment patterns.

Component-based system A component-based system is a system built primarily by
assembling software components (and perhaps a small amount of application-
specific code) connected through a framework or ad hoc “glue code.”

COTS The term commercial off-the-shelf, or COTS, indicates components developed
for the sale to other organizations.
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Testing Components and Assemblies 415

practice, few component specifications are complete in every detail, and even details
that are specified precisely can easily be overlooked or misunderstood when embedded
in a complex specification document.

The main problem facing test designers in the organization that produces a com-
ponent is lack of information about the ways in which the component will be used. A
component may be reused in many different contexts, including applications for which
its functionality is an imperfect fit. A general component will typically provide many
more features and options than are used by any particular application.

A good deal of functional and structural testing of a component, focused on finding
and removing as many program faults as possible, can be oblivious to the context of
actual use. As with system and acceptance testing of complete applications, it is then
necessary to move to test suites that are more reflective of actual use. Testing with
usage scenarios places a higher priority on finding faults most likely to be encountered
in use and is needed to gain confidence that the component will be perceived by its
users (that is, by developers who employ it as part of larger systems) as sufficiently
dependable.

Test designers cannot anticipate all possible uses of a component under test, but
they can design test suites for classes of use in the form of scenarios. Test scenarios are
closely related to scenarios or use cases in requirements analysis and design.

Sometimes different classes of use are clearly evident in the component specifica-
tion. For example, the W3 Document Object Model (DOM) specification has parts that
deal exclusively with HTML markup and parts that deal with XML; these correspond
to different uses to which a component implementing the DOM may be put. The DOM
specification further provides two “views” of the component interface. In the flat view,
all traversal and inspection operations are provided on node objects, without regard to
subclass. In the structured view, each subclass of node offers traversal and inspection
operations specific to that variety of node. For example, an Element node has methods
to get and set attributes, but a Text node (which represents simple textual data within
XML or HTML) does not.

Open Research Issues

Ensuring quality of components and of component-based systems remains a challeng-
ing problem and a topic of current research. One research thread considers how dy-
namic analysis of components and component-based systems in one environment can
produce useful information for assessing likely suitability for using some of the same
components in another environment (by characterizing the contexts in which a com-
ponent has been used successfully). A related approach of characterizing a set of
behaviors and recognizing changes or differences (whether or not those differences
are failures) may be applicable in the increasingly important context of dynamically
configurable and field-upgradable systems, which pose all the problems of component-
based systems with the additional complication of performing integration in deployed
systems rather than in the development environment. For these and other systems, self-
monitoring and postdeployment testing in the field are likely to play an increasingly
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416 Integration and Component-based Software Testing

important role in the future.
Software design for testability is an important factor in the cost and effectiveness

of test and analysis, particularly for module and component integration. To some ex-
tent model-based testing (Chapter 14) is progress toward producing modules and com-
ponents with well-specified and testable interfaces, but much remains to be done in
characterizing and supporting testability. Design for testability should be an impor-
tant factor in the evolution of architectural design approaches and notations, including
architecture design languages.

Further Reading

The buffer overflow problem in libpng, which caused security vulnerabilities in major
Windows, Linux, and Mac OS X Web browsers and e-mail clients, was discovered
in 2004 and documented by the United States Computer Emergency Readiness Team
(CERT) in Vulnerability Note VU#388984 [Uni04]. The full report on the famous
Ariane 5 failure [Lio96] is available from several sources on the Web. The NASA
report on loss of the Mars Climate Orbiter [Ste99] is also available on the Web. Leveson
[Lev04] describes the role of software in the Ariane failure, loss of the Mars Climate
Orbiter, and other spacecraft losses. Weyuker [Wey98] describes challenges of testing
component-based systems.

Exercises

21.1. When developing a graphical editor, we used a COTS component for saving and
reading files in XML format. During integration testing, the program failed when
reading an empty file and when reading a file containing a syntax error.

Try to classify the corresponding faults according to the taxonomy described in
Table 21.1.

21.2. The Chipmunk quality team decided to use both thread and critical module in-
tegration testing strategies for the Chipmunk Web presence. Envisage at least
one situation in which thread integration should be preferred over critical mod-
ule and one in which critical module testing should be preferred over thread, and
motivate the choice.

21.3. Can a backbone testing strategy yield savings in the cost of producing test scaf-
folding, relative to other structural integration testing strategies? If so, how and
under what conditions? If not, why not?
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Chapter 22

System, Acceptance, and
Regression Testing

System testing can be considered a final step in integration testing, but encompassing
systemwide properties against a system specification. Acceptance testing abandons
specifications in favor of users, and measures how the final system meets users’ expec-
tations. Regression testing checks for faults introduced during evolution.

Required Background

• Chapter 4

The concepts of dependability, reliability, availability and mean time to failure
are important for understanding the difference between system and acceptance
testing.

• Chapter 17

Generating reusable scaffolding and test cases is a foundation for regression test-
ing. Some knowledge about the scaffolding and test case generation problem,
though not strictly required, may be useful for understanding regression testing
problems.

22.1 Overview

System, acceptance, and regression testing are all concerned with the behavior of a
software system as a whole, but they differ in purpose.

System testing is a check of consistency between the software system and its spec-
ification (it is a verification activity). Like unit and integration testing, system testing
is primarily aimed at uncovering faults, but unlike testing activities at finer granularity
levels, system testing focuses on system-level properties. System testing together with
acceptance testing also serves an important role in assessing whether a product can be
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System, Acceptance, and Regression Testing
System test Acceptance test Regression test
Checks against requirements
specifications

Checks suitability for user
needs

Rechecks test cases passed by
previous production versions

Performed by development
test group

Performed by test group with
user involvement

Performed by development
test group

Verifies correctness and com-
pletion of the product

Validates usefulness and satis-
faction with the product

Guards against unintended
changes

released to customers, which is distinct from its role in exposing faults to be removed
to improve the product.

Flaws in specifications and in development, as well as changes in users’ expecta-
tions, may result in products that do not fully meet users’ needs despite passing system
tests. Acceptance testing, as its name implies, is a validation activity aimed primarily
at the acceptability of the product, and it includes judgments of actual usefulness and
usability rather than conformance to a requirements specification.

Regression testing is specialized to the problem of efficiently checking for unin-
tended effects of software changes. New functionality and modification of existing
code may introduce unexpected interactions and lead latent faults to produce failures
not experienced in previous releases.

22.2 System Testing

The essential characteristics of system testing are that it is comprehensive, based on
a specification of observable behavior, and independent of design and implementation
decisions. System testing can be considered the culmination of integration testing, and
passing all system tests is tantamount to being complete and free of known bugs. The
system test suite may share some test cases with test suites used in integration and even
unit testing, particularly when a thread-based or spiral model of development has been
taken and subsystem correctness has been tested primarily through externally visible
features and behavior. However, the essential characteristic of independence implies
that test cases developed in close coordination with design and implementation may be
unsuitable. The overlap, if any, should result from using system test cases early, rather
than reusing unit and integration test cases in the system test suite.

Independence in system testing avoids repeating software design errors in test de-
sign. This danger exists to some extent at all stages of development, but always in trade
for some advantage in designing effective test cases based on familiarity with the soft-
ware design and its potential pitfalls. The balance between these considerations shifts
at different levels of granularity, and it is essential that independence take priority at
some level to obtain a credible assessment of quality.

In some organizations, responsibility for test design and execution shifts at a dis-
crete point from the development team to an independent verification and validation
team that is organizationally isolated from developers. More often the shift in empha-
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sis is gradual, without a corresponding shift in responsible personnel.
Particularly when system test designers are developers or attached to the develop-

ment team, the most effective way to ensure that the system test suite is not unduly
influenced by design decisions is to design most system test cases as early as possible.
Even in agile development processes, in which requirements engineering is tightly in-
terwoven with development, it is considered good practice to design test cases for a new
feature before implementing the feature. When the time between specifying a feature
and implementing it is longer, early design of system tests facilitates risk-driven strate-
gies that expose critical behaviors to system test cases as early as possible, avoiding
unpleasant surprises as deployment nears.

For example, in the (imaginary) Chipmunk development of Web-based purchas-
ing, some questions were raised during requirements specification regarding the point
at which a price change becomes effective. For example, if an item’s catalog price is
raised or lowered between the time it is added to the shopping cart and the time of
actual purchase, which price is the customer charged? The requirement was clarified
and documented with a set of use cases in which outcomes of various interleavings of
customer actions and price changes were specified, and each of these scenarios became
a system test case specification. Moreover, since this was recognized as a critical prop-
erty with many opportunities for failure, the system architecture and build-plan for the
Chipmunk Web presence was structured with interfaces that could be artificially driven
through various scenarios early in development, and with several of the system test
scenarios simulated in earlier integration tests.

The appropriate notions of thoroughness in system testing are with respect to the
system specification and potential usage scenarios, rather than code or design. Each
feature or specified behavior of the system should be accounted for in one or several
test cases. In addition to facilitating design for test, designing system test cases to-
gether with the system requirements specification document helps expose ambiguity
and refine specifications.

The set of feature tests passed by the current partial implementation is often used
as a gauge of progress. Interpreting a count of failing feature-based system tests is
discussed in Chapter 20, Section 20.6.

Additional test cases can be devised during development to check for observable
symptoms of failures that were not anticipated in the initial system specification. They
may also be based on failures observed and reported by actual users, either in accep-
tance testing or from previous versions of a system. These are in addition to a thorough
specification-based test suite, so they do not compromise independence of the quality
assessment.

Some system properties, including performance properties like latency between an
event and system response and reliability properties like mean time between failures,
are inherently global. While one certainly should aim to provide estimates of these
properties as early as practical, they are vulnerable to unplanned interactions among
parts of a complex system and its environment. The importance of such global proper-
ties is therefore magnified in system testing.
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Global properties like performance, security, and safety are difficult to specify pre-
cisely and operationally, and they depend not only on many parts of the system under
test, but also on its environment and use. For example, U.S. HIPAA regulations gov-
erning privacy of medical records require appropriate administrative, technical, and
physical safeguards to protect the privacy of health information, further specified as
follows:

Implementation specification: safeguards. A covered entity must reason-
ably safeguard protected health information from any intentional or unin-
tentional use or disclosure that is in violation of the standards, implemen-
tation specifications or other requirements of this subpart. [Uni00, sec.
164.530(c)(2)]

It is unlikely that any precise operational specification can fully capture the HIPAA
requirement as it applies to an automated medical records system. One must consider
the whole context of use, including, for example, which personnel have access to the
system and how unauthorized personnel are prevented from gaining access.

Some global properties may be defined operationally, but parameterized by use.
For example, a hard-real-time system must meet deadlines, but cannot do so in a com-
pletely arbitrary environment; its performance specification is parameterized by event
frequency and minimum inter-arrival times. An e-commerce system may be expected
to provide a certain level of responsiveness up to a certain number of transactions per
second and to degrade gracefully up to a second rate. A key step is identifying the
“operational envelope” of the system, and testing both near the edges of that envelope
(to assess compliance with specified goals) and well beyond it (to ensure the system
degrades or fails gracefully). Defining borderline and extreme cases is logically part
of requirements engineering, but as with precise specification of features, test design
often reveals gaps and ambiguities.

Not all global properties will be amenable to dynamic testing at all, at least in the
conventional sense. One may specify a number of properties that a secure computer
system should have, and some of these may be amenable to testing. Others can be
addressed only through inspection and analysis techniques, and ultimately one does
not trust the security of a system at least until an adversarial team has tried and failed
to subvert it. Similarly, there is no set of test cases that can establish software safety,
in part because safety is a property of a larger system and environment of which the
software is only part. Rather, one must consider the safety of the overall system, and
assess aspects of the software that are critical to that overall assessment. Some but not
all of those claims may be amenable to testing.

Testing global system properties may require extensive simulation of the execution
environment. Creating accurate models of the operational environment requires sub-
stantial human resources, and executing them can require substantial time and machine
resources. Usually this implies that “stress” testing is a separate activity from frequent
repetition of feature tests. For example, a large suite of system test cases might well
run each night or several times a week, but a substantial stress test to measure robust
performance under heavy load might take hours to set up and days or weeks to run.

A test case that can be run automatically with few human or machine resources
should generally focus on one purpose: to make diagnosis of failed test executions as
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Unit, Integration, and System Testing
Unit Test Integration Test System Test

Test cases
derived from

module specifications architecture and design
specifications

requirements specifica-
tion

Visibility
required

all the details of the code some details of the code,
mainly interfaces

no details of the code

Scaffolding
required

Potentially complex, to
simulate the activation
environment (drivers),
the modules called by
the module under test
(stubs) and test oracles

Depends on architecture
and integration order.
Modules and subsystems
can be incrementally
integrated to reduce need
for drivers and stubs.

Mostly limited to test
oracles, since the whole
system should not re-
quire additional drivers
or stubs to be executed.
Sometimes includes
a simulated execution
environment (e.g., for
embedded systems).

Focus on behavior of individual
modules

module integration and
interaction

system functionality

clear and simple as possible. Stress testing alters this: If a test case takes an hour to set
up and a day to run, then one had best glean as much information as possible from its
results. This includes monitoring for faults that should, in principle, have been found
and eliminated in unit and integration testing, but which become easier to recognize
in a stress test (and which, for the same reason, are likely to become visible to users).
For example, several embedded system products ranging from laser printers to tablet
computers have been shipped with slow memory leaks that became noticeable only
after hours or days of continuous use. In the case of the tablet PC whose character
recognition module gradually consumed all system memory, one must wonder about
the extent of stress testing the software was subjected to.

22.3 Acceptance Testing

The purpose of acceptance testing is to guide a decision as to whether the product in its
current state should be released. The decision can be based on measures of the product
or process. Measures of the product are typically some inference of dependability
based on statistical testing. Measures of the process are ultimately based on comparison
to experience with previous products.

Although system and acceptance testing are closely tied in many organizations,
fundamental differences exist between searching for faults and measuring quality. Even
when the two activities overlap to some extent, it is essential to be clear about the
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distinction, in order to avoid drawing unjustified conclusions.
Quantitative goals for dependability, including reliability, availability, and mean

time between failures, were introduced in Chapter 4. These are essentially statisti-
cal measures and depend on a statistically valid approach to drawing a representative
sample of test executions from a population of program behaviors. Systematic testing,
which includes all of the testing techniques presented heretofore in this book, does
not draw statistically representative samples. Their purpose is not to fail at a “typical”
rate, but to exhibit as many failures as possible. They are thus unsuitable for statistical
testing.

The first requirement for valid statistical testing is a precise definition of what is be-
ing measured and for what population. If system operation involves transactions, each
of which consists of several operations, a failure rate of one operation in a thousand is
quite different from a failure rate of one transaction in a thousand. In addition, the fail-
ure rate may vary depending on the mix of transaction types, or the failure rate may be
higher when one million transactions occur in an hour than when the same transactions
are spread across a day. Statistical modeling therefore necessarily involves construction
of a model of usage, and the results are relative to that model.

Suppose, for example, that a typical session using the Chipmunk Web sales facility
consists of 50 interactions, the last of which is a single operation in which the credit
card is charged and the order recorded. Suppose the Chipmunk software always op-
erates flawlessly up to the point that a credit card is to be charged, but on half the
attempts it charges the wrong amount. What is the reliability of the system? If we
count the fraction of individual interactions that are correctly carried out, we conclude
that only one operation in 100 fails, so the system is 99% reliable. If we instead count
entire sessions, then it is only 50% reliable, since half the sessions result in an improper
credit card charge.

Statistical models of usage, or operational profiles, may be available from measure-operational profile

ment of actual use of prior, similar systems. For example, use of a current telephone
handset may be a reasonably good model of how a new handset will be used. Good
models may also be obtained in embedded systems whose environment is primarily
made up of predictable devices rather than unpredictable humans. In other cases one
cannot justify high confidence in a model, but one can limit the uncertainty to a small
number of parameters. One can perform sensitivity testing to determine which pa-sensitivity testing

rameters are critical. Sensitivity testing consists of repeating statistical tests while sys-
tematically varying parameters to note the effect of each parameter on the output. A
particular parameter may have little effect on outcomes over the entire range of plausi-
ble values, or there may be an effect that varies smoothly over the range. If the effect
of a given parameter is either large or varies discontinuously (e.g., performance falls
precipitously when system load crosses some threshold), then one may need to make
distinct predictions for different value ranges.

A second problem faced by statistical testing, particularly for reliability, is that it
may take a very great deal of testing to obtain evidence of a sufficient level of relia-
bility. Consider that a system that executes once per second, with a failure rate of one
execution in a million, or 99.9999% reliability, fails about 31 times each year; this may
require a great testing effort and still not be adequate if each failure could result in
death or a lawsuit. For critical systems, one may insist on software failure rates that are
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an insignificant fraction of total failures. For many other systems, statistical measures
of reliability may simply not be worth the trouble.

A less formal, but frequently used approach to acceptance testing is testing with
users. An early version of the product is delivered to a sample of users who provide
feedback on failures and usability. Such tests are often called alpha and beta tests. alpha and beta

testThe two terms distinguish between testing phases. Often the early or alpha phases
are performed within the developing organization, while the later or beta phases are
performed at users’ sites.

In alpha and beta testing, the user sample determines the operational profile. A
good sample of users should include representatives of each distinct category of users,
grouped by operational profile and significance. Suppose, for example, Chipmunk
plans to provide Web-based sales facilities to dealers, industrial customers, and indi-
viduals. A good sample should include both users from each of those three categories
and a range of usage in each category. In the industrial user category, large customers
who frequently issue complex orders as well as small companies who typically order a
small number of units should be represented, as the difference in their usage may lead
to different failure rates. We may weigh differently the frequency of failure reports
from dealers and from direct customers, to reflect either the expected mix of usage in
the full population or the difference in consequence of failure.

22.4 Usability

A usable product is quickly learned, allows users to work efficiently, and is pleasant
to use. Usability involves objective criteria such as the time and number of operations
required to perform tasks and the frequency of user error, in addition to the overall,
subjective satisfaction of users.

For test and analysis, it is useful to distinguish attributes that are uniquely associ-
ated with usability from other aspects of software quality (dependability, performance,
security, etc.). Other software qualities may be necessary for usability; for example, a
program that often fails to satisfy its functional requirements or that presents security
holes is likely to suffer poor usability as a consequence. Distinguishing primary us-
ability properties from other software qualities allows responsibility for each class of
properties to be allocated to the most appropriate personnel, at the most cost-effective
points in the project schedule.

Even if usability is largely based on user perception and thus is validated based on
user feedback, it can be verified early in the design and through the whole software life
cycle. The process of verifying and validating usability includes the following main
steps:

Inspecting specifications with usability checklists. Inspection provides early feed-
back on usability.

Testing early prototypes with end users to explore their mental model (exploratory
test), evaluate alternatives (comparison test), and validate software usability. A
prototype for early assessment of usability may not include any functioning soft-
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ware; a cardboard prototype may be as simple as a sequence of static images
presented to users by the usability tester.

Testing incremental releases with both usability experts and end users to monitor
progress and anticipate usability problems.

System and acceptance testing that includes expert-based inspection and testing, user-
based testing, comparison testing against competitors, and analysis and checks
often done automatically, such as a check of link connectivity and verification of
browser compatibility.

User-based testing (i.e., testing with representatives of the actual end-user popula-
tion) is particularly important for validating software usability. It can be applied at dif-
ferent stages, from early prototyping through incremental releases of the final system,
and can be used with different goals: exploring the mental model of the user, evalu-
ating design alternatives, and validating against established usability requirements and
standards.

The purpose of exploratory testing is to investigate the mental model of end users.
It consists of asking users about their approach to interactions with the system. Forexploratory testing

example, during an exploratory test for the Chipmunk Web presence, we may provide
users with a generic interface for choosing the model they would like to buy, in or-
der to understand how users will interact with the system. A generic interface could
present information about all laptop computer characteristics uniformly to see which
are examined first by the sample users, and thereby to determine the set of characteris-
tics that should belong to the summary in the menu list of laptops. Exploratory test is
usually performed early in design, especially when designing a system for a new target
population.

The purpose of comparison testing is evaluating options. It consists of observ-
ing user reactions to alternative interaction patterns. During comparison test we can,
for example, provide users with different facilities to assemble the desired Chipmunk
laptop configuration, and to identify patterns that facilitate users’ interactions. Com-
parison test is usually applied when the general interaction patterns are clear and need
to be refined. It can substitute for exploratory testing if initial knowledge about target
users is sufficient to construct a range of alternatives, or otherwise follows exploratory
testing.

The purpose of validation testing is assessing overall usability. It includes identi-
fying difficulties and obstacles that users encounter while interacting with the system,
as well as measuring characteristics such as error rate and time to perform a task.

A well-executed design and organization of usability testing can produce results
that are objective and accurately predict usability in the target user population. The us-
ability test design includes selecting suitable representatives of the target users and or-
ganizing sessions that guide the test toward interpretable results. A common approach
is divided into preparation, execution, and analysis phases. During the preparation
phase, test designers define the objectives of the session, identify the items to be tested,
select a representative population of end users, and plan the required actions. During
execution, users are monitored as they execute the planned actions in a controlled envi-
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ronment. During analysis, results are evaluated, and changes to the software interfaces
or new testing sessions are planned, if required.

Each phase must be carefully executed to ensure success of the testing session.
User time is a valuable and limited resource. Well-focused test objectives should not
be too narrow, to avoid useless waste of resources, nor too wide, to avoid scattering
resources without obtaining useful data. Focusing on specific interactions is usually
more effective than attempting to assess the usability of a whole program at once.
For example, the Chipmunk usability test team independently assesses interactions for
catalog browsing, order definition and purchase, and repair service.

The larger the population sample, the more precise the results, but the cost of very
large samples is prohibitive; selecting a small but representative sample is therefore
critical. A good practice is to identify homogeneous classes of users and select a set
of representatives from each class. Classes of users depend on the kind of application
to be tested and may be categorized by role, social characteristics, age, and so on. A
typical compromise between cost and accuracy for a well-designed test session is five
users from a unique class of homogeneous users, four users from each of two classes, or
three users for each of three or more classes. Questionnaires should be prepared for the
selected users to verify their membership in their respective classes. Some approaches
also assign a weight to each class, according to their importance to the business. For
example, Chipmunk can identify three main classes of users: individual, business, and
education customers. Each of the main classes is further divided. Individual customers
are distinguished by education level; business customers by role; and academic cus-
tomers by size of the institution. Altogether, six putatively homogeneous classes are
obtained: Individual customers with and without at least a bachelor degree, managers
and staff of commercial customers, and customers at small and large education institu-
tions.

Users are asked to execute a planned set of actions that are identified as typical
uses of the tested feature. For example, the Chipmunk usability assessment team may
ask users to configure a product, modify the configuration to take advantage of some
special offers, and place an order with overnight delivery.

Users should perform tasks independently, without help or influence from the test-
ing staff. User actions are recorded, and comments and impressions are collected with
a post-activity questionnaire. Activity monitoring can be very simple, such as record-
ing sequences of mouse clicks to perform each action. More sophisticated monitoring
can include recording mouse or eye movements. Timing should also be recorded and
may sometimes be used for driving the sessions (e.g., fixing a maximum time for the
session or for each set of actions).

An important aspect of usability is accessibility to all users, including those with
disabilities. Accessibility testing is legally required in some application domains. For
example, some governments impose specific accessibility rules for Web applications of
public institutions. The set of Web Content Accessibility Guidelines (WCAG) defined
by the World Wide Web Consortium are becoming an important standard reference.
The WCAG guidelines are summarized in the sidebar on page 426.
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Web Content Accessibility Guidelines (WCAG)a

1. Provide equivalent alternatives to auditory and visual content that convey essen-
tially the same function or purpose.

2. Ensure that text and graphics are understandable when viewed without color.

3. Mark up documents with the proper structural elements, controlling presentation
with style sheets rather than presentation elements and attributes.

4. Use markup that facilitates pronunciation or interpretation of abbreviated or for-
eign text.

5. Ensure that tables have necessary markup to be transformed by accessible
browsers and other user agents.

6. Ensure that pages are accessible even when newer technologies are not supported
or are turned off.

7. Ensure that moving, blinking, scrolling, or auto-updating objects or pages may
be paused or stopped.

8. Ensure that the user interface, including embedded user interface elements, fol-
lows principles of accessible design: device-independent access to functionality,
keyboard operability, self-voicing, and so on.

9. Use features that enable activation of page elements via a variety of input de-
vices.

10. Use interim accessibility so that assisting technologies and older browsers will
operate correctly.

11. Where technologies outside of W3C specifications is used (e.g, Flash), provide
alternative versions to ensure accessibility to standard user agents and assistive
technologies (e.g., screen readers).

12. Provide context and orientation information to help users understand complex
pages or elements.

13. Provide clear and consistent navigation mechanisms to increase the likelihood
that a person will find what they are looking for at a site.

14. Ensure that documents are clear and simple, so they may be more easily under-
stood.

aExcerpted and adapted from Web Content Accessibility Guidelines 1.0, W3C Recommendation 5-May
1999; used by permission. The current version is distributed by W3C at http://www.w3.org/TR/
WAI-WEBCONTENT.
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22.5 Regression Testing

When building a new version of a system (e.g., by removing faults, changing or adding
functionality, porting the system to a new platform, or extending interoperability), we
may also change existing functionality in unintended ways. Sometimes even small
changes can produce unforeseen effects that lead to new failures. For example, a guard
added to an array to fix an overflow problem may cause a failure when the array is used
in other contexts, or porting the software to a new platform may expose a latent fault
in creating and modifying temporary files.

When a new version of software no longer correctly provides functionality that
should be preserved, we say that the new version regresses with respect to former
versions. The nonregression of new versions (i.e., preservation of functionality), is a
basic quality requirement. Disciplined design and development techniques, including
precise specification and modularity that encapsulates independent design decisions,
improves the likelihood of achieving nonregression. Testing activities that focus on
regression problems are called (non) regression testing. Usually “non” is omitted and
we commonly say regression testing.

A simple approach to regression testing consists of reexecuting all test cases de-
signed for previous versions. Even this simple retest all approach may present nontriv- retest all

ial problems and costs. Former test cases may not be reexecutable on the new version
without modification, and rerunning all test cases may be too expensive and unneces-
sary. A good quality test suite must be maintained across system versions.

Changes in the new software version may impact the format of inputs and outputs,
and test cases may not be executable without corresponding changes. Even simple test case

maintenancemodifications of the data structures, such as the addition of a field or small change of
data types, may invalidate former test cases, or outputs comparable with the new ones.
Moreover, some test cases may be obsolete, since they test features of the software that
have been modified, substituted, or removed from the new version.

Scaffolding that interprets test case specifications, rather than fully concrete test
data, can reduce the impact of input and output format changes on regression testing,
as discussed in Chapter 17. Test case specifications and oracles that capture essential
correctness properties, abstracting from arbitrary details of behavior, likewise reduce
the likelihood that a large portion of a regression test suite will be invalidated by a
minor change.

High-quality test suites can be maintained across versions by identifying and re-
moving obsolete test cases, and by revealing and suitably marking redundant test cases.
Redundant cases differ from obsolete, being executable but not important with respect
to the considered testing criteria. For example, test cases that cover the same path are
mutually redundant with respect to structural criteria, while test cases that match the
same partition are mutually redundant with respect to functional criteria. Redundant
test cases may be introduced in the test suites due to concurrent work of different test
designers or to changes in the code. Redundant test cases do not reduce the overall
effectiveness of tests, but impact on the cost-benefits trade-off: They are unlikely to
reveal faults, but they augment the costs of test execution and maintenance. Obsolete
test cases are removed because they are no longer useful, while redundant test cases
are kept because they may become helpful in successive versions of the software.
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Good test documentation is particularly important. As we will see in Chapter 24,
test specifications define the features to be tested, the corresponding test cases, the
inputs and expected outputs, as well as the execution conditions for all cases, while
reporting documents indicate the results of the test executions, the open faults, and
their relation to the test cases. This information is essential for tracking faults and for
identifying test cases to be reexecuted after fault removal.

22.6 Regression Test Selection Techniques

Even when we can identify and eliminate obsolete test cases, the number of tests to
be reexecuted may be large, especially for legacy software. Executing all test cases
for large software products may require many hours or days of execution and may
depend on scarce resources such as an expensive hardware test harness. For example,
some mass market software systems must be tested for compatibility with hundreds
of different hardware configurations and thousands of drivers. Many test cases may
have been designed to exercise parts of the software that cannot be affected by the
changes in the version under test. Test cases designed to check the behavior of the file
management system of an operating system is unlikely to provide useful information
when reexecuted after changes of the window manager. The cost of reexecuting a
test suite can be reduced by selecting a subset of test cases to be reexecuted, omitting
irrelevant test cases or prioritizing execution of subsets of the test suite by their relation
to changes.

Test case prioritization orders frequency of test case execution, executing all of
them eventually but reducing the frequency of those deemed least likely to reveal faults
by some criterion. Alternate execution is a variant on prioritization for environments
with frequent releases and small incremental changes; it selects a subset of regression
test cases for each software version. Prioritization can be based on the specification
and code-based regression test selection techniques described later in this chapter. In
addition, test histories and fault-proneness models can be incorporated in prioritization
schemes. For example, a test case that has previously revealed a fault in a module that
has recently undergone change would receive a very high priority, while a test case
that has never failed (yet) would receive a lower priority, particularly if it primarily
concerns a feature that was not the focus of recent changes.

Regression test selection techniques are based on either code or specifications.
Code-based selection techniques select a test case for execution if it exercises a portion
of the code that has been modified. Specification-based criteria select a test case for
execution if it is relevant to a portion of the specification that has been changed. Code-
based regression test techniques can be supported by relatively simple tools. They
work even when specifications are not properly maintained. However, like code-based
test techniques in general, they do not scale well from unit testing to integration and
system testing. In contrast, specification-based criteria scale well and are easier to ap-
ply to changes that cut across several modules. However, they are more challenging to
automate and require carefully structured and well-maintained specifications.

Among code-based test selection techniques, control-based techniques rely on a
record of program elements executed by each test case, which may be gathered from
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an instrumented version of the program. The structure of the new and old versions
of the program are compared, and test cases that exercise added, modified, or deleted
elements are selected for reexecution. Different criteria are obtained depending on the
program model on which the version comparison is based (e.g., control flow or data
flow graph models).

Control flow graph (CFG) regression techniques are based on the differences be-
tween the CFGs of the new and old versions of the software. Let us consider, for control flow

graph (CFG)
regression test

example, the C function cgi decode from Chapter 12. Figure 22.1 shows the original
function as presented in Chapter 12, while Figure 22.2 shows a revison of the program.
We refer to these two versions as 1.0 and 2.0, respectively. Version 2.0 adds code to
fix a fault in interpreting hexadecimal sequences ’%xy’. The fault was revealed by
testing version 1.0 with input terminated by an erroneous subsequence ’%x’, causing
version 1.0 to read past the end of the input buffer and possibly overflow the output
buffer. Version 2.0 contains a new branch to map the unterminated sequence to a ques-
tion mark.

Let us consider all structural test cases derived for cgi decode in Chapter 12, and
assume we have recorded the paths exercised by the different test cases as shown in
Figure 22.3. Recording paths executed by test cases can be done automatically with
modest space and time overhead, since what must be captured is only the set of program
elements exercised rather than the full history.

CFG regression testing techniques compare the annotated control flow graphs of the
two program versions to identify a subset of test cases that traverse modified parts of
the graphs. The graph nodes are annotated with corresponding program statements, so
that comparison of the annotated CFGs detects not only new or missing nodes and arcs,
but also nodes whose changed annotations correspond to small, but possibly relevant,
changes in statements.

The CFG for version 2.0 of cgi decode is given in Figure 22.4. Differences between
version 2.0 and 1.0 are indicated in gray. In the example, we have new nodes, arcs and
paths. In general, some nodes or arcs may be missing (e.g., when part of the program is
removed in the new version), and some other nodes may differ only in the annotations
(e.g., when we modify a condition in the new version).

CFG criteria select all test cases that exercise paths through changed portions of
the CFG, including CFG structure changes and node annotations. In the example, we
would select all test cases that pass through node D and proceed toward node G and
all test cases that reach node L, that is, all test cases except TC1. In this example, the
criterion is not very effective in reducing the size of the test suite because modified
statements affect almost all paths.

If we consider only the corrective modification (nodes X and Y ), the criterion is
more effective. The modification affects only the paths that traverse the edge between
D and G, so the CFG regression testing criterion would select only test cases traversing
those nodes (i.e., TC2, TC3, TC4, TC5, TC8 and TC9). In this case the size of the test
suite to be reexecuted includes two-thirds of the test cases of the original test suite.

In general, the CFG regression testing criterion is effective only when the changes
affect a relatively small subset of the paths of the original program, as in the latter case.
It becomes almost useless when the changes affect most paths, as in version 2.0.

Data flow (DF) regression testing techniques select test cases for new and modi-
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1 #include "hex values.h"

2 /** Translate a string from the CGI encoding to plain ascii text.
3 * ’+’ becomes space, %xx becomes byte with hex value xx,
4 * other alphanumeric characters map to themselves.
5 * Returns 0 for success, positive for erroneous input
6 * 1 = bad hexadecimal digit
7 */
8 int cgi decode(char *encoded, char *decoded) {
9 char *eptr = encoded;

10 char *dptr = decoded;
11 int ok=0;
12 while (*eptr) {
13 char c;
14 c = *eptr;
15 if (c == ’+’) { /* Case 1: ’+’ maps to blank */
16 *dptr = ’ ’;
17 } else if (c == ’%’) { /* Case 2: ’%xx’ is hex for character xx */
18 int digit high = Hex Values[*(++eptr)]; /* note illegal => -1 */
19 int digit low = Hex Values[*(++eptr)];
20 if ( digit high == -1 || digit low == -1 ) {
21 /* *dptr=’?’; */
22 ok=1; /* Bad return code */
23 } else {
24 *dptr = 16* digit high + digit low;
25 }
26 } else { /* Case 3: Other characters map to themselves */
27 *dptr = *eptr;
28 }
29 ++dptr;
30 ++eptr;
31 }
32 *dptr = ’\0’; /* Null terminator for string */
33 return ok;
34 }

Figure 22.1: C function cgi decode version 1.0. The C function cgi decode translates a
cgi-encoded string to a plain ASCII string, reversing the encoding applied by the com-
mon gateway interface of most Web servers. Repeated from Figure 12.1 in Chapter 12.
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1 #include "hex values.h"

2 /** Translate a string from the CGI encoding to plain ascii text.
3 * ’+’ becomes space, %xx becomes byte with hex value xx,
4 * other alphanumeric characters map to themselves, illegal to ’?’.
5 * Returns 0 for success, positive for erroneous input
6 * 1 = bad hex digit, non-ascii char, or premature end.
7 */
8 int cgi decode(char *encoded, char *decoded) {
9 char *eptr = encoded;

10 char *dptr = decoded;
11 int ok=0;
12 while (*eptr) {
13 char c;
14 c = *eptr;
15 if (c == ’+’) { /* Case 1: ’+’ maps to blank */
16 *dptr = ’ ’;
17 } else if (c == ’%’) { /* Case 2: ’%xx’ is hex for character xx */
18 if (! ( *(eptr + 1) && *(eptr + 2) )) { /* \%xx must precede EOL */
19 ok = 1; return;
20 }
21 /* OK, we know the xx are there, now decode them */
22 int digit high = Hex Values[*(++eptr)]; /* note illegal => -1 */
23 int digit low = Hex Values[*(++eptr)];
24 if ( digit high == -1 || digit low == -1 ) {
25 /* *dptr=’?’; */
26 ok=1; /* Bad return code */
27 } else {
28 *dptr = 16* digit high + digit low;
29 }
30 } else { /* Case 3: Other characters map to themselves */
31 *dptr = *eptr;
32 }
33 if (! isascii(*dptr)) { /* Produce only legal ascii */
34 *dptr = ’?’;
35 ok = 1;
36 }
37 ++dptr;
38 ++eptr;
39 }
40 *dptr = ’\0’; /* Null terminator for string */
41 return ok;
42 }

Figure 22.2: Version 2.0 of the C function cgi decode adds a control on hexadecimal
escape sequences to reveal incorrect escape sequences at the end of the input string
and a new branch to deal with non-ASCII characters.
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Id Test case Path
TC1 “ ” A B M
TC2 “test+case%1Dadequacy” A B C D F L ... B M
TC3 “adequate+test%0Dexecution%7U” A B C D F L ... B M
TC4 “%3D” A B C D G H L B M
TC5 “%A” A B C D G I L B M
TC6 “a+b” A B C D F L B C E L B C D F L B M
TC7 “test” A B C D F L B C D F L B C D F L B C D F L B M
TC8 “+%0D+%4J” A B C E L B C D G I L ... B M
TC9 “first+test%9Ktest%K9” A B C D F L ... B M

Figure 22.3: Paths covered by the structural test cases derived for version 1.0 of func-
tion cgi decode. Paths are given referring to the nodes of the control flow graph of
Figure 22.4.

fied pairs of definitions with uses (DU pairs, cf. Sections 6.1, page 77 and 13.2, page
236). DF regression selection techniques reexecute test cases that, when executed ondata flow (DF)

regression test the original program, exercise DU pairs that were deleted or modified in the revised
program. Test cases that executed a conditional statement whose predicate was altered
are also selected, since the changed predicate could alter some old definition-use asso-
ciations. Figure 22.5 shows the new definitions and uses introduced by modifications
to cgi decode.1 These new definitions and uses introduce new DU pairs and remove
others.

In contrast to code-based techniques, specification-based test selection techniques
do not require recording the control flow paths executed by tests. Regression test cases
can be identified from correspondence between test cases and specification items. For
example, when using category partition, test cases correspond to sets of choices, while
in finite state machine model-based approaches, test cases cover states and transitions.
Where test case specifications and test data are generated automatically from a spec-
ification or model, generation can simply be repeated each time the specification or
model changes.

Code-based regression test selection criteria can be adapted for model-based re-
gression test selection. Consider, for example, the control flow graph derived from the
process shipping order specification in Chapter 14. We add the following item to that
specification:

Restricted countries: A set of restricted destination countries is maintained, based on
current trade restrictions. If the shipping address contains a restricted destina-
tion country, only credit card payments are accepted for that order, and shipping

1When dealing with arrays, we follow the criteria discussed in Chapter 13: A change of an array value
is a definition of the array and a use of the index. A use of an array value is a use of both the array and the
index.

https://hemanthrajhemu.github.io



Regression Test Selection Techniques 433

True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True
else {
*dptr = 16 * digit_high + 
digit_low;
}

False

False

False

else
*dptr = *eptr;
}

int cgi_decode(char *encoded, char *decoded)

F G

H I

M

 { char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

A

while (*eptr) { B

char c;
c = *eptr;
if (c == '+') {  

C

*dptr = ' ';
} 

E elseif (c == '%') {
D

ok = 1; return; 
}

      if (! ( *(eptr + 1)  && *(eptr + 2) )) { X

Y
True False

   if (! isascii(*dptr)) { W

     *dptr = '?';
      ok = 1; 
    }

Z

++dptr;
++eptr;
}

L

True

False

Figure 22.4: The control flow graph of function cgi decode version 2.0. Gray back-
ground indicates the changes from the former version.
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Variable Definitions Uses
*eptr X
eptr X
dptr Z W
dptr Z W
ok Y Z

Figure 22.5: Definitions and uses introduced by changes in cgi decode. Labels refer to
the nodes in the control flow graph of Figure 22.4.

proceeds only after approval by a designated company officer responsible for
checking that the goods ordered may be legally exported to that country.

The new requirement can be added to the flow graph model of the specification as
illustrated in Figure 22.6.

We can identify regression test cases with the CFG criterion that selects all cases
that correspond to international shipping addresses (i.e., test cases TC-1 and TC-5 from
the following table). The table corresponds to the functional test cases derived using to
the method described in Chapter 14 on page 259.

Case Too Ship Ship Cust Pay Same CC
small where method type method addr valid

TC-1 No Int Air Bus CC No Yes
TC-2 No Dom Land – – – –
TC-3 Yes – – – – – –
TC-4 No Dom Air – – – –
TC-5 No Int Land – – – –
TC-6 No – – Edu Inv – –
TC-7 No – – – CC Yes –
TC-8 No – – – CC – No (abort)
TC-9 No – – – CC – No (no abort)

Models derived for testing can be used not only for selecting regression test cases,
but also for generating test cases for the new code. In the preceding example, we can
use the model not only to identify the test cases that should be reused, but also to gen-
erate new test cases for the new functionality, following the combinatorial approaches
described in Chapter 11.

22.7 Test Case Prioritization and Selective Execution

Regression testing criteria may select a large portion of a test suite. When a regression
test suite is too large, we must further reduce the set of test cases to be executed.

Random sampling is a simple way to reduce the size of the regression test suite.
Better approaches prioritize test cases to reflect their predicted usefulness. In a con-
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preferred shipping method = land freight, OR 
expedited land freight OR overnight air

Process shipping order

CostOfGoods < MinOrder

shipping address
no

yes

domestic

preferred shipping method  =  air 
freight OR expedited air freight

international

calculate domestic 
shipping charge

calculate international shipping charge

total charge = goods + shipping

individual customer no

yes

obtain credit card data: number, 
name on card, expiration date

method of payement
credit card

invoice

billing address = shipping address

obtain billing address

no
yes

valid credit card 
information

no

yes

payement status = valid
enter order

prepare receipt

invalid order

no

no

abort order?

no

yes

Shipping address in {restricted countries}

order in {allowed goods}
noyes

no
yes

Figure 22.6: A flow graph model of the specification of the shipping order functionality
presented in Chapter 14, augmented with the “restricted country” requirement. The
changes in the flow graph are indicated in black.
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tinuous cycle of retesting as the product evolves, high-priority test cases are selected
more often than low-priority test cases. With a good selection strategy, all test cases are
executed sooner or later, but the varying periods result in an efficient rotation in which
the cases most likely to reveal faults are executed most frequently.

Priorities can be assigned in many ways. A simple priority scheme assigns priority
according to the execution history: Recently executed test cases are given low priority,
while test cases that have not been recently executed are given high priority. In theexecution history

priority schema extreme, heavily weighting execution history approximates round robin selection.
Other history-based priority schemes predict fault detection effectiveness. Test

cases that have revealed faults in recent versions are given high priority. Faults arefault revealing
priority schema not evenly distributed, but tend to accumulate in particular parts of the code or around

particular functionality. Test cases that exercised faulty parts of the program in the past
often exercise faulty portions of subsequent revisions.

Structural coverage leads to a set of priority schemes based on the elements covered
by a test case. We can give high priority to test cases that exercise elements that havestructural priority

schema not recently been exercised. Both the number of elements covered and the “age” of
each element (time since that element was covered by a test case) can contribute to the
prioritization.

Structural priority schemes produce several criteria depending on which elements
we consider: statements, conditions, decisions, functions, files, and so on. The choice
of the element of interest is usually driven by the testing level. Fine-grain elements
such as statements and conditions are typically used in unit testing, while in integration
or system testing one can consider coarser grain elements such as methods, features,
and files.

Open Research Issues

System requirements include many nonfunctional behavioral properties. While there is
an active research community in reliability testing, in general, assessment of nonfunc-
tional properties is not as well-studied as testing for correctness. Moreover, as trends
in software develop, new problems for test and analysis are following the emphasis on
particular nonfunctional properties. A prominent example of this over the last several
years, and with much left to do, is test and analysis to assess and improve security.

Selective regression test selection based on analysis of source code is now well-
studied. There remains need and opportunity for improvement in techniques that give
up the safety guarantee (selecting all test cases that might be affected by a software
change) to obtain more significant test suite reductions. Specification-based regression
test selection is a promising avenue of research, particularly as more systems incorpo-
rate components without full source code.

Increasingly ubiquitous network access is blurring the once-clear lines between
alpha and beta testing and opening possibilities for gathering much more information
from execution of deployed software. We expect to see advances in approaches to gath-
ering information (both from failures and from normal execution) as well as exploiting
potentially large amounts of gathered information. Privacy and confidentiality are an
important research challenge in postdeployment monitoring.
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Further Reading

Musa [Mus04] is a guide to reliability engineering from a pioneer in the field; ongoing
research appears in the International Symposium on Software Reliability Engineer-
ing (ISSRE) conference series. Graves et al. [GHK+98] and Rothermel and Har-
rold [RH97] provide useful overviews of selective regression testing. Kim and Porter
[KP02] describe history-based test prioritization. Barnum [Bar01] is a well-regarded
text on usability testing; Nielsen [Nie00] is a broader popular introduction to usability
engineering, with a chapter on usability testing.

Exercises

22.1. Consider the Chipmunk Computer Web presence. Define at least one test case
that may serve both during final integration and early system testing, at least one
that serves only as an integration test case, and at least one that is more suitable
as a system test case than as a final integration test case. Explain your choices.

22.2. When and why should testing responsibilities shift from the development team to
an independent quality team? In what circumstances might using an independent
quality team be impractical?

22.3. Identify some kinds of properties that cannot be efficiently verified with system
testing, and indicate how you would verify them.

22.4. Provide two or more examples of resource limitations that may impact system
test more than module and integration test. Explain the difference in impact.

22.5. Consider the following required property of the Chipmunk Computer Web pres-
ence:

Customers should perceive that purchasing a computer using the Chip-
munk Web presence is at least as convenient, fast, and intuitive as
purchasing a computer in an off-line retail store.

Would you check it as part of system or acceptance testing? Reformulate the
property to allow test designers to check it in a different testing phase (system
testing, if you consider the property checkable as part of acceptance testing, or
vice versa).
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